Licenciatura em Ciências da Computação 2010/2011

Tamanho: px
Começar a partir da página:

Download "Licenciatura em Ciências da Computação 2010/2011"

Transcrição

1 Cálculo Licenciatura em Ciências da Computação 2010/2011 Departamento de Matemática e Aplicações (DMA) Universidade do Minho Carla Ferreira caferrei@math.uminho.pt Gab. EC 3.22 Telef: Horário de atendimento: Segunda-feira das 18h30-19h30

2 Programa resumido Capítulo I Capítulo II Capítulo III Capítulo IV Capítulo V Tópicos sobre o corpo dos números reais. Sucessões e séries de números reais. Limite e continuidade de funções reais de variável real. Derivadas e primitivas. Integrais.

3 Bibliografia 1. Cálculo - Notas sobre a disciplina, Ana Jacinta Soares (2006/2007). 2. Cálculo, Volumes I e II, James Stewart, Thomson Learning, Inc. (2006). 3. Calculus, Single and Multivariable, 4 th edition, Hughes-Hallet, Gleason, MacCallum et al, John Wiley & Sons, Inc. (2005). 4. Introduction to real analysis, William F. Trench, Edição livre (2003).

4 Avaliação 1. Avaliação periódica Teste 1 Ponderação de 40% [13 de Abril] Teste 2 Ponderação de 60% [18 de Junho] 2. Avaliação por exame final [12 de Julho] Em ambos os regimes de avaliação será permitido o uso de um formulário elaborado pelo aluno numa folha de formato A4 (frente e verso) no qual não é suposto incluir resoluções de exercícios nem exemplos.

5 Capítulo I - Tópicos sobre a estruturação de R Capítulo de base onde falaremos brevemente das propriedades algébricas dos reais donde resultam regras de manipulação e propriedades topológicas relacionadas com a noção de proximidade que conferem ao conjunto R a estrutura adequada para as noções de limite e continuidade R Propriedades algébricas Propriedades topológicas

6 1. Estrutura algébrica de R O cálculo depende das propriedades dos números reais. Números reais 5 = = = = π = Para 2 e π não existe nenhum padrão evidente.

7 1.1 O corpo ordenado R O conjunto R constitui uma estrutura munida de duas operações, adição (+) e multiplicação ( ) que verificam certas propriedades ou axiomas (associatividade, comutatividade, existência de elemento neutro, existência de simétrico (na adição) e de inverso (na multiplicação),...) a partir das quais se define também a subtracção adição (-) e a divisão (/) ; uma relação de ordem que permite escrever R na forma R = R + R {0} e tratá-lo, do ponto de vista geométrico, como a habitual recta real. R R + a b 0 c d

8 Propriedades de ordem Dados x, y R, ou x = y ou x < y ou x > y Outras notações usuais: x y para indicar x = y ou x > y x y para indicar x = y ou x < y Para x, y, z R, 1. x < y e y < z = x < z 2. x < y = x + z < y + z 3. x < y e z > 0 = x z < y z 4. x < y e z < 0 = x z > y z 5. 0 < x < y = 1 x > 1 y

9 1.2 Números naturais, inteiros e racionais Em R destacam-se os subconjuntos dos números naturais ou inteiros positivos, N = {1, 2, 3, 4,...} Propriedade indutiva 1 N e n N = n + 1 N inteiros, Z = N {0} { n : n N} = {..., 2, 1, 0, 1, 2, 3,...} racionais, irracionais, Q = { } p q : p, q Z e q 0 R\Q

10 É imediato que N Z Q R Exemplo Os números 3 2, 3, 5, π, π, e, 2e... 3 são números irracionais.

11 Exercício Mostrar que o número x = = 1.32 é um número racional exprimindo-o como o quociente entre dois inteiros.

12 Exercício Mostrar que o número x = = 1.32 é um número racional exprimindo-o como o quociente entre dois inteiros. Exercício Resolva a inequação seguinte e represente graficamente o conjunto solução. 3 x 1 < 2 x.

