Noções sobre Erros em Matemática Computacional
|
|
|
- João Batista Cipriano Valgueiro
- 9 Há anos
- Visualizações:
Transcrição
1 Noções sobre Erros em Matemática Computacional
2 Sumário Representação de Números em Ponto Flutuante Erros em Expressões Definições Úteis
3 Ponto Flutuante em Computadores
4 Representação de Números em Ponto Flutuante Um sistema de representação de números em ponto flutuante é definido por: β : base t : número de dígitos da mantissa e: expoente. Onde e [ l, u] e [ 5,5] Seja β=10, t=3 e, quais o maior e o menor números representáveis nesse sistema?
5 Representação em Ponto Flutuante O menor número, em valor absoluto, representável é: m = E o maior número é: 0,1*10 5 = M = 0,999*10 5 = Considerando o conjunto G abaixo e os números reais são possíveis três situações G = { x R m x M}
6 Situações Possíveis Seja β=2, t=5 e e [ 5,5] x > M : Impossibilidade de representação. Número grande demais. overflow. Ex. 0,100*2 9 x G Número de dígitos t: representação ok. Ex. 0,110* 2 2 Número de dígitos > t: truncagem ou arredondamento Ex. 0, *2 4 x < m : Impossibilidade representação. Número pequeno demais. underflow
7 Introdução ao Estudo do Erros Define-se como erro absoluto a diferença entre o valor exato (x) e o valor aproximado: EA x = x x Geralmente x não é conhecido, apenas um limite superior e inferior (l,u). Se o valor pertencer ao mesmo intervalo então: EA < l u
8 Erro Relativo O erro absoluto não leva em consideração a ordem de grandeza do valor x. Para solucionar tal problema utiliza-se o Erro relativo. Define-se como erro relativo (ER x ) como: ER x = x x x
9 Erros no Arredondamento e Truncamento Considerando um sistema de ponto flutuante com t dígitos, na base 10, podemos escrever x como: x = * 10 e f x *10 + g x onde 0,1 f x <1 e 0 g x <1 e t A parcela g x não pode ser incorporada a mantissa. Então quais as opções? Qual o erro gerado por cada opção?
10 Erro Absoluto e Relativo em Truncamento No truncamento, g x * 10 e-t é desprezado, e logo: x = * 10 Temos: f x
11 Erro Absoluto e Relativo no Arredondamento Simétrico Arredondamento Simétrico: Em qualquer caso, pode-se demonstrar que:
12 Sumário Representação de Números em Ponto Flutuante e Erros Erros em Expressões Definições Úteis
13 Análise de Erros em Operações Erro em operações podem ser gerado por erros nas parcelas e erros no armazenamento do resultado. Exemplo de erro no resultado (t=4 e base 10):
14 Análise de Erros em Operações 2 Exemplo 2: Obter x*y Truncamento: Arredondamento:
15 Análise de Erros em Operações 3 Desconsiderando erros de representação nas parcelas, os erros relativos ficam limitados a: Considerando erro na representação de ambas as parcelas x e y, temos:
16 Análise de Erros em Operações 4 O erro absoluto na soma é dado por: Erro relativo na soma:
17 Análise de Erros em Operações 5 Subtração (análogo a soma):
18 Análise de Erros em Operações 6 Multiplicação Em geral, EA x e EA y serão bem menores que x e y, respectivamente. Então:
19 Análise de Erros em Operações 7 No caso da divisão, pode-se demonstrar que:
20 Análise de Erros em Expressões Suponha x,y,z e t representados de forma exata, qual o erro relativo na expressão u= (x+y)z-t. Suponha ainda o uso de arredondamento nos resultados Seja s=(x+y) e RA o erro de arredondamento, então: Seja m= s*z, Logo:
21 Análise de Erros em Expressões 2 Calculando u=m-t, temos: Então: Logo:
22 Cancelamento Subtrativo Número próximos em subtrações podem levar a limites elevados para erros relativos
23 Cancelamento Subtrativo Dados x e y, se z=x-y, então: Se x e y foram arredondados: Se x e y forem próximos, por exemplo: Então:
24 Sumário Representação de Números em Ponto Flutuante Erros em Expressões Definições Úteis
25 Precisão da Máquina Chama-se de precisão da máquina (ou epsilon da máquina) o menor número positivo(ε) tal que (1+ε)>1. Tal número depende de: base numérica, dígitos na mantissa e compilador utilizado. Como calcular?
