6.Elaboração de algoritmos...13
|
|
|
- Alice Olivares Lima
- 7 Há anos
- Visualizações:
Transcrição
1 Índice de conteúdos Capítulo 1. Computação Científica Definição Modelo genérico Modelo matemático Tipos de modelos matemáticos Modelação matemática Definição (formulação) do Problema Construção do Modelo Matemático Determinação da Solução (do Modelo) Validação do Modelo e Análise da Solução Implementação da Solução Exemplo Elaboração de algoritmos Estrutura do algoritmo Variáveis e comentários Expressões e comando de atribuição Expressões aritméticas Expressões lógicas Expressões literais Comandos de entrada e saída Estruturas condicionais Estrutura condicional simples Estrutura condicional composta...15 i
2 6.6.Estruturas de repetição Número indefinido de repetições Número definido de repetições Falha no algoritmo Exemplos de algoritmos Complexidade computacional...19 Capítulo 2. Computação Numérica Cálculo numérico Representação e conversão de números Representação de números em diferentes bases Representação de números inteiros Representação de números reais Conversão de números da base decimal para uma qualquer base b Conversão de números inteiros Conversão de números reais no formato com ponto fixo Conversão de números reais no formato com ponto flutuante Conversão de números de uma qualquer base b para a base decimal Conversão de números inteiros Conversão de números reais fracionários Número binário infinito Aritmética de ponto flutuante Operações com números em binário Adição binária Subtração binária Multiplicação binária Divisão binária Representação de números em computadores digitais Representação de números inteiros Representação de números reais Análise e Representação de Erros Teorema do Valor Médio...44 ii
3 3.2.Fontes de erros e incertezas Incerteza Precisão e exatidão Tipos de erros Erros iniciais (nos dados do modelo) Erros de modelação (ou de formulação) Erros grosseiros Erros de arredondamento Erros de truncatura Valores aproximados e erros Erro absoluto Erro relativo Fórmula fundamental dos erros Número de dígitos significativos Erros de arredondamento Arredondamento por defeito (ou corte do número) Arredondamento simétrico Erros de arredondamento na álgebra de ponto flutuante Erros de truncatura Cálculo de valores de funções transcendentes Discretização Condicionamento e estabilidade Análise de erros...63 Capítulo 3. Métodos Numéricos Iterativos Métodos numéricos Métodos analíticos versus métodos numéricos Necessidade de se usar métodos numéricos Métodos iterativos Resolução de problemas Problemas com equações não lineares Forma geral do problema...69 iii
4 6.2.Características do problema Zeros (raízes) e multiplicidade Utilização de métodos iterativos Localização e separação das raízes Estimativa para o erro de truncatura Critérios de paragem Método da Bissecção Fórmula geral Algoritmo para o método da Bissecção Método da Falsa Posição (ou da Corda Falsa) Fórmula geral Algoritmo para o método da Falsa Posição Método do Ponto Fixo Fórmula geral Convergência Algoritmo do método do Ponto Fixo Exemplo Método de Newton-Raphson Fórmula geral Newton-Raphson como caso particular do método do Ponto Fixo O método de Newton-Raphson a partir da série de Taylor Ordem de convergência do método de Newton-Raphson Um majorante do erro absoluto Uma estimativa do erro absoluto Critérios de convergência do método de Newton-Raphson Algoritmo para o método de Newton-Raphson Vantagens e desvantagens do método de Newton-Raphson Alguns casos patológicos do método de Newton-Raphson Método da Secante Forma geral Exemplo Convergência Algoritmo do método da Secante...89 iv
5 7.Problemas com equações lineares O problema da resolução de um sistema de equações lineares Utilização de métodos iterativos Método de Jacobi Fórmula geral Algoritmo para o método de Jacobi Método de Gauss Seidel Fórmula geral Algoritmo para o método de Gauss Seidel Exemplo Eficiência Interpolação polinomial Introdução Polinómio interpolador Definição Polinómios Cálculo de valores de um polinómio Interpolação polinomial de Lagrange Fórmula de Lagrange Fórmula de Newton Erros de Interpolação Polinomial Aproximação polinomial Introdução Conceitos e resultados básicos Métricas, normas e seminormas Melhor aproximação polinomial Aproximação dos mínimos quadrados para dados discretos Funções aproximantes e desvios Método dos Mínimos Quadrados Reta dos Mínimos Quadrados (Reta de Regressão) Parábola dos Mínimos Quadrados Algoritmo v
6 Capítulo 4. Modelação e Simulação de Sistemas A simulação de sistemas Definição As razões de usar modelos de simulação Modelos de simulação Introdução Sistema Modelo Cenários Parâmetros do Modelo Propriedades dos modelos de simulação Introdução Elementos de um modelo de simulação Classificação dos modelos de Simulação Modelos determinísticos e modelos estocásticos Modelos estáticos e modelos dinâmicos Modelos contínuos e modelos discretos Modelos de simulação dinâmicos discretos Componentes de um modelo de simulação Tipos de modelação Modelação orientada ao Evento Desenvolvimento de um projeto de simulação Formulação do problema Definição dos objetivos Planeamento do projeto Construção do modelo Recolha de informação Implementação do modelo Verificação Validação Desenho de experiências Execução do modelo e análise dos resultados vi
7 Mais execuções do modelo? Documentação e relatório Implementação da solução Implementação/codificação de um modelo de simulação discreta Exemplo Exemplo Exemplo Exemplo Nível de detalhe dos modelos de simulação Modelos de simulação com filas de espera Introdução Estrutura de uma fila de espera Mecanismos de escalonamento Centros de serviço Análise de dados de entrada (inputs) Introdução Propriedades das distribuições teóricas Análise estatística dos dados de entrada (inputs) Geração de número aleatórios Métodos para gerar números aleatórios Métodos para gerar observações aleatórias Análise de resultados (outputs) Medidas de desempenho típicas Análise de resultados de um sistema Comparação de configurações alternativas de um sistema Modelos de simulação contínuos Modelos de simulação estáticos - método de Monte Carlo O método de Monte Carlo (ou simulação de Monte Carlo) Fases da simulação de Monte Carlo Exemplo Exercício - Admissão de utentes numa urgência vii
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
DISTRIBUIÇÃO DA CARGA HORÁRIA TEÓRICA PRÁTICA TEO/PRAT OUTRAS NÚMERO MÁXIMO DE ALUNOS POR TURMA AULAS TEÓRICAS PRÁTICAS 80 40
unesp UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS UNIVERSITÁRIO DE BAURU FACULDADE DE CIÊNCIAS PLANO DE ENSINO 2008 UNIDADE UNIVERSITÁRIA: FACULDADE DE CIÊNCIAS CURSO: LICENCIATURA EM MATEMÁTICA HABILITAÇÃO:
TP062-Métodos Numéricos para Engenharia de Produção Introdução. Prof. Volmir Wilhelm Curitiba, Paraná, Brasil
TP062-Métodos Numéricos para Engenharia de Produção Introdução Prof. Volmir Wilhelm Curitiba, Paraná, Brasil TP062-Métodos Numéricos para Engenharia de Produção Ementa Matrizes. Sistemas lineares. Zeros
Adérito Araújo. Gonçalo Pena. Adérito Araújo. Adérito Araújo. Gonçalo Pena. Método da Bissecção. Resolução dos exercícios 2.14, 2.15, 2.16 e 2.17.
1 2011-02-08 13:00 2h Capítulo 1 Aritmética computacional 1.1 Erros absolutos e relativos 1.2 O polinómio de Taylor Resolução do exercício 1.3 2 2011-02-08 15:00 1h30m As aulas laboratoriais só começam
Universidade Federal de Campina Grande
Universidade Federal de Campina Grande Departamento de Sistemas e Computação Disciplina: Métodos e Software Numéricos Prof.: José Eustáquio Rangel de Queiroz Práticas de Avaliação e Planejamento das Atividades
Resolução do Exame Tipo
Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),
SUMÁRIO PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3. PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação...
PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3 PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação... 7 CAPÍTULO 1 Modelagem matemática e resolução de problemas de engenharia...10
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO
Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase. Disciplina EM1 - Cálculo Numérico Computacional
Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002029EM1 - Cálculo Numérico Computacional Docente(s) Adriana Cristina Cherri Nicola Unidade Faculdade de Ciências Departamento Departamento
PLANO DE ENSINO. Componente Curricular: Cálculo Numérico Turma: EMC /2
PLANO DE ENSINO Componente Curricular: Cálculo Numérico Turma: EC - 2013/2 Carga Horária: 60 horas semestrais Créditos: 4 Professores: arcus Vinicius achado Carneiro Ricardo Antonello Período: 2015/1 EENTA:
SME CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS. Agosto 2011
SME0100 - CÁLCULO NUMÉRICO I PROFESSORES MARCOS ARENALES MARISTELA SANTOS Agosto 2011 SME0100 - Cálculo Numérico I Ementa: 1) Representação de números no computador. Erros em métodos numéricos. 2) Soluções
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA PURA E APLICADA Introdução ao Cálculo Numérico 2a. Edição Álvaro Luiz de Bortoli Carolina Cardoso Maria Paula
- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos
Tópicos Tópicos - Métodos numéricos - Métodos analíticos versus métodos numéricos - Necessidade de se usar métodos numéricos - Métodos iterativos - Resolução de problemas - Problemas com equações não lineares
1.1 Etapas na solução de um problema. 1.3 Tipos de erros. 1.4 Aritmética de ponto flutuante.
1. Computação numérica 1.1 Etapas na solução de um problema. 1.2 Notação algorítmica. 1.3 Tipos de erros. 1.4 Aritmética de ponto flutuante. Algoritmos Numéricos Cap.1: Computaç~ao numérica Ed1.0 c 2001
Análise Numérica (1) Introdução e Sistemas de Numeração V1.0, Victor Lobo, Análise Numérica. Doutor Victor Sousa Lobo.
e Sistemas de Numeração Análise Numérica Doutor Victor Sousa Lobo Escola Naval 1 1 Objectivo da cadeira Finalidade (Pescolnav 101): Proporcionar aos alunos conhecimentos sobre a introduçao aos métodos
UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular ANÁLISE NUMÉRICA Ano Lectivo 2014/2015
Programa da Unidade Curricular ANÁLISE NUMÉRICA Ano Lectivo 2014/2015 1. Unidade Orgânica Ciências da Economia e da Empresa (1º Ciclo) 2. Curso Informática 3. Ciclo de Estudos 1º 4. Unidade Curricular
Notas de Aula de Cálculo Numérico
IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números
Métodos Numéricos C Apresentação da Disciplina
Métodos Numéricos C Apresentação da Disciplina Isabel Espírito Santo Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho [email protected] http://www.norg.uminho.pt/iapinho/
Métodos Numéricos Zeros: Introdução. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina
Métodos Numéricos Zeros: Introdução Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Um número real é um zero da função f(x) ou uma raiz da equação f(x)=0, se f( )=0. 2 Os zeros de uma função
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados
Cálculo Numérico Computacional
Cálculo Numérico Computacional Apresentação Prof. Márcio Bueno [email protected] Ementa } Oferecer fundamentos e instrumentos da matemática aplicada e computacional, com a finalidade de permitir
O que é o Cálculo Numérico? 05/06/13. Prof. Dr. Alexandre Passito
Prof. Dr. Alexandre Passito [email protected] Parte do material cedido pelos Professores Fabíola Guerra/ Arilo DCC/UFAM. 1 } Quem sou eu? Alexandre Passito de Queiroz Doutor em Informática [email protected]
Aula 6. Zeros reais de funções Parte 3
CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:
Universidade de Coimbra Departamento de Engenharia Electrotecnica e Computadores Matemática Computacional
Ano Lectivo: 2007/2008 Sumários da turma Teórico-Prática [TP2]: Aula: 1 Data: 2008-02-12 Hora de Início: 15:00 Duração: 1h30m Apresentação da Unidade Curricular. Discussão de aspectos relacionados com
Capítulo 1 - Erros e Aritmética Computacional
Capítulo 1 - Erros e Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa 1/ 26 Sumário 1 Definição
TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução
TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração
Cálculo Numérico Ponto Fixo
Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
SME0300 Cálculo Numérico Aula 4
SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a
Matemática Computacional - Exercícios
Matemática Computacional - Exercícios 2 o semestre de 2005/2006 - LEE, LEGI e LERCI Programação em Mathematica 1. Calcule no Mathematica e comente os resultados: (a) 7; (b) 7.0; (c) 14406; (d) cos π 6
Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013
Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 1ª série - volume 1 1. Conjuntos - Conceito de conjunto - Pertinência - Representação de um conjunto - Subconjuntos - União de conjuntos
SME0301 MÉTODOS NUMÉRICOS PARA ENGENHARIA I PROFESSORES MARCOS ARENALES MARISTELA SANTOS (ALGUMAS AULAS) Fevereiro 2012
SME030 MÉTODOS NUMÉRICOS PARA ENGENHARIA I PROFESSORES MARCOS ARENALES MARISTELA SANTOS (ALGUMAS AULAS) Fevereiro 0 SME030 Métodos Numéricos Para Engenharia I Ementa: ) Representação de números no computador.