13 1.3 Conjuntos limitados Supõem-se conhecidos os significados de intervalo, intervalo aberto, intervalo fechado e intervalo semi-aberto (ou semi-fechado) e ainda intervalo finito e intervalo infinito. Exemplo Para a, b R com a < b são exemplos de intervalos finitos e de intervalos infinitos [a, b], ]a, b[, ]a, b], [a, b[ ], a[, ], a], ]a, + [, [a, + [.

14 Conjunto limitado inferiormente Dado um conjunto X R, dizemos que X é limitado inferiormente quando a R : x X, x a ou seja, quando a R : X [a, + [ Nestas condições diz-se que a é um minorante de X. Define-se o ínfimo de X, e representa por inf X, como o maior dos minorantes de X. O ínfimo é único. Quando, em particular, inf X X, então designa-se por mínimo de X e representa-se por min X.

15 Conjunto limitado superiormente Dado um conjunto X R, dizemos que X é limitado superiormente quando b R : x X, x b ou seja, quando b R, X ], b] Nestas condições diz-se que b é um majorante de X. Define-se o supremo de X, e representa por sup X, como o menor dos majorantes de X. O supremo é único. Quando, em particular, sup X X, então designa-se por máximo de X e representa-se por max X.

16 Conjunto limitado Um conjunto X R diz-se limitado quando X é, simultaneamamente, limitado inferiormente e limitado superiormente, isto é, quando ou, equivalentemente, quando a, b R, x X, a x b a, b R, X [a, b]

17 Conjunto limitado Um conjunto X R diz-se limitado quando X é, simultaneamamente, limitado inferiormente e limitado superiormente, isto é, quando ou, equivalentemente, quando a, b R, x X, a x b a, b R, X [a, b] Exercício Determine o conjunto dos majorantes, o conjunto dos minorantes e, se existirem, o supremo, o ínfimo e o mínimo do conjunto (a) X = { 5, 1} [ 2, 1[ ]3, 4[; (b) Y = [0, 2] Q.

18 1.4 Propriedade de completude de R A principal característica que distingue R de Q é a seguinte: em R, qualquer subconjunto não vazio e limitado superiormente possui supremo em R. Esta propriedade costuma ser enunciada como o axioma do supremo ou da completude de R.

19 1.4 Propriedade de completude de R A principal característica que distingue R de Q é a seguinte: em R, qualquer subconjunto não vazio e limitado superiormente possui supremo em R. Esta propriedade costuma ser enunciada como o axioma do supremo ou da completude de R. Dizemos que R é um corpo ordenado completo e Q é um corpo ordenado não completo.

20 Densidade dos racionais e dos irracionais Q é denso em R, ou seja, se a e b são números reais com a < b, existe um número racional p q tal que a < p q < b. R \ Q é denso em R. Consequência: entre quaisquer dois números reais, existe uma infinidade de números racionais e irracionais.

21 2. Estrutura topológica de R As noções topológicas estão fortemente relacionadas com o conceito de proximidade. Para medir proximidade, precisamos de um distância. Em R definimos esta distância à custa do valor absoluto ou módulo, { x se x 0 x = x se x < 0 Definição alternativa: x = x 2, uma vez que a representa sempre a raíz quadrada não negativa de a 0.

22 Propriedades do valor absoluto Sejam x, y, z R. Então: (a) x 0 e x = 0 sse x = 0; (b) x = x ; (c) x x e x x; (d) x x x ; (e) sendo a 0, tem-se x a sse a x a; (f) sendo a 0, tem-se x a sse x a x a; (g) x y = x y ; (h) x y = x, sempre que y 0; y (i) x + y x + y ; (j) x z x y + y z. [desigualdade triangular]

23 Distância A noção de valor absoluto permite introduzir o conceito de distância entre dois números reais. Dados x, y R, chama-se distância de x a y ao número d(x, y) definido por d(x, y) = x y

24 Distância A noção de valor absoluto permite introduzir o conceito de distância entre dois números reais. Dados x, y R, chama-se distância de x a y ao número d(x, y) definido por d(x, y) = x y Usando a noção de distância, podemos exprimir o conceito de intervalo aberto (ou fechado) de centro a e raio r da seguinte forma ]a r, a + r[ = { x R : d(x, a) < r } = { x R : x a < r } [a r, a + r] = { x R : d(x, a) r } = { x R : x a r } Podemos agora introduzir algumas noções de carácter topológico.

