MAPEAMENTO DA VARIABILIDADE ESPACIAL
|
|
|
- Orlando Peixoto Sales
- 10 Há anos
- Visualizações:
Transcrição
1 IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal de um determnado atrbuto é necessáro ter um banco de dados que apresente o valor e a localzação do atrbuto. Esse banco de dados é normalmente obtdo em uma amostragem não regular de pontos dentro da área avalada e é denomnado de dados brutos. Assm, para se obter uma grade regular de pontos é necessáro o uso de nterpoladores para estmar pontos em locas que não foram amostrados. Os mas usados para mapeamento da varabldade espacal em agrcultura de precsão são: vznho mas próxmo, méda local, nverso da dstânca e krgagem. MOORE (998) testou esses nterpoladores para mapeamento da produtvdade de mlho. Usou uma colhedora Massey Ferguson com sstema de mapeamento para gerar um valor médo de produtvdade para células de 20-25m 2. Concluu que a nterpolação pelo método da méda local pode ser utlzada para mapeamento de produtvdade com colhedoras. Segundo esse mesmo autor o a escolha do método de nterpolação de dados brutos para grade regular (Fgura ) depende do detalhamento desejado, sto é, devemos levar em conta a fnaldade do mapa. Para uso em agrcultura de precsão dfclmente será necessáro um nível de detalhamento da varabldade espacal em grade regular menor que 5m. Professor. Unversdade Federal Rural do Ro de Janero, IT-Departamento de Engenhara, BR 465 km 7 - CEP Seropédca RJ. E-mal: [email protected]. 2
2 Fgura. Interpolação de dados brutos para grade regular. VIZINHO MAIS PRÓXIMO O vznho mas próxmo é o mas smples dos nterpoladores. Apenas usa o valor do ponto mas próxmo do nó da grade para estmar o valor nterpolado. Os valores observados não são modfcados, havendo apenas uma redstrbução dos mesmos em uma grade regular. É usado quando desejamos transformar dados brutos em grade regular sem modfcação dos valores observados. Nó Fgura 2. Interpolação pelo método do vznho mas próxmo. MÉDIA LOCAL Este nterpolador estma os valores de pontos da grade regular apenas calculando a méda de pontos seleconados ao redor de cada nó. Os pontos são seleconados em função do número de vznhos ou do 3
3 rao de busca. No exemplo lustrado na Fgura 3 os parâmetros para a nterpolação são: rao de busca = 0 m ou número de vznhos = 8. Fgura 3. Interpolação pelo método da méda local. INVERSO DA DISTÂNCIA Esse nterpolador utlza o modelo estatístco denomnado nverso das dstâncas. O modelo basea-se na dependênca espacal, sto é, supõe que quanto mas próxmo estver um ponto do outro, maor deverá ser a correlação entre seus valores. Dessa forma atrbu maor peso para as observações mas próxmas do que para as mas dstantes. Assm o modelo consste em se multplcar os valores das observações pelo nverso das suas respectvas dstâncas ao ponto de referênca para a nterpolação dos valores. z = n = n = d d z () em que, z = valor estmado para o ponto z; n = número de amostras; z = valores conhecdos; d = dstâncas entre os valores conhecdos e o estmado ( z e z). A equação pode ser ajustada para nclur uma potênca para as dstâncas, com sso pode-se atrbur pesos dferentes para a estmatva do valor de uma observação para uma mesma dstânca. 4
4 z = n = n = p d d p z (2) Com essa modfcação, Equação 2, pode-se atrbur dferentes valores a potênca p, sendo que quanto maor for o valor dessa potênca maor será a nfluênca dos vznhos mas próxmos (z ) no valor estmado para o ponto z. A potênca mas utlzada é 2 e por sso freqüentemente esse nterpolador é chamado de nverso do quadrado das dstâncas. É conhecdo também por IDW (The Inverse Dstance Weghted). O algortmo está mplementado em uma sére de programas comercas e oferece as seguntes opções: Barres: sgnfca uma frontera para a busca de pontos. Se optarmos por No Barres sgnfca que todos os pontos especfcados em número de vznhos (No. of Neghbors) ou em rao de busca (radus) serão utlzados na estmatva do valor nterpolado. No. of Neghbors: sgnfca o número de vznhos que serão utlzados para estmar o valor nterpolado. Radus: sgnfca rao de busca. Determna a dstânca máxma para seleconar pontos que serão usados na estmatva do valor nterpolado. O Arcvew apresenta opções na nterface do nterpolador IDW para varar o rao de busca, a potênca e fronteras, com sso podem-se obter dferentes resultados para valores nterpolados de um mesmo conjunto de dados. A fgura 4 lustra a nterface do nterpolador IDW no arcvew. 5
