Aritmética. Somas de Quadrados
|
|
|
- Sebastiana Soares César
- 9 Há anos
- Visualizações:
Transcrição
1 Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM
2 Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14
3 Somas de Quadrados Teorema Seja c N ímpar. São equivalentes: 1 c = n 2 + m 2, em que n, m N são primos entre si e de paridades distintas; 2 X 2 1 mod c possui solução em Z; 3 c decompõe-se como um produto de primos da forma 4k + 1. Observação: Se tivermos c = n 2 + m 2, com d = (n, m), então teremos que c d 2 = n m2 1, com (n 1, m 1 ) = 1. Basta tomar n 1 = n d e m 1 = m d. PROFMAT - SBM Aritmética, Somas de Quadrados slide 3/14
4 Somas de Quadrados Quais números naturais podem ser hipotenusas de triângulos retângulos? Corolário 1 Um número c N é a hipotenusa de um triângulo pitagórico primitivo se, e somente se, só admite divisores primos da forma 4k + 1; 2 Um número c N é a hipotenusa de um triângulo pitagórico se, e somente se, c é múltiplo de primos da forma 4k + 1. PROFMAT - SBM Aritmética, Somas de Quadrados slide 4/14
5 Somas de Quadrados Lema Dados a, b, c, d Z, temos: 1 (a 2 + b 2 )(c 2 + d 2 ) = (ac bd) 2 + (ad + bc) 2 ; 2 (2a + 1) 2 + (2b + 1) 2 = 2[(a + b + 1) 2 + (b a) 2 ] e além disso, (2a + 1, 2b + 1) = (a + b + 1, b a). Demonstração: As identidades são verificadas por cálculo direto; Quanto aos mdc, temos: (2a + 1, 2b + 1) = (2a + 1, (2b + 1) (2a + 1)) = (2a + 1, 2b 2a) = = (2a + 1, b a) = ((2a + 1) + (b a), b a) = = (a + b + 1, b 1). * Observe que (2a + 1, 2) = 1. PROFMAT - SBM Aritmética, Somas de Quadrados slide 5/14
6 Conclusões Do ítem (1) concluímos que O produto da soma de dois quadrados é soma de dois quadrados. Do ítem (2) concluímos que A soma dos quadrados de dois números ímpares coprimos é o dobro da soma dos quadrados de dois números coprimos de paridades distintas. PROFMAT - SBM Aritmética, Somas de Quadrados slide 6/14
7 Somas de Quadrados Corolário Todo divisor de um número da forma x 2 + y 2, em que (x, y) = 1, é da forma 4k + 1 ou 2(4k + 1). Demonstração: Se x e y têm paridade distintas, o resultado segue do ítem (3) do Teorema anterior, lembrando que produto de números da forma 4k + 1 é ainda desta forma. Se x e y têm a mesma paridade, então eles são impares pois (x, y) = 1. Neste caso, pelo lema anterior, x 2 + y 2 = 2(u 2 + v 2 ), em que u e v têm paridade distintas. Logo o resultado segue do caso anterior. PROFMAT - SBM Aritmética, Somas de Quadrados slide 7/14
8 Exercício Exercício Existem infinitos primos da forma 8n + 5. Solução: Obs.: Todo número ímpar é da forma 8m + 1, 8m + 3, 8m + 5 ou 8m + 7, portanto seu quadrado é da forma 8m + 1. Suponha que exista apenas um número finito de primos da forma 8m + 5, e seja p o maior deles. PROFMAT - SBM Aritmética, Somas de Quadrados slide 8/14
9 Exercício Defina a = (3 5 7 p) Como (3 5 7 p) 2 é o quadrado de um número ímpar, segue da observação anterior que este é da forma 8m + 1. Portanto a é da forma 8m + 5 Pelo teorema anterior, os divisores de a são da forma 4k + 1, portanto são da forma 8m + 1 ou 8m + 5. Portanto, a deve ter um divisor primo q da forma 8m + 5, pois caso contrário, a seria da forma 8m + 1. Observe que q não é nenhum dos primos 3, 5, 7,..., p, pois esses não dividem a. Logo q > p o que é uma contradição. PROFMAT - SBM Aritmética, Somas de Quadrados slide 9/14