25 Exercício Resolva geometricamente a inequação 3x 2 1, interpretando o valor absoluto como uma distância. Exercício Resolva a equação x + 1 = x 3.

26 Conjunto aberto Considere-se o conjunto X = [0, 3[ \{1} {4}

27 Conjunto aberto Considere-se o conjunto X = [0, 3[ \{1} {4} Dados um conjunto A R e um ponto x R, dizemos que x é ponto interior de A quando r > 0 : ] x r, x + r [ X Designamos por interior de A e representa-se por int A conjunto constituído pelos pontos interiores a A. Para qualquer conjunto A R, tem-se sempre inta A. Quando, em particular, for int A=A, dizemos que A é um conjunto aberto.

28 Conjunto fechado Considere-se novamente o conjunto X = [0, 3[ \{1} {4}

29 Conjunto fechado Considere-se novamente o conjunto X = [0, 3[ \{1} {4} Dados um conjunto A R e um ponto x R, dizemos que x é ponto aderente de A quando r > 0, ] x r, x + r [ A =/. O conjunto dos pontos aderentes a A designa-se por aderência de A ou por fecho de A, e representa-se por A. Para qualquer conjunto A R, tem-se sempre A A. Quando, em particular, for A = A, dizemos que A é um conjunto fechado.

30 Fronteira Considere-se ainda o conjunto X = [0, 3[ \{1} {4}

31 Fronteira Considere-se ainda o conjunto X = [0, 3[ \{1} {4} Dados um conjunto A R e um ponto x R, dizemos que x é ponto fronteiro de A quando x A R\A ou, equivalentemente, quando r > 0, ] x r, x + r [ A =/ ] x r, x + r [ R\A =/. O conjunto dos pontos fronteiros de A chama-se fronteira de A e representa-se por fra.

32 Pontos de acumulação Mais uma vez, considere-se o conjunto X = [0, 3[ \{1} {4}

33 Pontos de acumulação Mais uma vez, considere-se o conjunto X = [0, 3[ \{1} {4} Dados um conjunto A R e um ponto x R, dizemos que x é ponto de acumulação de A quando ( ) r > 0, ] x r, x + r [ \{x} A =/ Em particular, dizemos que x é ponto de acumulação à esquerda de A quando r > 0, ] x r, x [ A =/ e que x é ponto de acumulação à direita de A quando r > 0, ] x, x + r [ A =/ O conjunto dos pontos de acumulação de X designa-se por derivado de X e representa-se por X.

34 Ponto isolado Dizemos que x é um ponto isolado de A quando x A mas x A, ou seja, quando r > 0 : ] x r, x + r [ A = {x}

35 Ponto isolado Dizemos que x é um ponto isolado de A quando x A mas x A, ou seja, quando r > 0 : ] x r, x + r [ A = {x} Observação Os pontos de acumulação de um dado conjunto A são os candidatos ao estudo de limites, quando esse conjunto é o domínio de uma certa função. Os pontos de acumulação de um só lado aparecerão no estudo dos limites ditos laterais. Por outro lado, os pontos isolados de um conjunto não servem para estudar limites.

LCC 2006/2007 Ana Jacinta Soares. Notas sobre a disciplina

LCC 2006/2007 Ana Jacinta Soares. Notas sobre a disciplina Cálculo LCC 2006/2007 Ana Jacinta Soares Notas sobre a disciplina Programa Resumido Capítulo I Capítulo II Capítulo III Capítulo III Capítulo IV Tópicos sobre o corpo dos números reais. Sucessões e séries

Leia mais

1.1 Propriedades básicas dos números reais, axiomática dos números reais.

1.1 Propriedades básicas dos números reais, axiomática dos números reais. I - Funções reais de variável real 1. Números Reais. 1.1 - Números naturais, números relativos, números racionais e números reais. De uma forma muito simples vamos recordar os números: Números Naturais

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h)

