Capítulo 1 - Erros e Aritmética Computacional
|
|
|
- Sérgio Galvão
- 6 Há anos
- Visualizações:
Transcrição
1 Capítulo 1 - Erros e Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa 1/ 26
2 Sumário 1 Definição Aproximações 2 Origem dos Erros Erros de Computação Erro Propagado 3 Número de Condição 4 Notação de Virgula Flutuante Carlos Balsa 2/ 26
3 Definição Aproximações versus Métodos Analíticos Métodos Analíticos Solução exacta (não havendo arredondamentos) Solução geral (normalmente uma expressão matemática) que permite obter soluções particulares em função das variáveis independentes Soluções contínua (permite obter soluções particulares para qualquer valor da variável independente) Solução aproximada (contêm um erro associado) Soluções particular na forma de números Solução discreta (apenas calculada para alguns valores da variável independente) Métodos numéricos são necessários porque Problemas reais nem sempre têm solução analítica Métodos numéricos permitem quantificar o erro na solução Maior parte dos problemas envolvem aproximações Carlos Balsa 3/ 26
4 Definição Aproximações Origem das aproximações Antes da computação Modelação Medições empíricas Computações anteriores Durante a computação Truncatura ou discretização Arredondamentos A exactidão dos resultados finais reflecte todas as aproximações A incerteza dos dados introduzidos (input) pode ser amplificada pelo problema Perturbações durante a computação podem ser amplificadas pelo algoritmo Carlos Balsa 4/ 26
5 Definição Aproximações Exemplo 1: aproximações Calcular a superfície terrestre através da formula utilizando a formula A = 4πr 2 envolve várias aproximações A Terra é modelada como uma esfera, idealizando a sua forma ideal O valor do raio é baseado em medidas empíricas e em computações anteriores O valor de π requer a truncatura de processos infinitos O valor dos inputs assim como das operações aritméticas são arredondadas no computador Carlos Balsa 5/ 26
6 Origem dos Erros Erros de Computação Erro Propagado Seja x um número real e ˆx um valor aproximado de x: Erro absoluto = valor aproximado - valor exacto = x ˆx Erro relativo = erro absoluto valor exacto = x ˆx x Valor aproximado = valor exacto (1+ erro rel.) É comum trabalhar com o valor absoluto dos erros: x = x ˆx e r x = x ˆx x Carlos Balsa 6/ 26
7 Origem dos Erros Erros de Computação Erro Propagado Exemplo 2: Seja x = 1/3 e ˆx = x = x ˆx = 1/ = (3) r x = x ˆx x = 1/ /3 = (9) = 0.1% Carlos Balsa 7/ 26
8 Origem dos Erros Erros de Computação Erro Propagado Erros de dados e erros de computação Problema típico: calcular o valor da função f : IR IRpara os argumentos x valor exacto do argumento f (x) valor pretendido ˆx valor aproximado do input ˆf valor aproximado da função a calcular Erro total = ˆf (ˆx) f (x) = (ˆf (ˆx) f (ˆx)) + (f (ˆx) f (x)) = erro computacional + erro propagado Erro computacional depende do algoritmo e o erro propagado depende do condicionamento do problema Carlos Balsa 8/ 26
9 Origem dos Erros Erros de Computação Erro Propagado Erro de truncatura e erro de arredondamento Os erros computacionais são a soma dos erros de truncatura e dos erros de arredondamento, normalmente, um destes é dominante Erro de truncatura: diferença entre o resultado exacto (para o input actual) e o resultado produzido pelo algoritmo usando uma aritmética exacta Devido a aproximações tais como a truncatura de séries infinitas ou fins de processos iterativos antes de se verificar a convergência Erro de arredondamento: diferença entre o resultado produzido pelo algoritmo usando aritmética infinita e o resultado produzido pelo mesmo algoritmo usando uma aritmética de precisão limitada Devido a representação inexacta de números reais e às operações inexactas sobre esses números Carlos Balsa 9/ 26
10 Erros de Truncatura Origem dos Erros Erros de Computação Erro Propagado Um exemplo de erro de truncatura é o desenvolvimento de uma função através da série de Taylor truncada Série de Taylor: Uma função f (x), com x próximo de a, em que f (a) é conhecido e f admite infinitas derivadas pode ser calculada através de f (x) = f (a) + f (a) 1! (x a) + f (a) 2! Se considerarmos apenas os n primeiros termos f (x) f (a) + f (a) 1! (x a) + f (a) 2! (x a) f (n) (a) (x a) n + n! (x a) f (n) (a) (x a) n n! Carlos Balsa 10/ 26