26 Precisão da Máquina 2 É possível calcular (ε) utilizando o algoritmo: Passo 1: a=1 Passo 2: Enquanto (1+a) >1 faça a= a/2 Passo 3: Faça epsilon=2*a e imprima epsilon
27 Dígitos significativos Em um sistema de numeração, um dígito é significativo se: for diferente de zero caso seja zero, se não for usado para fixar a vírgula ou preencher o lugar de dígitos descartados Exemplos de dígitos significativos (no sistema decimal): 0,008735: 8, 7, 3 e : todos 23000: 2 e 3
28 Dígito Significativo Exato Um dígito significativo é exato se arredondando-se o número para uma posição imediatamente após a posição do dígito, isso fizer com que o erro absoluto não seja maior que a meia unidade na posição do dígito. Exemplos:
29 Dígito Significativo Exato - 2 Exemplo: x = 2/3 e p/ 1º. Digito 6 0,66 0, = 0, < 0,05 p/ 2º. Digito 6 0,666 0, = 0, < 0,005 = 5*10-3 p/ 3º. Digito 6 x = 0, ,6666 0, = 0, < 0,0005 = 5 *10-4 p/ 4º. Digito 6 0, , = 0, < 0,00005 = 5 * 10-5 p/ Digito 7 0, , = 0, < 0, = 5 * 10-6 Todos são dígitos significativos exatos
30 Dígito Significativo Exato - 3 Exemplo 2: Exemplo: x = 2/3 e p/ 1º. Digito 6 0,66 0, = 0, < 0,05 p/ 2º. Digito 6 x = 0, ,666 0, = 0, < 0,005 p/ 3º. Digito 6 0,6669 0, = 0, < 0,0005 p/ Digito 9 0, , = 0, > 0,00005 (dígito 9 inexato!)
31 Condicionamento e Estabilidade Numérica Condicionamento: relaciona-se a sensibilidade aos erros nos dados de entrada Um problema é bem condicionado, se pequenos erros nos dados de entrada produzem pequenos erros nos resultados. Um problema é mal condicionado se os erros nos resultados são grandes apesar dos dados de entrada terem pequenos erros de entrada Estabilidade Numérica: Um algoritmo é instável numericamente se pequenos erros em dados intermediários levam a grandes erros nos resultados. Logo, se um problema é mal condicionado qualquer algoritmo será instável para ele
32 Métricas de condicionamento Há métricas para o condicionamento de sistemas de equações, baseadas em normas de vetores e matrizes (vide Cláudio & Marins) No entanto, estes cálculos podem ser complexos e não evitam o problema...por isso, não iremos detalha-lhos maiores informações podem ser obtidas em (Cláudio & Marins) e (Chapra &Canale) Em sistemas lineares, mostraremos técnicas para minimizar problemas de condicionamento Algoritmos geralmente ficam instáveis ao calcular valores intermediários muito grandes (próximos a M) ou muito pequenos (próximos a m)
Cálculo Numérico Noções básicas sobre erros
Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aulas 5 e 6 03/2014 Erros Aritmética no Computador A aritmética executada por uma calculadora ou computador é diferente daquela
CCI-22. Erros Erros de arredondamento, representação e de cálculo
CCI-22 Matemática Computacional Erros Erros de arredondamento, representação e de cálculo CCI-22 Tipos de erros Sistemas de ponto flutuante Arredondamentos Erros absolutos e relativos Dígitos significativos
Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer ÍNDICE. Aula 1- Introdução. Representação de números. Conversão de números
Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 1- Introdução Representação de números Conversão de números Aritmética de ponto flutuante Erros em máquinas digitais Aula 1 - Introdução
CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra
CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 2) Erros de arredondamento Erros de representação e de cálculo CCI-22 Tipos de erros Sistemas de ponto flutuante
CCI - 22 Matemática Computacional
Matemática Computacional Prof. Paulo André http://www.comp.ita.br/~pauloac [email protected] Sala 110 Prédio da Computação Estrutura do Curso Introdução ao estudo de matemática numérica Representação de dados
Estudo de erros Erros na fase de modelagem: 1.2. Erros na fase de resolução:
MATEMÁTICA ICET UFMT Clculo Numrico Licenciatura Plena em Matemática Prof. Geraldo Lúcio Diniz Estudo de erros 1. Introdução A obtenção de uma solução numérica para um problema físico por meio da aplicação
étodos uméricos Erros Visão Geral Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos Erros Visão Geral Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
Cálculo Numérico. Conjunto de métodos utilizados para a obtenção de resultados de problemas matemáticos através de aproximações.
CÁLCULO NUMÉRICO Cálculo Numérico Conjunto de métodos utilizados para a obtenção de resultados de problemas matemáticos através de aproximações Problema Físico Modelo Matemático Solução Cálculo Numérico
Cálculo Numérico. Erros em processamento Numéricos
Cálculo Numérico Erros em processamento Numéricos Agenda Introdução a Erros Mudança de Base Erros de representação Erro de arredondamento Erro de absoluto Erro relativo Erro de truncamento Propagação do
Fundamentos IV. Introdução a análise de erros. Clarimar J. Coelho. August 14, Departamento de Computação
Fundamentos IV Introdução a análise de erros Clarimar J. Coelho Departamento de Computação August 14, 2014 Clarimar (Departamento de Computação) Aula 2 August 14, 2014 1 / 40 Como aparecem os erros em
ERRO DE ARREDONDAMENTO E TRUNCAMENTO
CONCEITO DE ERRO A noção de erro está presente em todos os campos do Cálculo Numérico. De um lado, os dados, em si, nem sempre são exatos e, de outro lado, as operações sobre valores não exatos propagam
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 2. Conceito de Erro 2.1. Introdução Erros estão presentes em todos os campos do cálculo numérico. Dados em si nem sempre são exatos.
Erros em computações numéricas
Erros em computações numéricas Sérgio Galdino 1 2 1 POLI-UPE Escola Politécnica Universidade de Pernambuco 2 UNICAP Universidade Católica de Pernambuco Disciplinas: (1)Cálculo Numérico - (2)Cálculo Numérico
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 2 08/2014 Noções Básicas sobre Erros A resolução de problemas numericamente envolve várias fases que podem ser assim estruturadas:
Cálculo Numérico - Mat 215. Prof. Dirceu Melo. Prof. Dirceu Melo - MAT215
Cálculo Numérico - Mat 215 Prof. Dirceu Melo Prof. Dirceu Melo - MAT215 1 1ª AULA Introdução Sistemas Decimal e Binário Conversão de Sistemas de base Sistema Aritmético de Ponto Flutuante INTRODUÇÃO 3
Erros e Aritmética de ponto flutuante
Cálculo Numérico Noções básicas sobre erros Aritmética de ponto flutuante Prof. Daniel G. Alfaro Vigo [email protected] DCC IM UFRJ Parte I Noções básicas sobre erros Introdução Validação Modelagem
Resolução do Exame Tipo
Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),
Semana 3 Erros de Representação
1 CÁLCULO NUMÉRICO Semana 3 Erros de Representação Professor Luciano Nóbrega UNIDADE 1 2 ERROS DE REPRESENTAÇÃO Vejamos alguns erros decorrentes: 1º) Erro na fase de modelagem São os erros que ocorrem
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35. e) 347 f) 513.
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513 g) 923 2. Converta para a base binária, usando os métodos
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35.
Computação Científica Folha Prática Computação Numérica 1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513
UNIVERSIDADE EDUARDO MONDLANE MANUAL TEÓRICO
UNIVERSIDADE EDUARDO MONDLANE MÉTODOS NUMÉRICOS MANUAL TEÓRICO José A. Nhavoto, MSc Julho de 2011 Conteúdo 1 Noções básicas sobre erros 4 1.1 Introdução a erros.................................. 4 1.2
CÁLCULO NUMÉRICO (CN)
CÁLCULO NUMÉRICO (CN) OBJETIVO: O estudo dos métodos de resolução numérica de problemas de matemática. 1. INTRODUÇÃO: A resolução de problemas envolve várias fases que podem ser assim estruturadas: Problema
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 1. Representação de números reais 1.1. Introdução Cálculo Numérico X Método Numérico CI202 - Métodos Numéricos 1 1. Representação
Números binários e erros
Números binários e erros Alan Costa de Souza 14 de Agosto de 2017 Alan Costa de Souza Números binários e erros 14 de Agosto de 2017 1 / 1 Introdução Calcular a área de uma circunferência de 100 m de raio.
Teoria de erros. Computação Teoria de erros Porquê?
Teoria de erros Computação 003-004 Teoria de erros Porquê? Exemplos 0.^0 -.e-0= 5.698788845643e-06 f(x,y)=333.75y 6 +x (x y -y 6 -y 4 -)+5.5y 8 +x/(y) Matlab f(7767,33096) y -.806e+0 (Matlab) Maple f(7767,33096)
Folha Prática - Representação de Números e Erros. 1. Representar os seguintes números decimais em binário com ponto fixo:
Computação Científica Folha Prática - Representação de Números e Erros 1. Representar os seguintes números decimais em binário com ponto fixo: a) 24 b) 197 c) 1001 d) 7,65 e) 8,963 f) 266,66 2. Obter os
Matemática Computacional. Edgard Jamhour
Matemática Computacional Edgard Jamhour Definição A matemática computacional é uma área da matemática e da computação que trata do desenvolvimento de modelos matemáticos, para o tratamento de problemas
Lista 1 de Exercícios de MAT Cálculo Numérico /II
Lista 1 de Exercícios de MAT 271 - Cálculo Numérico - 2017/II OBS.: Utilize arredondamento por corte (truncamento) com 5 casas decimais após a virgula (caso seja necessário). 1) Converta os números abaixo
Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE
Capítulo 1 - Erros e Aritmética Computacional
Capítulo 1 - Erros e Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/ 21 Sumário
Cálculo Numérico Conceitos Básicos
Cálculo Numérico Conceitos Básicos Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ 1 Princípios usados
SME CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS. Agosto 2011
SME0100 - CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS Agosto 2011 SME0100 - Cálculo Numérico I Ementa: 1) Representação de números no computador. Erros em métodos numéricos. 2) Soluções
Métodos Numéricos Erros Ponto Flutuante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Erros Ponto Flutuante Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Representação Numérica O conjunto dos números representáveis em qualquer máquina é finito, e portanto
Matemática Computacional Ficha 1: Capítulo /19
Matemática Computacional Ficha 1: Capítulo 1 2018/19 I. Notação e revisão da matéria e x = x x (erro de x em relação a x) e x : erro absoluto de x δ x : erro relativo de x em relação a x, onde, para x
Arquitetura e Organização de Computadores
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIA DA COMPUTAÇÃO Arquitetura e Organização de Computadores Aritmética Computacional Prof. Sílvio Fernandes
Matemática Computacional Ficha 1: Teoria dos erros (Capítulo 1) 1s-2017/18, MEEC
Matemática Computacional Ficha 1: Teoria dos erros (Capítulo 1) 1s-2017/18, MEEC I. Notação e revisão da matéria e x = x x (erro de x em relação a x) e x : erro absoluto de x δ x : erro relativo de x em
Baseado nos slides de Anna Tostes SISTEMA NUMÉRICO
Baseado nos slides de Anna Tostes SISTEMA NUMÉRICO 1 Sumário 1. Sistema Numérico 2. Notação Posicional Sistema Decimal Sistema Binário Sistema Octal Sistema Hexadecimal 3. Conversão entre Bases 4. Operações
Dessa forma pode-se transformar qualquer número em qualquer base para a base 10.
Sistemas de numeração e representação dos números Sistemas de Numeração e Somadores Binários I Base Numérica Um número em uma base qualquer pode ser representado da forma: N = An-1.B n-1 + An-2.B n-2 +...+
Erros numéricos por Mílton Procópio de Borba
Erros numéricos por Mílton Procópio de Borba 1. Alguns problemas ao fazermos contas no computador Os problemas a seguir foram analisados num Pentium, com a ajuda de pequenos programas feitos em QBasic.
Aula 2 - Representação e arredondamento
Aula 2 - Representação e arredondamento Prof. Dino Franklin 1 / 54 Erros e desastres clássicos encontramos diversos exemplos de desastres devidos à utilização de algoritmos numéricos fora do contexto para
TP062-Métodos Numéricos para Engenharia de Produção Erros-Ponto Flutuante
TP062-Métodos Numéricos para Engenharia de Produção Erros-Ponto Flutuante Prof. Volmir Wilhelm Curitiba, 2015 Representação Numérica No sistema decimal X (10) = d 3 d 2 d 1 d 0 (número inteiro de 4 dígitos)
Erros, Precisão Numérica e Ponto Flutuante
Capítulo 3 Erros, Precisão Numérica e Ponto Flutuante No capítulo anterior introduzimos o conceito de variável em programação. Uma variável é basicamente um nome usado para se referir a algum conteúdo
Método Analítico. Método Numérico
UFRN/CT/DCA Nota de Aula Introdução aos Métodos Computacionais e Estudo dos Erros Prof Anderson Cavalcanti Métodos Computacionais Contextualização Muitos problemas de engenharia consistem em obter uma
Representação de números - Conversão de base b para base 10
Representação de números - Conversão de base b para base Números em base 0,,,, 8, 9,,,,, 9, 0,,, 99, 0,,, 47,, 999, 00, 0, dígitos que constituem a base Valor depende da posição dos dígitos centenas unidades
INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o
INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o MATEMÁTICA COMPUTACIONAL Eercícios 1 1.1 Represente num sistema de ponto flutuante
CCI-22 CCI-22. Introdução e Motivação. Matemática Computacional. Conteúdo. Finalidade. Carlos Henrique Q. Forster Conteúdo, Avaliação, Bibliografia
Matemática Computacional Introdução e Motivação Carlos Henrique Q. Forster Conteúdo, Avaliação, Bibliografia Conteúdo Finalidade Em muitas universidades, este curso costuma ser chamado de Cálculo Numérico
Representação de números Conversão de base b para base 10
Representação de números Conversão de base b para base 0 Números em base 0 0,,,, 8, 9, 0,,,, 9, 0,,, 99, 00, 0,, 47,, 999, 000, 00, 0 dígitos que constituem a base Valor depende da posição dos dígitos
UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade
1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de
Home Programa Exercícios Provas Professor Links. 2.1 Representação de um número na base dois. O número binário 101,101 significa, na base dois:
Curso de Cálculo Numérico Professor Raymundo de Oliveira Home Programa Exercícios Provas Professor Links Capítulo 2 - Representação binária de números inteiros e reais 2.1 Representação de um número na
SISTEMA DE NUMERAÇÃO. Introdução a Informática. Vinícius Pádua
SISTEMA DE NUMERAÇÃO Introdução a Informática Sistema de Numeração Métodos científicos para representar os números Tipos Notação não posicional ou Posicional Difere se o algarismo tem valor fixo ou não
Lista de Exercícios 1
Lista de Exercícios 1 MAT 01169 - Cálculo Numérico 2 de Agosto de 2015 As respostas de alguns exercícios estão no final da lista. Exercício 1. Converta para binário os números abaixo: (a) (102) 10 = (b)
Arquitetura de Computadores
Arquitetura de Computadores Eduardo Albuquerque Adaptado do material do Prof. Fábio M. Costa Instituto de Informática UFG 1S/2004 Representação de Dados e Aritmética Computacional Roteiro Números inteiros
Capítulo 1 - Erros e Aritmética Computacional
Capítulo 1 - Erros e Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa 1/ 26 Sumário 1 Definição
William Stallings Arquitetura e Organização de Computadores 8 a Edição
William Stallings Arquitetura e Organização de Computadores 8 a Edição Capítulo 9 Aritmética do computador slide 1 Unidade aritmética e lógica Faz os cálculos. Tudo o mais no computador existe para atender
Sumário. Capítulo 1 Erros em processos numéricos 1. Capítulo 2 Solução numérica de sistemas de equações lineares e matrizes inversas 19
Sumário Prefácio IX Agradecimentos X Capítulo Erros em processos numéricos. Introdução. Erros na fase da modelagem.3 Erros na fase de resolução.4 Erros de representação 5.5 Erro de arredondamento.6 Erro
EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.
EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de
Métodos Numéricos Erros Erros Numéricos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Erros Erros Numéricos Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Muitos problemas podem ser formulados em equações matemáticas simples. Isso não significa, que elas podem
CCI-22 LISTA DE EXERCÍCIOS
CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
PARTE I I: ARITMÉTICA COMPUTACIONAL ARQUITETURA DE COMPUTADORES ANTONIO RAMOS DE CARVALHO JÚNIOR
PARTE I I: ARITMÉTICA COMPUTACIONAL ARQUITETURA DE COMPUTADORES ANTONIO RAMOS DE CARVALHO JÚNIOR Introdução Como representar números em memória? Como representar números negativos e de ponto flutuante?
Introdução à Computação
Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Introdução à Computação A Informação
ARQUITETURA DE COMPUTADORES
Representação de Dados Professor: Airton Ribeiro de Sousa E-mail: [email protected] 1 REPRESENTAÇÃO DE DADOS: SÍMBOLO: Marca visual ou gráfica que representa um objeto que desejamos identificar
Aproximações e Erros
Aproximações e Erros Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória,
Cálculo numérico Cálculo numérico - O Cálculo Numérico é uma metodologia para resolver problemas matemáticos através do computador. - Uma solução obti
Tópicos Tópicos - Cálculo numérico - Representação e conversão de números - Representação de números em diferentes bases - Conversão de números da base decimal para uma qualquer base b - Conversão de números
Erros Experimentais. Algarismos Significativos
Erros Experimentais Não existe uma forma de se medir o valor real de alguma coisa. O melhor que podemos fazer em uma análise química é aplicar cuidadosamente uma técnica que a experiência nos garanta ser
1.1 Etapas na solução de um problema. 1.3 Tipos de erros. 1.4 Aritmética de ponto flutuante.
1. Computação numérica 1.1 Etapas na solução de um problema. 1.2 Notação algorítmica. 1.3 Tipos de erros. 1.4 Aritmética de ponto flutuante. Algoritmos Numéricos Cap.1: Computaç~ao numérica Ed1.0 c 2001
Tópicos. - Cálculo numérico. - Representação de números. - Análise e representação de erros
Tópicos Tópicos - Cálculo numérico - Representação de números - Representação de números em diferentes bases - Conversão de números da base b para a base decimal - Representação de números em computadores
Notas de Aula de Cálculo Numérico
IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números
Capítulo 2. Representação de números em vírgula flutuante
Capítulo 2 Representação de números em vírgula flutuante Adaptado dos transparentes das autoras do livro The Essentials of Computer Organization and Architecture Números inteiros Os computadores foram
Ponto Fixo e Ponto Flutuante
Ponto Fixo e Ponto Flutuante Arquitetura de Computadores Introdução (1/2) É trivial para um computador atual tratar e operar com números inteiros. Entretanto, em muitas aplicações do dia a dia é necessário
Cálculo Numérico Prof. Guilherme Amorim 24/10/2013. Aula 2 Erros e Aritmética de Ponto Flutuante
Cálculo Numérico Prof. Guilherme Amorim 24/10/2013 Aula 2 Erros e Aritmética de Ponto Flutuante Noções de Aritmética de Máquina Representação de Números... P = 3.141592653589793238462643383279502884197169399375105820974944
6.Elaboração de algoritmos...13
Índice de conteúdos Capítulo 1. Computação Científica...1 1.Definição...1 2.Modelo genérico...2 3.Modelo matemático...2 4.Tipos de modelos matemáticos...3 5.Modelação matemática...5 5.1.Definição (formulação)