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h) Números Reais. Simplifique as seguintes expressões (definidas nos respectivos domínios): x a), x b) x+ +, x c) +x + x +x, d) x, e) ( x ), f) 4 x 4 x, g) x ( x ), h) 3 x 6 x, i) x x +, j) x x+ x, k) log

Leia mais

1.2 Axioma do Supremo

1.2 Axioma do Supremo 1.2 Axioma do Supremo EXERCÍCIOS RESOLVIDOS 1. Verifique que se n N é ímpar, então n 2 é também ímpar. O que pode concluir de n N sabendo que n 2 é par? RESOLUÇÃO Seja n N ímpar, com n = 2k+1, para algum

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

José Amaral. Majorante de um conjunto. Minorante de um conjunto. Supremo e Máximo de um conjunto

José Amaral. Majorante de um conjunto. Minorante de um conjunto. Supremo e Máximo de um conjunto José Amaral 1 p001-p063 : Lógica matemática jda@iselpt Teoria dos conjuntos elações binárias e relações de equivalência Programa: Noções topológicas em Complementos de funções reais de variável real Cálculo

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Resumo Elementos de Análise Infinitésimal I

Resumo Elementos de Análise Infinitésimal I Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 1 a FICHA DE EXERCÍCIOS 1 [

CÁLCULO DIFERENCIAL E INTEGRAL I LEIC 1 o Sem. 2009/10 1 a FICHA DE EXERCÍCIOS 1 [ Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC o Sem. 009/0 a FICHA DE EXERCÍCIOS I. Inequações e módulos. ) Mostre que:.. x R :

Leia mais

2.1 Sucessões. Convergência de sucessões

2.1 Sucessões. Convergência de sucessões Capítulo 2 Sucessões reais Inicia-se o capítulo introduzindo os conceitos de sucessão limitada, sucessão monótona, sucessão convergente e relacionando estes conceitos entre si. A análise da convergência

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. M. Amélia Bastos, António Bravo 200 O texto apresentado tem por objectivo ser um texto de apoio ao curso de Cálculo Diferencial e Integral I do

Leia mais

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária

Leia mais

1 Números Reais (Soluções)

1 Números Reais (Soluções) Números Reais (Soluções). a) x2 4 b) x c) x d) x e) x f) 2 x+2 g) 2 x(x+2) h) x i) x 2 4 j) x(x + ) + x k) log(x) l) 2 log ( x 2 + x 2). 2. a) x = x 2 b) 2 x c) x d) x 0 x = e) x = 4 x = 2 f) x = x = 2

Leia mais

Slides de apoio: Fundamentos

Slides de apoio: Fundamentos Pré-Cálculo ECT2101 Slides de apoio: Fundamentos Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2017 Conjuntos Um conjunto é coleção de objetos, chamados de elememtos do conjunto. Nomeraremos conjuntos

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não

Leia mais

Números Reais. Gláucio Terra. Departamento de Matemática IME - USP. Números Reais p. 1/2

Números Reais. Gláucio Terra. Departamento de Matemática IME - USP. Números Reais p. 1/2 Números Reais Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Números Reais p. 1/2 Corpos DEFINIÇÃO Seja K um conjunto munido de duas operações, denotadas por + e. Diz-se que (K,

Leia mais

CAPÍTULO II NOÇÕES TOPOLÓGICAS EM R

CAPÍTULO II NOÇÕES TOPOLÓGICAS EM R CAPÍTULO II NOÇÕES TOPOLÓGICAS EM R 1. Distância e vizinhanças Ao número real não negativo d(x, y) = x y chama-se distância entre os números reais x e y. São imediatas as seguintes propriedades: P1 : d(x,

Leia mais

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO ( Aprovados em Conselho Pedagógico de 25 de outubro de 2016 ) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

1. CONJUNTOS NUMÉRICOS

1. CONJUNTOS NUMÉRICOS . CONJUNTOS NUMÉRICOS.. INTRODUÇÃO Uma exposição sistemática dos conjuntos numéricos, utilizados na Matemática, pode ser feita a partir dos números usados para contar, chamados de números naturais. Estes

Leia mais

Dízimas e intervalos encaixados.