11 Exemplo 3: erro de truncatura Origem dos Erros Erros de Computação Erro Propagado Aproximar f (x) = cos(x) utilizando os três primeiros termos da série de Taylor em torno de a = 0 cos(x) cos(a) + (cos(a)) 1! cos(0) + sen(0) 1 1 x 2 /2 (x a) + (cos(a)) (x a) 2 2! (x) + cos(0) (x) 2 2 Se x = 0.1 temos cos(0.1) /2 = Erro absoluto: f = cos(0.1) Erro relativo: r f = cos(0.1) cos(0.1) = % Carlos Balsa 11/ 26
12 Erros de Arredondamento Origem dos Erros Erros de Computação Erro Propagado Arredondamento de x IRpode ser feito de três maneiras diferentes: Arredondamento simétrico: Eliminam-se todos os algarismos (dígitos) situados à direita do último número que queremos manter. Se o primeiro dos algarismo eliminados for maior ou igual a 5 adiciona-se 1 ao último algarismo da parte não eliminada. Se o primeiro dos algarismo eliminados for inferior a 5 mantêm-se a parte não eliminada sem alterações. Arredondamento por excesso: adiciona-se sempre 1 ao último dígito da parte mantida Arredondamento por defeito: último algarismo da parte mantida não é alterado Nota: Arredondamento simétrico é normalmente utilizado porque minimiza o erro cometido. Arredondamento por excesso utilizado no arredondamento dos erros de forma a obter um majorante. Carlos Balsa 12/ 26
13 Origem dos Erros Erros de Computação Erro Propagado Exemplo 4: erro de arredondamento Arredondar x = a quatro posições decimais (m = 4) pelos três métodos anteriores e calcular os respectivos erros Arredondamento simétrico: ˆx = , x = ˆx x = , r x = ˆx x x = % Arredondamento por excesso: ˆx = , x = ˆx x = , r x = ˆx x x = % Arredondamento por defeito: ˆx = , x = ˆx x = , r x = ˆx x x = % Carlos Balsa 13/ 26
14 Origem dos Erros Erros de Computação Erro Propagado Erro anterior (backward error) e erro posterior (forward error) Supondo que queremos calcular y = f (x), com f : IR IR, mas obtemos o valor aproximado ŷ Erro posterior (final) y = ŷ y, com ŷ = ˆf (x) Erro anterior (inicial) x = ˆx x Carlos Balsa 14/ 26
15 Origem dos Erros Erros de Computação Erro Propagado Exemplo 5: erro anterior e erro posterior Como aproximação a y = 2, ŷ = 1.4 tem como erro absoluto posterior y = ŷ y = que corresponde a um erro relativo posterior de cerca de 1% Uma vez que 1.96 = 1.4, o erro absoluto anterior é x = ˆx x = que corresponde a um erro relativo anterior de cerca de 2% Carlos Balsa 15/ 26
16 Análise do erro anterior Origem dos Erros Erros de Computação Erro Propagado Ideia: solução aproximada é a solução exacta do problema modificado De quanto deve ser modificado o problema original para originar o resultado obtido? Quanto é que o os erros nos inputs podem explicar todos os erros nos resultados calculados? A solução aproximada é boa se for a solução exacta de um problema próximo do original O erro anterior é por vezes mais fácil de estimar do que o erro à posterior Carlos Balsa 16/ 26
17 Origem dos Erros Erros de Computação Erro Propagado Exemplo 6: análise do erro anterior Vamos aproximar a função cosseno f (x) = cos(x) através da série de Taylor truncada a partir dos 3 primeiros termos ŷ = ˆf (x) = 1 x 2 /2 O erro posterior é dado por y = ŷ y = ˆf f = 1 x 2 /2 cos(x) Para determinar o erro anterior necessitamos do valor ˆx tal que f (ˆx) = ˆf (x) Para a função cosseno, ˆx = arccos(ˆf (x)) = arccos(ŷ) Tal como no exemplo 3, se x = 0.1 temos um erro posterior de y = e o erro anterior é x = 0.1 arccos(0.995) Carlos Balsa 17/ 26
18 Número de Condição Um problema é insensível ou bem condicionado se mudanças relativas no input provocam mudanças relativas semelhantes na solução Um problema é sensível ou mal condicionado se mudanças relativas no input provocam muito maiores mudanças relativas na solução Número de condição Mud. relativa na sol. Cond = Mud. relativa nos inputs [f (ˆx) f (x)] /f (x) = = y/y (ˆx x) /x x/x O problema é sensível ou mal condicionado se Cond 1 Carlos Balsa 18/ 26