10 Representabilidade Teorema (Fermat) Um número natural a é um quadrado ou a soma de dois quadrados de números naturais se, e somente se, ele é da forma b 2 p 1 p r ou 2b 2 p 1 p r, em que b N, r 0 e p 1,..., p r são primos distintos da forma 4k + 1. Demonstração: Suponhamos que a = 2 l b 2 p 1 p r, onde l = 0, 1 e p 1,..., p r são da forma 4k + 1. Se r = 0, então a = 2 l b 2 e portanto é um quadrado ou soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 10/14
11 Representabilidade Se r > 0, então, pelo Teorema anterior (com c = p 1 ), cada p i é soma de dois quadrados. Como 2 é soma de dois quadrados, segue do lema anterior que 2 l p 1 p r, e portanto a = 2 l b 2 p 1 p r, é soma de dois quadrados. Suponhamos agora que a = x 2 + y 2. Se x = 0 ou y = 0 ou x = y, a será da forma b 2 ou 2b 2. Se x 0, y 0 e x y, então tomando b = (x, y), teremos que a = b 2 (x y 2 1 ), em que x 1 = x b e y 1 = y b são coprimos. PROFMAT - SBM Aritmética, Somas de Quadrados slide 11/14
12 Representabilidade Logo, pelo lema anterior a = 2 l b 2 (x y 2 2 ), em que x 2, y 2 são coprimos de paridades distintas. Logo, pelo Teorema anterior, os divisores primos de x2 2 + y 2 2 forma 4k + 1. são da Agregando as potências pares desses primos, concluímos que a é da forma desejada. PROFMAT - SBM Aritmética, Somas de Quadrados slide 12/14
13 Exercício Exercício Verifique quais números primos entre 1 e 100 podem ser escritos como a soma de dois quadrados. Demonstração: Primeiramente observe que os números primos entre 1 e 100 são: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, e 97. Claramente 2 = PROFMAT - SBM Aritmética, Somas de Quadrados slide 13/14
14 Exercício Pelo Teorema de Fermat, os únicos primos ímpares que podem ser escritos como a soma de dois quadrados são os da forma 4k + 1. Portanto são 5 = = = = = = = = = = = PROFMAT - SBM Aritmética, Somas de Quadrados slide 14/14
ALGORITMO DE EUCLIDES
Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com [email protected] PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo
MA14 - Aritmética Unidade 6 - Parte 3 Resumo
MA14 - Aritmética Unidade 6 - Parte 3 Resumo A Equação Pitagórica Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio
MA14 - Aritmética Unidade 15 - Parte 1 Resumo. Congruências
MA14 - Aritmética Unidade 15 - Parte 1 Resumo Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do assunto.
Triângulos retângulos com lados inteiros: Procurando as hipotenusas
MATEMÁTICA UNIVERSITÁRIA n o 41 Dezembro/2006 pp. 1 10 Triângulos retângulos com lados inteiros: Procurando as hipotenusas José F. Andrade 1 Introdução O objetivo principal deste artigo é determinar os
Números e Funções Reais, E. L. Lima, Coleção PROFMAT.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 9 - Seção 9,5 do livro texto da disciplina: Números e Funções Reais,
MA14 - Aritmética Lista 1. Unidades 1 e 2
MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.
Este material é apenas um resumo de parte do conteúdo da disciplina.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 10 - Seções 10.1 e 10.2 do livro texto da disciplina: Aritmética, A.