Dízimas e intervalos encaixados. Dízimas e intervalos encaixados. Recorde que uma dízima com n casas decimais é um número racional da forma a 0.a a 2...a n = a 0 + a 0 + a 2 0 2 + + a n n 0 n = a j 0 j em que a 0,a,...,a n são inteiros

Leia mais

Noções Topológicas em R n

Noções Topológicas em R n Noções Topológicas em R n Revisão - norma e distância em R n Chama-se norma Euclideana em R n à norma associada ao produto interno canónico em R n, isto é, à função definida por PP : R n v R x v PxP x

Leia mais

Noções Topológicas em R n (n N)

Noções Topológicas em R n (n N) Noções Topológicas em R n (n N) Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Noções Topológicas em R n 1 / 11 Bola em R n Sejam X, Y R n, X = (x 1, x 2,...,

Leia mais

Introdução à Linguagem da Topologia

Introdução à Linguagem da Topologia Introdução à Linguagem da Topologia Corpos Define-se corpo por um conjunto K, munido de duas operações básicas chamadas de adição e multiplicação. São os axiomas do corpo: Axiomas da Adição Associatividade:

Leia mais

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos 1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma

Leia mais

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (13 de setembro a 15 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM. Nome legível: Assinatura:

SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM. Nome legível: Assinatura: SEGUNDA VERIFICAÇÃO DE APRENDIZAGEM Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Nome legível: Assinatura: [01] (2.0) Resolva a desigualdade 1 x 2 2 x 3 0 usando a

Leia mais

Aula 5 Aula 6 Aula 7. Ana Carolina Boero. Página:

Aula 5 Aula 6 Aula 7. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

Matemática Básica. Capítulo Conjuntos

Matemática Básica. Capítulo Conjuntos Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo

Leia mais

Metas/Objetivos/Domínios Conteúdos/Conceitos Número de Aulas

Metas/Objetivos/Domínios Conteúdos/Conceitos Número de Aulas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: MATEMÁTICA A ANO:11.º Planificação (Conteúdos)... Período Letivo: 1.º Metas/Objetivos/Domínios Conteúdos/Conceitos Número de Aulas Trigonometria e Funções

Leia mais

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos

E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em

Leia mais

Exercícios de topologia geral, espaços métricos e espaços vetoriais

Exercícios de topologia geral, espaços métricos e espaços vetoriais Exercícios de topologia geral, espaços métricos e espaços vetoriais 9 de Dezembro de 2009 Resumo O material nestas notas serve como revisão e treino para o curso. Estudantes que nunca tenham estudado estes

Leia mais

Preliminares de Cálculo

Preliminares de Cálculo Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados

Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados Análise na Reta - Verão UFPA 1a lista - Números naturais; Corpos ordenados A lista abaixo é formada por um subconjunto dos exercícios dos seguintes livros: Djairo G. de Figueiredo, Análise na reta Júlio

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula bola fechada de centro a e raio r: B r [a] = {p X d(p, a) r} MAT5711 - Cálculo Avançado - Notas de Aula 2 de março de 2010 1 ESPAÇOS MÉTRICOS Definição 11 Um espaço métrico é um par (X, d), onde X é um

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari amanda@fcav.unesp.br www.fcav.unesp.br/amanda HORÁRIO DA DISCIPLINA Quinta-Feira: 9h (Turma 1) sala 38 Quinta-Feira: 14h (Turma 2) sala 38 DISPENSA

Leia mais

1.3 Conjuntos de medida nula

1.3 Conjuntos de medida nula 1.3 Conjuntos de medida nula Seja (X, F, µ) um espaço de medida. Um subconjunto A X é um conjunto de medida nula se existir B F tal que A B e µ(b) = 0. Do ponto de vista da teoria da medida, os conjuntos

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Disciplina: Matemática A _ 11º ano _ CCH 2016/2017 Início

Leia mais

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28

MatemáticaI Gestão ESTG/IPB Departamento de Matemática 28 Cap. Funções Reais de variável Real MatemáticaI Gestão ESTG/IPB Departamento de Matemática 8. Conjuntos de Números,,3 Números Naturais,,, 0,,, Números Inteiros a : a, b, b 0 Números Racionais b Irracionais