Exercícios sobre zeros de funções Aula 7
Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni
Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE
Capítulo 6 - Equações Não-Lineares
Sistemas de Capítulo 6 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/
Capítulo 1 - Erros e Aritmética Computacional
Capítulo 1 - Erros e Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/ 21 Sumário
CCI - 22 Matemática Computacional
Matemática Computacional Prof. Paulo André http://www.comp.ita.br/~pauloac [email protected] Sala 110 Prédio da Computação Estrutura do Curso Introdução ao estudo de matemática numérica Representação de dados
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade
1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de
Aula 1 - Cálculo Numérico
Aula 1 - Cálculo Numérico Conceitos básicos Prof. Phelipe Fabres Anhanguera Prof. Phelipe Fabres (Anhanguera) Aula 1 - Cálculo Numérico 1 / 25 Sumário Sumário 1 Sumário 2 Motivação 3 Plano de ensino 4
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35.
Computação Científica Folha Prática Computação Numérica 1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da
CÁLCULO NUMÉRICO. Prof. Dr. Yara de Souza Tadano.
CÁLCULO NUMÉRICO Prof. Dr. Yara de Souza Tadano [email protected] 03/2014 Aula 1 Yara de Souza Tadano Email: [email protected] Página Pessoal: paginapessoal.utfpr.edu.br/yaratadano Cálculo
TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira
TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento
Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes
Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste
Método Analítico. Método Numérico
UFRN/CT/DCA Nota de Aula Introdução aos Métodos Computacionais e Estudo dos Erros Prof Anderson Cavalcanti Métodos Computacionais Contextualização Muitos problemas de engenharia consistem em obter uma
Aula 6. Zeros reais de funções Parte 3
CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAIS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo
Lista 1 de Exercícios de MAT Cálculo Numérico /II
Lista 1 de Exercícios de MAT 271 - Cálculo Numérico - 2017/II OBS.: Utilize arredondamento por corte (truncamento) com 5 casas decimais após a virgula (caso seja necessário). 1) Converta os números abaixo
Aritmética de Ponto Fixo
Aritmética de Ponto Fixo Prof. Paulo Fernando Seixas Prof. Marcos Antônio Severo Mendes http://www.delt.ufmg.br/~elt/docs/dsp/ Representação Numérica DSP Ponto fixo Ponto flutuante 6 bits 3 bits 0 bits
Programa Anual MATEMÁTICA EXTENSIVO
Programa Anual MATEMÁTICA EXTENSIVO Os conteúdos conceituais de Matemática estão distribuídos em 5 frentes. A) Equações do 1º e 2º graus; Estudo das funções; Polinômios; Números complexos; Equações algébricas.