Este material é apenas um resumo de parte do conteúdo da disciplina.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 11 - Seção 1.3 do livro texto da disciplina: Aritmética, A. Hefez,
Soma de Quadrados. Faculdade de Matemática, UFU, MG
Soma de Quadrados Stela Zumerle Soares 1 Antônio Carlos Nogueira (stelazs@gmailcom (anogueira@ufubr Faculdade de Matemática, UFU, MG 1 Resultados Preliminares Historicamente, um problema que tem recebido
MA14 - Aritmética Unidade 15 - Parte 2 Resumo
MA14 - Aritmética Unidade 15 - Parte 2 Resumo Aplicações de Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante
DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II
Sumário DIVISÃO NOS INTEIROS Luciana Santos da Silva Martino lulismartino.wordpress.com [email protected] PROFMAT - Colégio Pedro II 18 de agosto de 2017 Sumário 1 Divisibilidade 2 Divisão Euclidiana
MA14 - Aritmética Unidade 9 Resumo. Teorema Fundamental Da Aritmética
MA14 - Aritmética Unidade 9 Resumo Teorema Fundamental Da Aritmética Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio
Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares
Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números
Aritmética. Lei da Reciprocidade Quadrática
Aritmética Lei da Recirocidade Quadrática Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar uma ( ) fórmula ara calcular o símbolo de Legendre a, em que é um rimo ímar. PROFMAT - SBM Aritmética,
MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco
MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que
NÚMEROS ESPECIAIS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II
Sumário NÚMEROS ESPECIAIS Luciana Santos da Silva Martino lulismartino.wordpress.com [email protected] PROFMAT - Colégio Pedro II 27 de outubro de 2017 Sumário 1 Primos de Fermat, de Mersenne e em
Resolução dos Exercícios 31/05-09/06.
Resolução dos Exercícios 31/05-09/06. 1. Seja A um domínio de integridade. Mostre que todo subgrupo finito de U(A) é cíclico. Seja K o corpo de frações de A. Então A é um subanel de K (identificado com
MA14 - Aritmética Unidade 20 Resumo. Teoremas de Euler e de Wilson
MA14 - Aritmética Unidade 20 Resumo Teoremas de Euler e de Wilson Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide
Aritmética dos Restos. Pequeno Teorema de Fermat. Tópicos Adicionais
Aritmética dos Restos Pequeno Teorema de Fermat Tópicos Adicionais Aritmética dos Restos Pequeno Teorema de Fermat 1 Exercícios Introdutórios Exercício 1. Encontre os restos da divisão de 2 24 por a) 5
NÚMEROS INTEIROS. Álgebra Abstrata - Verão 2012
NÚMEROS INTEIROS PROF. FRANCISCO MEDEIROS Álgebra Abstrata - Verão 2012 Faremos, nessas notas, uma breve discussão sobre o conjunto dos números inteiros. O texto é basicamente a seção 3 do capítulo 1 de
MAT Álgebra I para Licenciatura 2 a Lista de exercícios
MAT0120 - Álgebra I para Licenciatura 2 a Lista de exercícios 1. Quais são os números de cifras iguais que são divisíveis por 3? Idem, por 9? Idem por 11? 2. Determinar mmc (56, 72) e mmc (119, 272). 3.
Números e Funções Reais, E. L. Lima, Coleção PROFMAT.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 8 - Seção 8.2 do livro texto da disciplina: Números e Funções Reais,
Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares
Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números
MA21: Resolução de Problemas - gabarito da primeira prova
MA21: Resolução de Problemas - gabarito da primeira prova Problema 1 (2 pontos) Prove que a maior área dentre todos os retângulos de perímetro 1 é atingida por um quadrado. Dificuldade: MUITO FÁCIL Sejam
Este material é apenas um resumo de parte do conteúdo da disciplina.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 1 - Seção 1.3 do livro texto da disciplina: Números e Funções Reais,
Existem infinitos números de Carmichael, mas não provaremos isso neste curso.
6 Pseudoprimos 6.1 O Pequeno Teorema de Fermat nos diz que, se n é primo, então temos b n b (mod n) para todo b Z. Portanto, a contrapositiva diz que se temos b n b (mod n) ( ) para algum b Z, então n
Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de
Obs: tem exercícios na página 6. Mais uma aplicação do teorema de isomorfismo. Sejam G um grupo, H um subgrupo de G e N um subgrupo normal de G. Seja HN = {hn : h H, n N}. Então HN G, H N H e H/H N = HN/N.
, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.
Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles
Números e Funções Reais, E. L. Lima, Coleção PROFMAT.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 2 - Seções 2.3, 2.4, 2.5 e 2.6 do livro texto da disciplina: Números
1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n).
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 10 Congruências de Grau Superior 1 Congruências de Grau Superior Dado um polinômio f(x Z[x] e um número
Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.
Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional
MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade)
MA14 - Aritmética Unidade 3 Divisão nos Inteiros (Divisibilidade) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio
a = bq + r e 0 r < b.