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 11.º ano Ano Letivo de 2016/2017 Manual adotado: Máximo 11 Matemática A 11.º ano Maria Augusta Ferreira

Leia mais

Os números reais. Capítulo O conjunto I

Os números reais. Capítulo O conjunto I Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais

Leia mais

Limites de Funções de Variáveis Complexas

Limites de Funções de Variáveis Complexas Limites de Funções de Variáveis Complexas AULA 2 META: Introduzir o conceito de limite de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir limites de

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS1

INTRODUÇÃO À TEORIA DOS CONJUNTOS1 INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto

Leia mais

INTERVALOS, INEQUAÇÕES E MÓDULO

INTERVALOS, INEQUAÇÕES E MÓDULO Revisão de Pré-Cálculo INTERVALOS, INEQUAÇÕES E MÓDULO Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, outubro 2016 Direitos

Leia mais

Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas.

Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. Aplicar as propriedades dos grupos na resolução de problemas. Aula 04 O CONCEITO DE GRUPO META Apresentar o conceito de grupo, as primeiras definições e diversos exemplos. OBJETIVOS Definir e exemplificar grupos e subgrupos. Aplicar as propriedades dos grupos na

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 6 29 de março de 2010 Aula 6 Pré-Cálculo 1 Implicações e teoria dos conjuntos f (x) =g(x) u(x)

Leia mais

Dos inteiros aos reais

Dos inteiros aos reais Dos inteiros aos reais Ordenação de números inteiros relativos Para além dos números positivos, na vida real utilizam-se outros números para representar situações, tal como temperatura negativas, saldos

Leia mais

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)

MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP) MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver

Leia mais

Notas de Análise Matemática I

Notas de Análise Matemática I Notas de Análise Matemática I João Lopes Dias Departamento de Matemática, ISEG Universidade Técnica de Lisboa Rua do Quelhas 6, 1200-781 Lisboa, Portugal 6 de Dezembro de 2011 Resumo Estas notas destinam-se

Leia mais

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma

Leia mais

1 Conjunto dos números naturais N

1 Conjunto dos números naturais N Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de

Leia mais

Aula 4 Aula 5 Aula 6. Ana Carolina Boero. Página:

Aula 4 Aula 5 Aula 6. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Planificação Anual Matemática A 11º Ano

Planificação Anual Matemática A 11º Ano ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática A 11º Ano Ano letivo 2017 / 2018 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 78 2º 60 3º 48 Total: 186 1º Período Total

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

= = 20 4 (3 + 4) 2 = = 56

= = 20 4 (3 + 4) 2 = = 56 Capítulo 0 Pré-requisitos O objetivo desse capítulo é apresentar uma coleção de propriedades e resultados sobre números reais e outros temas que serão utilizados ao longo do curso e devem ser relembrados

Leia mais

LICENCIATURA EM ENGENHARIA CIVIL - 1 o CICLO FOLHA 1. x 2. J = x R : x2 + 2x 3

LICENCIATURA EM ENGENHARIA CIVIL - 1 o CICLO FOLHA 1. x 2. J = x R : x2 + 2x 3 UNIVERSIDADE DO ALGARVE INSTITUTO SUPERIOR DE ENGENHARIA LICENCIATURA EM ENGENHARIA CIVIL - 1 o CICLO REGIME DIURNO/NOCTURNO - 1 o SEMESTRE - 1 o ANO - 2009/2010 DISCIPLINA DE ANÁLISE MATEMÁTICA FOLHA

Leia mais

MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS. (a) Expressões algébricas. Polinómios. ii. Operações com polinómios.

MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS. (a) Expressões algébricas. Polinómios. ii. Operações com polinómios. MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS Prova de: MATEMÁTICA Conteúdos 1. Cálculo algébrico (a) Expressões algébricas. Polinómios. i. Definições. ii. Operações com

Leia mais

1 Limites e Conjuntos Abertos

1 Limites e Conjuntos Abertos 1 Limites e Conjuntos Abertos 1.1 Sequências de números reais Definição. Uma sequência de números reais é uma associação de um número real a cada número natural. Exemplos: 1. {1,2,3,4,...} 2. {1,1/2,1/3,1/4,...}

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Planificação Anual Matemática 11º Ano

Planificação Anual Matemática 11º Ano ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática 11º Ano Ano letivo 2018 / 2019 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 72 2º 72 3º 36 Total: 180 1º Período Total

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas e 30 minutos NOVA SCHOOL OF BUSINESS AND ECONOMICS CÁLCULO I 1º Semestre 2011/2012 EXAME 2ª ÉPOCA 23 Janeiro 2012 Duração: 2 horas e 30 minutos Não é permitido o uso de calculadoras. Não pode desagrafar as folhas do

Leia mais

Planificação Anual Matemática 11º Ano

Planificação Anual Matemática 11º Ano ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL 402643 ESTREMOZ Planificação Anual Matemática 11º Ano Ano letivo 2016/2017 PERÍODO Nº de AULAS PREVISTAS (45 min) 1º 78 2º 72 3º 36 Total: 186 1º Período Total de

Leia mais

Capítulo 1. Introdução

Capítulo 1. Introdução Capítulo 1 Introdução O objeto de estudo de Mat-1 são as funções reais de variável real. Estudaremos nesta disciplina os conceitos de limite, continuidade, derivabilidade e integrabilidade de funções reais

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Escolas João de Araújo Correia ORGANIZAÇÃO DO ANO LETIVO 16 17 GESTÃO CURRICULAR DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA A 11º ANO 1º PERÍODO ---------------------------------------------------------------------------------------------------------------------

Leia mais

Variável Complexa

Variável Complexa Variável Complexa 2017.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

CONJUNTOS NUMÉRICOS. O que são?

CONJUNTOS NUMÉRICOS. O que são? CONJUNTOS NUMÉRICOS O que são? Os Naturais Os números Naturais surgiram da necessidade de contar as coisas. Eles são todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula

Leia mais

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM122 - Fundamentos de Análise Prof. Zeca Eidam.

UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM122 - Fundamentos de Análise Prof. Zeca Eidam. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM1 - Fundamentos de Análise Prof Zeca Eidam Lista 4 Supremo e ínfimo 1 Seja X R não-vazio 1 Mostre que, caso existam,

Leia mais

Escola Secundária de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º

Escola Secundária de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º Escola Secundária de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o 3º Teste de Avaliação Lições nº e Data: /0/01 Apresentação dos Conteúdos e Objectivos para o 3º Teste

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Prof. Doherty Andrade 2005- UEM Sumário 1 Seqüências 2 1.1 O Corpo dos Números Reais.......................... 2 1.2 Seqüências.................................... 5

Leia mais

MATEMÁTICA I. Ana Paula Figueiredo

MATEMÁTICA I. Ana Paula Figueiredo I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:

Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira: Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção

Leia mais

CÁLCULO DIFERENCIAL A VÁRIAS VARIÁVEIS

CÁLCULO DIFERENCIAL A VÁRIAS VARIÁVEIS CÁLCULO DIFERENCIAL A VÁRIAS VARIÁVEIS O essencial Paula Carvalho e Luís Descalço EDIÇÃO, DISTRIBUIÇÃO E VENDAS SÍLABAS & DESAFIOS - UNIPESSOAL LDA. NIF: 510212891 www.silabas-e-desafios.pt info@silabas-e-desafios.pt

Leia mais

MAT 2110 : Cálculo para Química. Sylvain Bonnot (IME-USP)

MAT 2110 : Cálculo para Química. Sylvain Bonnot (IME-USP) MAT 2110 : Cálculo para Química Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: sylvain@ime.usp.br Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para MAT 2110 na

Leia mais

CAPÍTULO I NÚMEROS REAIS

CAPÍTULO I NÚMEROS REAIS CAPÍTULO I NÚMEROS REAIS 1. Introdução Admite-se o leitor já familiarizado com as propriedades básicas do corpo ordenado e completo dos números reais, razão pela qual nos limitaremos a apresentar alguns

Leia mais