19 Número de Condição Número de Condição O número de condição é um factor de ampliação do erro anterior em relação ao erro posterior Erro relativo posterior = cond Erro relativo anterior Normalmente o numero de condição não é exactamente conhecido e pode variar com o input, pelo que se usa uma aproximação ou um limite máximo para o valor de Cond Erro relativo posterior cond Erro relativo anterior Carlos Balsa 19/ 26
20 Número de Condição Exemplo 7: condicionamento de uma função Calcular uma função para o input aproximado ˆx = x + x em vez de x Erro absoluto posterior: f (x + x) f (x) f (x) x Erro relativo posterior: Número de condição: cond f (x+ x) f (x) f (x) f (x) x f (x) f (x) x/f (x) x/x = xf (x) f (x) Condicionamento de uma função depende x e de f Carlos Balsa 20/ 26
21 Número de Condição Exemplo 8: sensibilidade da função tangente A função tangente é sensível para argumentos próximos de π/2 tan( ) tan( ) Mudança relativa no output é um quarto de milhão maior do que a mudança relativa no input Para x = , cond Carlos Balsa 21/ 26
22 Notação de Virgula Flutuante Notação de Virgula Flutuante Nos computadores os números são representados por um sistema de números de vírgula (ou ponto) flutuante da forma x = ±f x b e em que f x : mantissa (fracção) b: base e: expoente Maior parte dos computadores modernos são concebidos de acordo o sistema de ponto flutuante do IEEE, em que a base é binária (b = 2) Os computadores convertem os inputs, na base decimal (b = 10), para a base binária antes de efectuar as operações pedidas, posteriormente convertem também os resultados para a base decimal antes de serem apresentados Carlos Balsa 22/ 26
23 Notação de Virgula Flutuante A forma padrão de representar um numero em computador é através da notação científica x = ±f x 10 e em que 1 f x < 10 (todos os dígitos de f x são significativos) Na notação científica normalizada tem-se 0.1 f x < 1 Em análise de erros esta notação é útil pois verifica a relação m = e t, em que m é o numero de posições décimas, t é o número de dígitos significativos e e é o expoente na base 10 Por exemplo x = x = ou x = 3.450e 4: notação científica x = ou x = e 3: not. normalizada Carlos Balsa 23/ 26
24 Precisão Máquina Notação de Virgula Flutuante Conjunto dos números de ponto flutuante é discreto e finito; quando um x IR não tem representação exacta neste conjunto, é aproximado pelo número de ponto flutuante mais próximo fl(x) Erro relativo devido ao arredondamento produzido quando um valor x 0 é substituído por fl(x) é majorado por x fl(x) x 1 2 ɛ maq em que ɛ maq, designada por unidade de arredondamento (ou precisão máquina), é um parâmetro interno que depende do computador e do software Expoente de ɛ maq corresponde ao número de dígitos de precisão com que um número real é representado no sistema de ponto flutuante No sistema IEEE de precisão simples ɛ maq 10 7 e no de precisão dupla ɛ maq (maior parte dos computadores) Carlos Balsa 24/ 26
25 Underflow e Overflow Notação de Virgula Flutuante Menor valor (em valor absoluto), diferente de zero, que é possível representar no sistema de ponto flutuante é designado por underflow (no Octave cerca de e 308) Maior máximo que é possível representar no sistema de ponto flutuante é designado por overflow (no Octave cerca de e + 308) No decorrer da execução de um algoritmo se o overflow ocorre verifica-se um erro fatal responsável pelo fim precipitado da execução Não confundir underflow com ɛ maq, embora ambos sejam pequenos, a precisão máquina depende do número de dígitos na mantissa (f x ) enquanto que o underflow é determinado pelo número de dígitos no campo do expoente (e) Num sistema de ponto flutuante temos 0 < underflow < ɛ maq < overflow Carlos Balsa 25/ 26
26 Notação de Virgula Flutuante Bibliografia 1 Michael T. Heath, "Scientific Computing an Introductory Survey". McGraw-Hill, A. Quarteroni e F. Saleri, "Cálculo Científico com Matlab e Octave". Springer, C. Balsa e A. Santos, "Texto de Apoio à Disciplina de Análise Numérica". ESTiG-IPB, Carlos Balsa 26/ 26
Capítulo 1 - Erros e Aritmética Computacional
Capítulo 1 - Erros e Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/ 21 Sumário
Capítulo 1 - Erros e Aritmética Computacional
Capítulo 1 - Erros e Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica Carlos Balsa Métodos Numéricos
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35.
Computação Científica Folha Prática Computação Numérica 1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35. e) 347 f) 513.
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513 g) 923 2. Converta para a base binária, usando os métodos
Folha Prática - Representação de Números e Erros. 1. Representar os seguintes números decimais em binário com ponto fixo:
Computação Científica Folha Prática - Representação de Números e Erros 1. Representar os seguintes números decimais em binário com ponto fixo: a) 24 b) 197 c) 1001 d) 7,65 e) 8,963 f) 266,66 2. Obter os
Capítulo 6 - Equações Não-Lineares
Sistemas de Capítulo 6 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/
Cálculo Numérico - Mat 215. Prof. Dirceu Melo. Prof. Dirceu Melo - MAT215
Cálculo Numérico - Mat 215 Prof. Dirceu Melo Prof. Dirceu Melo - MAT215 1 1ª AULA Introdução Sistemas Decimal e Binário Conversão de Sistemas de base Sistema Aritmético de Ponto Flutuante INTRODUÇÃO 3
Capítulo 4 - Interpolação Polinomial
Capítulo 4 - Interpolação Polinomial Carlos Balsa balsa@ipbpt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng Civil e Electrotécnica Carlos Balsa Métodos Numéricos
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aulas 5 e 6 03/2014 Erros Aritmética no Computador A aritmética executada por uma calculadora ou computador é diferente daquela
Aproximações e Erros
Aproximações e Erros Lucia Catabriga e Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória,
Capítulo 2. Representação de números em vírgula flutuante
Capítulo 2 Representação de números em vírgula flutuante Adaptado dos transparentes das autoras do livro The Essentials of Computer Organization and Architecture Números inteiros Os computadores foram
Matemática Computacional Ficha 1: Capítulo /19
Matemática Computacional Ficha 1: Capítulo 1 2018/19 I. Notação e revisão da matéria e x = x x (erro de x em relação a x) e x : erro absoluto de x δ x : erro relativo de x em relação a x, onde, para x
Erros e Aritmética de ponto flutuante
Cálculo Numérico Noções básicas sobre erros Aritmética de ponto flutuante Prof. Daniel G. Alfaro Vigo [email protected] DCC IM UFRJ Parte I Noções básicas sobre erros Introdução Validação Modelagem
UNIVERSIDADE EDUARDO MONDLANE MANUAL TEÓRICO
UNIVERSIDADE EDUARDO MONDLANE MÉTODOS NUMÉRICOS MANUAL TEÓRICO José A. Nhavoto, MSc Julho de 2011 Conteúdo 1 Noções básicas sobre erros 4 1.1 Introdução a erros.................................. 4 1.2
Métodos Numéricos Erros Ponto Flutuante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Erros Ponto Flutuante Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Representação Numérica O conjunto dos números representáveis em qualquer máquina é finito, e portanto
6.Elaboração de algoritmos...13
Índice de conteúdos Capítulo 1. Computação Científica...1 1.Definição...1 2.Modelo genérico...2 3.Modelo matemático...2 4.Tipos de modelos matemáticos...3 5.Modelação matemática...5 5.1.Definição (formulação)
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 2 08/2014 Noções Básicas sobre Erros A resolução de problemas numericamente envolve várias fases que podem ser assim estruturadas:
Matemática Computacional. Edgard Jamhour
Matemática Computacional Edgard Jamhour Definição A matemática computacional é uma área da matemática e da computação que trata do desenvolvimento de modelos matemáticos, para o tratamento de problemas
Cálculo Numérico Noções básicas sobre erros
Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo
Representação de números Conversão de base b para base 10
Representação de números Conversão de base b para base 0 Números em base 0 0,,,, 8, 9, 0,,,, 9, 0,,, 99, 00, 0,, 47,, 999, 000, 00, 0 dígitos que constituem a base Valor depende da posição dos dígitos
Matemática Computacional Ficha 1: Teoria dos erros (Capítulo 1) 1s-2017/18, MEEC
Matemática Computacional Ficha 1: Teoria dos erros (Capítulo 1) 1s-2017/18, MEEC I. Notação e revisão da matéria e x = x x (erro de x em relação a x) e x : erro absoluto de x δ x : erro relativo de x em
TP062-Métodos Numéricos para Engenharia de Produção Erros-Ponto Flutuante
TP062-Métodos Numéricos para Engenharia de Produção Erros-Ponto Flutuante Prof. Volmir Wilhelm Curitiba, 2015 Representação Numérica No sistema decimal X (10) = d 3 d 2 d 1 d 0 (número inteiro de 4 dígitos)
Capítulo 7 - Equações Diferenciais Ordinárias
Capítulo 7 - Equações Diferenciais Ordinárias Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos
Cálculo Numérico. Conjunto de métodos utilizados para a obtenção de resultados de problemas matemáticos através de aproximações.
CÁLCULO NUMÉRICO Cálculo Numérico Conjunto de métodos utilizados para a obtenção de resultados de problemas matemáticos através de aproximações Problema Físico Modelo Matemático Solução Cálculo Numérico
étodos uméricos Erros Visão Geral Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos Erros Visão Geral Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
Modelagem Computacional. Parte 1 2
Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 1 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 1] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,
Capítulo 4 - Equações Não-Lineares
Capítulo 4 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/
Representação de números - Conversão de base b para base 10
Representação de números - Conversão de base b para base Números em base 0,,,, 8, 9,,,,, 9, 0,,, 99, 0,,, 47,, 999, 00, 0, dígitos que constituem a base Valor depende da posição dos dígitos centenas unidades
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 1. Representação de números reais 1.1. Introdução Cálculo Numérico X Método Numérico CI202 - Métodos Numéricos 1 1. Representação
Resolução do Exame Tipo
Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),
SME CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS. Agosto 2011
SME0100 - CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS Agosto 2011 SME0100 - Cálculo Numérico I Ementa: 1) Representação de números no computador. Erros em métodos numéricos. 2) Soluções
Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer ÍNDICE. Aula 1- Introdução. Representação de números. Conversão de números
Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 1- Introdução Representação de números Conversão de números Aritmética de ponto flutuante Erros em máquinas digitais Aula 1 - Introdução
Aula 11. A Informação e sua Representação Ponto-Flutuante. Prof. Dr. Dilermando Piva Jr.
11 Aula 11 A Informação e sua Representação Ponto-Flutuante Prof. Dr. Dilermando Piva Jr. Site Disciplina: http://fundti.blogspot.com.br/ Em alguns tipos de cálculo, a faixa de variação dos números envolvidos
Introdução. à Ciência da. Representação de Números em Ponto Flutuante. Aula 21. Números Fracionários
Universidade Federal de Pelotas Instituto de Física e Matemática Departamento de Informática Bacharelado em Ciência da Computação Introdução à Ciência da Computação Aula 21 Representação de Números em
Erros em computações numéricas
Erros em computações numéricas Sérgio Galdino 1 2 1 POLI-UPE Escola Politécnica Universidade de Pernambuco 2 UNICAP Universidade Católica de Pernambuco Disciplinas: (1)Cálculo Numérico - (2)Cálculo Numérico
Cálculo Numérico. Erros em processamento Numéricos
Cálculo Numérico Erros em processamento Numéricos Agenda Introdução a Erros Mudança de Base Erros de representação Erro de arredondamento Erro de absoluto Erro relativo Erro de truncamento Propagação do
CCI-22. Erros Erros de arredondamento, representação e de cálculo
CCI-22 Matemática Computacional Erros Erros de arredondamento, representação e de cálculo CCI-22 Tipos de erros Sistemas de ponto flutuante Arredondamentos Erros absolutos e relativos Dígitos significativos
Métodos de Aproximação em Engenharia
Métodos de Aproximação em Engenharia [email protected] Departamento de Matemática Mestrados em Engenharia da Construção 1 o Semestre 2011/2012 Métodos de Aproximação em Engenharia 1/ 11 Sumário Primeira Aula
Números binários e erros
Números binários e erros Alan Costa de Souza 14 de Agosto de 2017 Alan Costa de Souza Números binários e erros 14 de Agosto de 2017 1 / 1 Introdução Calcular a área de uma circunferência de 100 m de raio.
CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra
CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 2) Erros de arredondamento Erros de representação e de cálculo CCI-22 Tipos de erros Sistemas de ponto flutuante
Capítulo 5 - Integração e Diferenciação Numérica
Capítulo 5 - Integração e Diferenciação Numérica Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa
Sistemas Digitais INE 5406
Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Informática e Estatística Curso de Graduação em Ciências da Computação Sistemas Digitais INE 5406 Aula 10-P Refinamento das especificações
Cálculo Numérico. Profº Ms Ademilson Teixeira IFSC
1 Cálculo Numérico Profº Ms Ademilson Teixeira Email: [email protected] IFSC 2 Cálculo Numérico Introdução O que é o Cálculo Numérico? Cálculo Numérico Introdução 3 O Cálculo Numérico corresponde
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados
Fundamentos IV. Introdução a análise de erros. Clarimar J. Coelho. August 14, Departamento de Computação
Fundamentos IV Introdução a análise de erros Clarimar J. Coelho Departamento de Computação August 14, 2014 Clarimar (Departamento de Computação) Aula 2 August 14, 2014 1 / 40 Como aparecem os erros em
Capítulo 5 - Interpolação Polinomial
Capítulo 5 - Interpolação Polinomial Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa
Sistemas numéricos e a Representação Interna dos Dado no Computador
Sistemas numéricos e a Representação Interna dos Dado no Computador Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: http://www.inf.ufsc.br~silveira Material elaborado pelo prof
INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o
INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o MATEMÁTICA COMPUTACIONAL Eercícios 1 1.1 Represente num sistema de ponto flutuante
Home Programa Exercícios Provas Professor Links. 2.1 Representação de um número na base dois. O número binário 101,101 significa, na base dois:
Curso de Cálculo Numérico Professor Raymundo de Oliveira Home Programa Exercícios Provas Professor Links Capítulo 2 - Representação binária de números inteiros e reais 2.1 Representação de um número na
Capítulo 4 - Equações Diferenciais às Derivadas Parciais
Capítulo 4 - Equações Diferenciais às Derivadas Parciais [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação
ARQUITETURA DE COMPUTADORES
Representação de Dados Professor: Airton Ribeiro de Sousa E-mail: [email protected] 1 REPRESENTAÇÃO DE DADOS: SÍMBOLO: Marca visual ou gráfica que representa um objeto que desejamos identificar
Cálculo numérico Cálculo numérico - O Cálculo Numérico é uma metodologia para resolver problemas matemáticos através do computador. - Uma solução obti
Tópicos Tópicos - Cálculo numérico - Representação e conversão de números - Representação de números em diferentes bases - Conversão de números da base decimal para uma qualquer base b - Conversão de números
Análise Numérica. Introdução. Teoria de Erros
Análise Numérica Teoria de Erros Introdução O que éa Análise Numérica? São métodos que podem ser usados para a obtenção de soluções numéricas para problemas, quando por qualquer raão não podemos ou não
UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS
UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números
Organização e Arquitetura de Computadores I
Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado em Ciência da Computação Organização e Arquitetura de Computadores I Conceitos BásicosB (Parte II) Prof
Capítulo 6 - Integração e Diferenciação Numérica
Capítulo 6 - Integração e Diferenciação Numérica Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Electrotécnica e Mecânica
Tópicos. - Cálculo numérico. - Representação de números. - Análise e representação de erros
Tópicos Tópicos - Cálculo numérico - Representação de números - Representação de números em diferentes bases - Conversão de números da base b para a base decimal - Representação de números em computadores
ERRO DE ARREDONDAMENTO E TRUNCAMENTO
CONCEITO DE ERRO A noção de erro está presente em todos os campos do Cálculo Numérico. De um lado, os dados, em si, nem sempre são exatos e, de outro lado, as operações sobre valores não exatos propagam
Estudo de erros Erros na fase de modelagem: 1.2. Erros na fase de resolução:
MATEMÁTICA ICET UFMT Clculo Numrico Licenciatura Plena em Matemática Prof. Geraldo Lúcio Diniz Estudo de erros 1. Introdução A obtenção de uma solução numérica para um problema físico por meio da aplicação
Lista 1 de Exercícios de MAT Cálculo Numérico /II
Lista 1 de Exercícios de MAT 271 - Cálculo Numérico - 2017/II OBS.: Utilize arredondamento por corte (truncamento) com 5 casas decimais após a virgula (caso seja necessário). 1) Converta os números abaixo
Arquitetura e Organização de Computadores
UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIA DA COMPUTAÇÃO Arquitetura e Organização de Computadores Aritmética Computacional Prof. Sílvio Fernandes
Cálculo Numérico Conceitos Básicos
Cálculo Numérico Conceitos Básicos Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ 1 Princípios usados
Noções sobre Erros em Matemática Computacional
Noções sobre Erros em Matemática Computacional Sumário Representação de Números em Ponto Flutuante Erros em Expressões Definições Úteis Ponto Flutuante em Computadores Representação de Números em Ponto
CCI - 22 Matemática Computacional
Matemática Computacional Prof. Paulo André http://www.comp.ita.br/~pauloac [email protected] Sala 110 Prédio da Computação Estrutura do Curso Introdução ao estudo de matemática numérica Representação de dados
Erros META OBJETIVOS. 2.1 Erros
Erros META Conceituar o erro, as fontes e formas de expressar estes erros, propagação dos erros em operações aritméticas fórmula geral e problema inverso. OBJETIVOS Resolver problemas práticos de erros
INTRODUÇÃO. O processo de modelagem matemática para resolver problemas reais pode ser visto pelas seguintes etapas: Escolha de um Método Adequado
1 Métodos Numéricos INTRODUÇÃO O Cálculo Numérico, entendido com uma coletânea de métodos numéricos, consiste de uma poderosa ferramenta que nos auxilia na obtenção de soluções numéricas, em geral aproximadas,
Erros numéricos por Mílton Procópio de Borba
Erros numéricos por Mílton Procópio de Borba 1. Alguns problemas ao fazermos contas no computador Os problemas a seguir foram analisados num Pentium, com a ajuda de pequenos programas feitos em QBasic.
ARQUITETURA DE COMPUTADORES
Representação de Dados Professor: Airton Ribeiro de Sousa E-mail: [email protected] 1 Ao longo dos anos, muitos padrões e convenções foram estabelecidas para determinar certos aspectos da
Capítulo 5 - Optimização Não-Linear
Capítulo 5 - Optimização Não-Linear [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia
Aula 2 - Representação e arredondamento
Aula 2 - Representação e arredondamento Prof. Dino Franklin 1 / 54 Erros e desastres clássicos encontramos diversos exemplos de desastres devidos à utilização de algoritmos numéricos fora do contexto para
Apontamentos de Matemática Computacional
Apontamentos de Matemática Computacional Mário Meireles Graça e Pedro Trindade Lima Departamento de Matemática Instituto Superior Técnico Universidade de Lisboa Conteúdo 1 Elementos da teoria dos erros
Teoria de erros. Computação Teoria de erros Porquê?
Teoria de erros Computação 003-004 Teoria de erros Porquê? Exemplos 0.^0 -.e-0= 5.698788845643e-06 f(x,y)=333.75y 6 +x (x y -y 6 -y 4 -)+5.5y 8 +x/(y) Matlab f(7767,33096) y -.806e+0 (Matlab) Maple f(7767,33096)
Capítulo 6 - Integração e Diferenciação Numérica
Capítulo 6 - Integração e Diferenciação Numérica Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial
Método Analítico. Método Numérico
UFRN/CT/DCA Nota de Aula Introdução aos Métodos Computacionais e Estudo dos Erros Prof Anderson Cavalcanti Métodos Computacionais Contextualização Muitos problemas de engenharia consistem em obter uma
Dessa forma pode-se transformar qualquer número em qualquer base para a base 10.
Sistemas de numeração e representação dos números Sistemas de Numeração e Somadores Binários I Base Numérica Um número em uma base qualquer pode ser representado da forma: N = An-1.B n-1 + An-2.B n-2 +...+