1 Aritmética dos Inteiros 1.1 Lema da Divisão e o Algoritmo de Euclides Recorde-se que a, o módulo ou valor absoluto de a, designa a se a N a = a se a / N Dados a, b Z denotamos por a b : a divide b ou
MA14 - Aritmética Unidade 5 Resumo. Máximo Divisor Comum
MA14 - Aritmética Unidade 5 Resumo Máximo Divisor Comum Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,
a n também estão em P.A.
Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof Cícero Thiago / Prof Marcelo Aula 16 Sequências I 1 Progressão Aritmética Definição 1: Uma progressão aritmética é uma sequência a 1, a, ou
Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p.
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 16 Binomiais e Primos Começamos lembrando a Proposição 1 (Fatores do Fatorial) Seja p um primo Então a maior
MA14 - Unidade 2 Divisão Euclidiana Semana de 08/08 a 14/08
MA14 - Unidade 2 Divisão Euclidiana Semana de 08/08 a 14/08 Divisão Euclidiana Mesmo quando um número natural a não divide o número natural b, Euclides 1, nos seus Elementos, utiliza, sem enunciá-lo explicitamente,
Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.
Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível
XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa
XIX Semana Olímpica de Matemática Nível 3 Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Polinômios
Números e Funções Reais, E. L. Lima, Coleção PROFMAT.
1/12 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 4 - Seções 4.1 e 4.2 do livro texto da disciplina: Números e Funções
Equações Diofantinas II
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 1 Equações Diofantinas II Continuaremos nosso estudo das equações diofantinas abordando agora algumas equações
Programa Combinatória Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 52
1 / 52 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 52 Programa 1 Combinatória 2 Aritmética Racional 3 Grafos 3 / 52 Capítulo 1 Combinatória 4 / 52 Princípio
Elementos de Matemática Finita ( ) Exercícios resolvidos
Elementos de Matemática Finita (2016-2017) Exercícios resolvidos Ficha 3-2. Em que classes de congruência mod 8 estão os quadrados perfeitos? 4926834923 poderá ser a soma de dois quadrados perfeitos? Resolução:
Aviso. Este material é apenas um resumo de parte do conteúdo da disciplina.
Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 8 - Seção 8.4 do livro texto da disciplina: Números e Funções Reais,
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas
NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal)
NÚMEROS DE FERMAT (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) Intrudução: O matemático francês Pierre de fermat (1601-1665) é famoso pelo seu extensivo trabalho em teoria dos números. Suas
XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO
XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. e 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) D 11) B 16) C 1) A ) E 7) E 1) B 17) D ) D 3) B 8) B 13) D 18) C 3) D 4) B 9) E 14) D 19) C
MA14 - Aritmética Unidade 1 Resumo. Divisibilidade
MA14 - Aritmética Unidade 1 Resumo Divisibilidade Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do
Meu nome: Minha Instituição:
Meu nome: Minha Instituição: 1. O Teorema Fundamental da Aritmética enuncia que todo número natural maior que 1 ou é primo ou pode ser escrito de forma única, a menos da ordem dos fatores, como produto
Técnicas de Demonstração. Raquel de Souza Francisco Bravo 17 de novembro de 2016
Técnicas de Demonstração e-mail: [email protected] 17 de novembro de 2016 Técnicas de Demonstração O que é uma demonstração? É a maneira pela qual uma proposição é validada através de argumentos formais.