étodos uméricos Erros Visão Geral Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos Erros Visão Geral Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
Quadro de conteúdos MATEMÁTICA
Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de
Datas de Avaliações 2016
ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:
Computação Científica 65
Capítulo 3. 1. Métodos numéricos Sempre que se pretende resolver um problema cuja solução é um valor numérico, é habitual ter de se considerar, para além de conceitos mais abstratos (que fornecem um modelo
Folha Prática - Representação de Números e Erros. 1. Representar os seguintes números decimais em binário com ponto fixo:
Computação Científica Folha Prática - Representação de Números e Erros 1. Representar os seguintes números decimais em binário com ponto fixo: a) 24 b) 197 c) 1001 d) 7,65 e) 8,963 f) 266,66 2. Obter os
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35. e) 347 f) 513.
1. Converta para a base binária, usando o método das divisões sucessivas, os seguintes números inteiros: a) 13 b) 35 c) 192 d) 255 e) 347 f) 513 g) 923 2. Converta para a base binária, usando os métodos
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA
Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte
Lista de exercícios de MAT / I
1 Lista de exercícios de MAT 271-29 / I 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes
PLANO DE ENSINO. MA70C Cálculo Numérico
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSO Bacharelados e Licenciaturas do Campus Curitiba da UTFPR MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Resolução
Cálculo numérico Cálculo numérico - O Cálculo Numérico é uma metodologia para resolver problemas matemáticos através do computador. - Uma solução obti
Tópicos Tópicos - Cálculo numérico - Representação e conversão de números - Representação de números em diferentes bases - Conversão de números da base decimal para uma qualquer base b - Conversão de números
SME Cálculo Numérico. Lista de Exercícios: Gabarito
Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado
MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática
MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.
Cálculo Numérico - Mat 215. Prof. Dirceu Melo. Prof. Dirceu Melo - MAT215
Cálculo Numérico - Mat 215 Prof. Dirceu Melo Prof. Dirceu Melo - MAT215 1 1ª AULA Introdução Sistemas Decimal e Binário Conversão de Sistemas de base Sistema Aritmético de Ponto Flutuante INTRODUÇÃO 3
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho
Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho [email protected] Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)
9º Ano do Ensino Fundamental II:
Conteúdos para III Simulado SDP/Outubro/2010 MATEMÁTICA 9º Ano do Ensino Fundamental II: CAPÍTULO I - NOÇÕES ELEMENTARES DE ESTATÍSTICA 1. Organizando os dados 2. Estudando gráficos 3. Estudando médias
Interpolação polinomial
Cálculo Numérico Prof. Daniel G. Alfaro Vigo [email protected] Departamento de Ciência da Computação IM UFRJ Motivação: População do Brasil Ano População (milhões) 1960 70, 992343 1970 94, 508583 1980
Matemática Computacional. Exercícios. Teoria dos erros
Matemática Computacional Exercícios 1 o Semestre 2014/15 Teoria dos erros Nos exercícios deste capítulo os números são representados em base decimal. 1. Represente x em ponto flutuante com 4 dígitos e
Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.
Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,
UNIVERSIDADE FEDERAL DE PERNAMBUCO Resolução Lista / Cálculo Numérico 1ª Unidade
1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: (F) O método das secantes é utilizado para solucionar um problema de
Interpolação Polinomial. Ana Paula
Interpolação Polinomial Sumário 1 Interpolação Polinomial 2 Forma de Lagrange 3 Revisão Interpolação Polinomial Interpolação Polinomial Interpolação Polinomial Interpolação Polinomial Suponha que se tenha
Cálculo Numérico Conceitos Básicos
Cálculo Numérico Conceitos Básicos Prof. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ 1 Princípios usados
Cálculo Numérico Noções básicas sobre erros
Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo
EMENTA ESCOLAR III Trimestre Ano 2016
EMENTA ESCOLAR III Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 3 a série do Ensino Médio Data 29/agosto 31/agosto 05/setembro Conteúdo PROGRESSÃO ARITMÉTICA Sequencias
CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano
CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da
Tópicos. - Cálculo numérico. - Representação de números. - Análise e representação de erros
Tópicos Tópicos - Cálculo numérico - Representação de números - Representação de números em diferentes bases - Conversão de números da base b para a base decimal - Representação de números em computadores