5 Fgura 4. Interface do nterpolador IDW no Arcvew. No exemplo lustrado na Fgura 4, o rao de busca fo fxado em 00 m (Radus = 00 m); a potênca para o nverso das dstâncas gual a 2 (Power = 2) e nenhuma frontera fo defnda. De acordo com a Equação 2, quanto maor o valor de p maor será a nfluênca dos pontos mas próxmos, e com sso terão maor nfluênca no resultado da nterpolação. Quando a opção Nearest Neghbors é seleconada o programa faz a seleção de pontos usando o número de vznhos, ndependente da dstânca. Quando seleconamos Fxed Radus o programa faz a seleção de pontos usando o rao de busca, ndependente do número de vznhos. KRIGAGEM A krgagem é o únco método de nterpolação que ajusta um modelo para o comportamento da varânca espacal dos dados brutos, e usa esse modelo, para estmar os valores dos pontos de uma grade regular. Segundo VIEIRA (2000), é necessáro que a varável estudada apresente dependênca espacal para a confecção de mapas por krgagem. O estudo da dependênca espacal é feto por análse do 6
6 semvarograma, que segundo VIEIRA (2000) é a ferramenta mas adequada para medr a dependênca espacal. O semvarograma é defndo como a esperança matemátca do quadrado da dferença entre pares de uma varável no espaço, dado pela Equação 3. em que, γ 2 { } 2 ( h ) = E [ Z(x) Z(x + h) ] (3) γ(h) = semvarograma; Z(x) = valor da varável no ponto x; Z(x+h) = valor da varável no ponto (x+h); h = dstânca entre os pontos x e x+h. Os semvarogramas podem ser modelados no programa computaconal GS+ (GAMMA DESIGN, 2002). Os modelos dsponíves no GS+ são: exponencal, gaussano, esfércos e lnear. O algortmo mplentado no GS+ selecona o modelo que apresentar menor soma de quadradro de resíduo no ajuste. O ajuste do modelo matemátco aos dados defne os parâmetros do semvarograma, que são: efeto pepta (C o ), que é o valor de γ quando h=0; alcance (A) a partr do qual γ é constante; patamar (C+C o ), cujo valor é aproxmadamente gual à varânca dos dados, se ela exste, e é obtdo pela soma do efeto pepta (C o ) e a varânca estrutural (C) (Fgura 5). 7
7 Fgura 5. Modelo ajustado para o semvarograma expermental pelo programa computaconal GS+ A dependênca espacal pode ser avalada, segundo CAMBARDELLA et al. (994), por meo do coefcente de efeto pepta (CEP), defndo como a razão entre o efeto pepta e o patamar (C 0 /C+C 0 ). Segundo, se o CEP 0,25 a amostra apresenta alta dependênca espacal, sto é, a componente aleatóra é pequena; se 0,25 CEP 0,75 a amostra apresenta moderada dependênca espacal, sto é, a componente aleatóra é mportante e se CEP 0,75 a amostra tem baxa dependênca espacal. Assm a varável apresenta alta dependênca espacal quando o efeto pepta é 0,25 do patamar. Segundo VIEIRA et al. (997), quanto menor o coefcente de efeto pepta, maor será a semelhança entre os valores vznhos e a contnudade do fenômeno, e menor será a varânca da estmatva. 8
8 BIBLIOGRAFIA MOORE, M. An Investgaton nto the accuracy of yeld maps and ther subsequent use n crop management. Cranfeld Unversty, Slsoe College, Department of Agrculture and Bosystems Engneerng, www. cpf.kvl. dk/papers/ Mark_Moore_Thess/ ndex.htm, acessado em 6 de março de CAMBARDELLA, C.A.; MOORMAN, T.B.; NOVAK, J.M.; PARKIN, T.B.; KARLEN, D.L.; TURVO, R.F.; KONOPA, A.E. Feld-scale varablty of sol propertes n central Iowa sols. Sol Scence Socety of Amercan Journal, v.58, n.5, p.50-5, 994. VIEIRA, S.R. Geoestatístca aplcada à agrcultura de precsão. In: BOREM, A.; GIUDICE, M.P.; QUEIROZ, D.M.; MANTOVANI, E.C.; FERREIRA, L.R.; VALLE, F.X.R.; GOMIDE, R.L. Agrcultura de Precsão. Vçosa: Edtora UFV, p GAMMA DESIGN. GS+ for Wndows Demonstraton Verson 5.3. Planwell, Mchgan, USA: Gamma Desgn Software, VIEIRA, S.R.; NIELSEN, D.R.; BIGGAR, J.W.; TILLOTSON, P.M. The scalng of semvarograms and the krgng estmaton of feldmeasured propertes. Revsta Braslera de Cênca do Solo, Vçosa, v.2, p ,
Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado
Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação
NOTA II TABELAS E GRÁFICOS
Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.
Regressão e Correlação Linear
Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,
TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823
Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção
Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos
Introdução à Análise de Dados nas medidas de grandezas físicas
Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.
7. Resolução Numérica de Equações Diferenciais Ordinárias
7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem
Regressão Múltipla. Parte I: Modelo Geral e Estimação
Regressão Múltpla Parte I: Modelo Geral e Estmação Regressão lnear múltpla Exemplos: Num estudo sobre a produtvdade de trabalhadores ( em aeronave, navos) o pesqusador deseja controlar o número desses
PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.
EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve
Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA
Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno
Covariância e Correlação Linear
TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento
Estimativa da fração da vegetação a partir de dados AVHRR/NOAA
Estmatva da fração da vegetação a partr de dados AVHRR/NOAA Fabane Regna Cunha Dantas 1, Céla Campos Braga, Soetâna Santos de Olvera 1, Tacana Lma Araújo 1 1 Doutoranda em Meteorologa pela Unversdade Federal
Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe
Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em
5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)
5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de
ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f.
ROGÉRIO ALVES SANTANA AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grands L.f. Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa
1. CORRELAÇÃO E REGRESSÃO LINEAR
1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação
3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo
3 Metodologa de Avalação da Relação entre o Custo Operaconal e o Preço do Óleo Este capítulo tem como objetvo apresentar a metodologa que será empregada nesta pesqusa para avalar a dependênca entre duas
Faculdade de Ciências e Tecnologia. Programa de Pós-Graduação em Ciências Cartográficas JAQUELINE VICENTE
unesp UNIVERSIDADE ESTADUAL PAULISTA Faculdade de Cêncas e Tecnologa Programa de Pós-Graduação em Cêncas Cartográfcas JAQUELINE VICENTE ESTUDO COMPARATIVO DE MÉTODOS GEOESTATÍSTICOS APLICADOS EM AGRICULTURA
Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?
Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda
Estatística II Antonio Roque Aula 18. Regressão Linear
Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão
CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG
1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o
Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas
Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema
Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)
Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)
UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR
UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR
Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.
Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca
Introdução e Organização de Dados Estatísticos
II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar
PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ
GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS
Algarismos Significativos Propagação de Erros ou Desvios
Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento
UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia
CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da
ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO
ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO J. W. B. Lopes 1 ; E. A. R. Pnhero 2 ; J. R. de Araújo Neto 3 ; J. C. N. dos Santos 4 RESUMO: Esse estudo fo conduzdo
LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05
LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada
MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE
MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE R. L. S. CANEVESI 1, C. L. DIEL 2, K. A. SANTOS 1, C. E. BORBA 1, F. PALÚ 1, E. A. DA SILVA 1 1 Unversdade Estadual
UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR
Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma
PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS
PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,
Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES
Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas
Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão
IF-UFRJ Elementos de Eletrônca Analógca Prof. Antôno Carlos Fontes dos Santos FIW362 Mestrado Profssonal em Ensno de Físca Aula 1: Dvsores de tensão e Resstênca nterna de uma fonte de tensão Este materal
Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna
Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade
Probabilidade e Estatística. Correlação e Regressão Linear
Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o
O problema da superdispersão na análise de dados de contagens
O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão
CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento
CAP RATES, YIELDS E AALIAÇÃO DE IMÓEIS pelo étodo do rendento Publcado no Confdencal Iobláro, Março de 2007 AMARO NAES LAIA Drector da Pós-Graduação de Gestão e Avalação Ioblára do ISEG. Docente das caderas
SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE
SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de
CQ110 : Princípios de FQ
CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott [email protected] Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções
1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.
A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.
Associação de resistores em série
Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES
O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu
Caderno de Exercícios Resolvidos
Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B
Contabilometria. Aula 8 Regressão Linear Simples
Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos
MODELOS DE REGRESSÃO PARAMÉTRICOS
MODELOS DE REGRESSÃO PARAMÉTRICOS Às vezes é de nteresse nclur na análse, característcas dos ndvíduos que podem estar relaconadas com o tempo de vda. Estudo de nsufcênca renal: verfcar qual o efeto da
Modelagem do crescimento de clones de Eucalyptus via modelos não lineares
Modelagem do crescmento de clones de Eucalyptus va modelos não lneares Joselme Fernandes Gouvea 2 Davd Venanco da Cruz 3 Máco Augusto de Albuquerque 3 José Antôno Alexo da Slva Introdução Os fenômenos
CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)
PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra
É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.
Prof. Lorí Val, Dr. [email protected] http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das
Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos
Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões
IV - Descrição e Apresentação dos Dados. Prof. Herondino
IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser
Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos
Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,
UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO IA Departamento de Solos CPGA-CIÊNCIA DO SOLO IA 1328 - AGRICULTURA DE PRECISÃO
UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO IA Departamento de Solos CPGA-CIÊNCIA DO SOLO IA 1328 - AGRICULTURA DE PRECISÃO GERAÇÃO DE MAPAS NO PROGRAMA ARCVIEW Carlos Alberto Alves Varella 1 André Luis
PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS
PLANEJAMENTO DE EXPERIMENTOS E OTIMIZAÇÃO DE SISTEMAS MISTOS Smone P. Saramago e Valder Steffen Jr UFU, Unversdade Federal de Uberlânda, Curso de Engenhara Mecânca Av. João Naves de Ávla, 2160, Santa Mônca,
Energia de deformação na flexão
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na
Cálculo do Conceito ENADE
Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação
MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES
MOQ-14 PROJETO E ANÁLISE DE EXPERIMENTOS LISTA DE EXERCÍCIOS 1 REGRESSÃO LINEAR SIMPLES 1. Obtenha os estmadores dos coefcentes lnear e angular de um modelo de regressão lnear smples utlzando o método
ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística
ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas
1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.
Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de
Experiência V (aulas 08 e 09) Curvas características
Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de
2 ANÁLISE ESPACIAL DE EVENTOS
ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados
Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas
Unversdade de São Paulo Escola Superor de Agrcultura Luz de Queroz Departamento de Cêncas Exatas Prova escrta de seleção para DOUTORADO em Estatístca e Expermentação Agronômca Nome do canddato (a): Questão
Prof. Lorí Viali, Dr.
Prof. Lorí Val, Dr. [email protected] http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das
2 Incerteza de medição
2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr
Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação
Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados
Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para
Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre
www.obconcursos.com.br/portal/v1/carreirafiscal
www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,
Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014
Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca
Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.
MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,
Controle Estatístico de Processos: a questão da autocorrelação, dos erros de mensuração e do monitoramento de mais de uma característica de qualidade
Controle Estatístco de Processos: a questão da autocorrelação, dos erros de mensuração e do montoramento de mas de uma característca de qualdade Docentes: Maysa S. de Magalhães; Lnda Lee Ho; Antono Fernando
Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)
Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números
2 Máquinas de Vetor Suporte 2.1. Introdução
Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de
Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2
Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer
Controlo Metrológico de Contadores de Gás
Controlo Metrológco de Contadores de Gás José Mendonça Das ([email protected]), Zulema Lopes Perera ([email protected]) Departamento de Engenhara Mecânca e Industral, Faculdade de Cêncas e Tecnologa da Unversdade