Sumário. 1 Ação de Grupos 3. 2 Teoremas de Sylow Aula 02/09/
Sumário 1 Ação de Grupos 3 2 Teoremas de Sylow 5 2.1 Aula 02/09/2011................................ 5 2 SUMÁRIO Capítulo 1 Ação de Grupos Seja G um grupo e S um G-conjunto. No estudo de aç ao de grupos,
Se mdc(a,m) = 1, como a é invertível módulo m, a equação. ax b (mod m)
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 8 Equações lineares módulo n e o teorema chinês dos restos 1 Equações Lineares Módulo m Se mdc(a,m) = 1,
Roteiro da segunda aula presencial - ME
PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência
XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos
XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos Problema 1. Antônio e Bruno compraram ingressos para um evento. Ao chegarem em casa, eles perceberam que os ingressos eram numerados
Note-se que pelo Teorema de Euler. a φ(n) 1 (mod n) logo existe k nas condições da definição acima e. Raízes Primitivas. Ordem de um elemento
Ordem de um elemento Definição Sejam a e n inteiros tais que m.d.c.(a, n) = 1. O menor inteiro positivo k tal que tal que a k 1 (mod n) diz-se a ordem de a módulo n e representa-se por ord n (a). Note-se
Matemática Discreta. Prof. Nilson Costa 2014
1 Matemática Discreta Prof. Nilson Costa [email protected] 2014 Definições Importantes 2 Proposição: É qualquer afirmação, verdadeira ou falsa, mas que faça sentido. Exemplos: A: Todo número maior
Equações Diofantinas Quadráticas. As triplas de números inteiros positivos (a, b, c) que satisfazem a equação. a 2 +b 2 = c 2
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 11 Equações Diofantinas Quadráticas 1 Ternas Pitagóricas As triplas de números inteiros positivos (a, b,
Teorema do ângulo externo e sua consequencias
Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado
MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana
MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material
Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42
1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos
Aula 10. variáveis; a resultante fatoração única em Z[x]
Aula 10 fatoração única em várias variáveis; a resultante (Anterior: Gauss. ) 10.1 fatoração única em Z[x] 1. Prop. Seja f Z[x], deg f > 0. Então existem m Z e polinômios irredutíveis p 1,..., p t Z[x]
MA14 - Aritmética Unidade 22 Resumo. Aritmética das Classes Residuais
MA14 - Aritmética Unidade 22 Resumo Aritmética das Classes Residuais Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio
XIX Semana Olímpica de Matemática. Nível 2. Equações Diofantinas Lineares e o Teorema Chinês dos Restos. Samuel Feitosa
XIX Semana Olímpica de Matemática Nível Equações Diofantinas Lineares e o Teorema Chinês dos Restos Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 016
Ricardo J. da Silva. Estudos de. Sequências Numéricas
Ricardo J. da Silva Estudos de Sequências Numéricas Ricardo J. da Silva São Paulo novembro de 2013 1 Obra inédita reúne informações embutidas na Tabuada de Pitágoras que nos revelam regularidades e sequências
Aritmética dos Restos. Problemas com Congruências. Tópicos Adicionais
Aritmética dos Restos Problemas com Congruências Tópicos Adicionais Aritmética dos Restos Problemas com Congruências 1 Exercícios Introdutórios Exercício 1. inteiro n Prove que n 5 + 4n é divisível por
Colégio Naval 2003 (prova verde)
Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos
Divisibilidade e Números primos. George Darmiton da Cunha Cavalcanti CIn - UFPE
Divisibilidade e Números primos George Darmiton da Cunha Cavalcanti CIn - UFPE Divisibilidade de inteiros Sejam a e b dois inteiros. Dizemos que a divide b, a é um divisor de b ou b é um múltiplo de a
Números Primos, MDC e MMC. O próximo teorema nos diz que os primos são as peças fundamentais dos números inteiros:
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 4 Números Primos, MDC e MMC. Definição 1. Um inteiro p > 1 é chamado número primo se não possui um divisor d
x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação
0. (PUC) O valor de m, de modo que a equação 5 m m 0 b) c) d) 0. Quantos valores de satisfazem a equação a) b) c) d) 5 e) 0 Prof. Paulo Cesar Costa tenha uma das raízes igual a, é: ( ). 07. (Colégio Naval)
f(xnyn) = f(xyn) = f(xy) = f(x)f(y) = f(xn)f(yn).
Teoremas de isomorfismo. Teorema (Teorema de Isomorfismo). Seja f : A B um homomorfismo de grupos. Então A/ ker(f) = Im(f). Demonstração. Seja N := ker(f) e seja f : A/N Im(f), f(xn) := f(x). Mostramos
QUESTÃO 16 (SARESP-SP adaptado) Uma população de bactérias cresce com o decorrer do tempo, de acordo com a função:
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ A ạ SÉRIE DO ENSINO MÉDIO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (SARESP-SP adaptado) Uma população de bactérias
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES 1) ( + b)³ = 0 + 5b + 7b² + b³ 8 + 1b + 6b² + b³ = 5b + 7b² + b³ b² 7b 8 = 0 (b 7). (b 1) = 0. Como b é base, b = 7.
MD Métodos de Prova 1
Métodos de Prova Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Métodos de Prova 1 Introdução Objetivo: ter precisão de pensamento e linguagem para obter a certeza
Teorema Chinês dos Restos. Tópicos Adicionais
Teorema Chinês dos Restos Teorema Chinês dos Restos Tópicos Adicionais Tópicos Adicionais Teorema Chinês dos Restos 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre o menor
LISTA DE EXERCÍCIOS. Demonstrações diretas e por absurdo
LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstrações diretas e por absurdo Diga se cada uma das sentenças abaixo é verdadeira ou falsa.
QUESTÃO 18 QUESTÃO 19
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 016 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A soma de três números naturais múltiplos
Aula 1: Introdução ao curso
Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer [email protected] Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos
NÚMEROS PRIMOS COMO SOMA DE DOIS QUADRADOS
UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS GRADUAÇÃO MATEMÁTICA EM REDE NACIONAL MESTRADO PROFISSIONAL DONIZETE ROCHA DE BRITTES NÚMEROS PRIMOS COMO SOMA DE DOIS
A resolução desses problemas pode geralmente ser feita com o seguinte procedimento: Problemas de divisibilidade 1
Três VIPs da Teoria dos Números É claro, VIP significa Very Important Problems. Os problemas discutidos aqui, além de suas variações, são bastante comuns em Olimpíadas de Matemática e costumam ser resolvidos
Aula 4 - Números Primos, MDC e MMC
Polos Olímpicos de Treinamento Intensivo (POTI) Curso de Teoria dos Números - Nível Aula 4 - Números Primos, MDC e MMC Prof. Samuel Feitosa Arquivo Original 1 1 Documento:...gaia/educacional/matematica/teoria
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
Cálculo do MDC e MMC
META: Apresentar o algoritmo do Cálculo do MMC e do MDC entre dois números OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Executar de maneira correta os algoritmos do Cálculo do MMC e do MDC.
37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
37ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
Divisibilidade: múltiplos e divisores
DIVISIBILIDADE: MÚLTIPLOS E DIVISORES Divisibilidade: múltiplos e divisores Entender o conceito de múltiplos e divisores; Conhecer as regras de divisibilidade. 1) a) {0, 3, 6, 9...} b) 0, 13 e 26 c) 21,
Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3.
Lista permanente de exercícios - parte de Grupos. As resoluções se encontram nas notas de aula A1, A2, A3. 1. Seja x um elemento de ordem 24. Calcule a ordem de x 22, x 201, x 402, x 611 e x 1000. 2. Faça
CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima
CRITÉRIO DE EISENSTEIN 1 Marília Martins Cabral Orientador: Igor Lima NOTAÇÕES a b a divide b. a b a não divide b x n a variável x elevado a potência n. a n coeficiente de x n 2 INTRODUÇÃO: POLINÔMIOS
Notas Sobre Sequências e Séries Alexandre Fernandes
Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ
Colégio Avanço de Ensino Programado
α Colégio Avanço de Ensino Programado Trabalho Bimestral 1º Semestre - 1º Bim. /2016 Nota: Professor (a): Lúcia Disciplina: Matemática Turma: 1ª Série E. Médio Nome: Nº: Atividade deverá ser entregue em
OBMEP ª fase Soluções - Nível 3
OBMEP 009 ª fase Soluções - Nível Nível questão 1 a) O número de cartões na caixa é a soma dos números inteiros de 1 a 10, isto é, 1 + + + + 9 + 10 = 55 b) Basta escolher o cartão de número 1 e depois
UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA
UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA Departamento de Ciências Exatas PROFMAT - Mestrado Profissional em Matemática em Rede Nacional Dissertação de Mestrado PROPRIEDADES ARITMÉTICAS E GEOMÉTRICAS DAS
CIC 111 Análise e Projeto de Algoritmos II
CIC 111 Análise e Projeto de Algoritmos II Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá AULA 21 Number theory Primes and factors Modular arithmetic Solving equations Other results
Colégio Naval 2008/2009 (PROVA VERDE)
Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo
