Progressão Aritmética - Questões Extras

Tamanho: px
Começar a partir da página:

Download "Progressão Aritmética - Questões Extras"

Transcrição

1 Progressão Aritmética - Questões Extras Exercícios 1. (Unioeste 01) Quantos múltiplos de 13 existem entre e 0? a) 65. b) 80. c) 69. d) 49. e) 67.. (Fgv 01) Guilherme pretende comprar um apartamento financiado cujas prestações mensais formam uma progressão aritmética decrescente; a primeira prestação é de R$ 60 e a última, de R$ 0. A média aritmética das prestações é um valor: a) entre R$ 5 e R$ 35 b) entre R$ 35 e R$ 45 c) menor que R$ 5 d) maior que R$ 45 e) impossível de determinar com as informações dadas 3. (Uespi 01) No quadrado a seguir, são iguais as somas dos elementos de cada uma das linhas, de cada uma das colunas e das diagonais. Além disso, os números que aparecem nos quadrados são os naturais de 1 até A 14 B D C Quanto vale A + B + C + D? a) 8 b) 30 c) 3 d) 34 e) (Udesc 01) Jorge foi um vendedor ambulante credenciado para trabalhar em uma praia do litoral catarinense na temporada 011/01, que teve início em 15 de dezembro e término em 15 de março. Como esta foi a primeira temporada em que Jorge trabalhou como vendedor ambulante, ele adquiriu cadeiras de praia e 50 guarda-sóis ao custo de R$35,00 e R$8, respectivamente. O aluguel cobrado por Jorge para estes itens está apresentado na tabela. Item Aluguel (R$) Cadeira 5,00 Guarda-sol 1 Cadeira & Guarda-sol 13,00 Suponha que, durante toda a temporada, Jorge tenha alugado em média 80% de suas cadeiras e 80% de seus guarda-sóis por dia. Sabendo que o número de cadeiras, cadeiras & guarda-sóis e guarda-sóis alugados por dia, nesta ordem, forma uma progressão aritmética, o lucro líquido obtido por Jorge na temporada 011/01 com a locação dos itens apresentados na tabela, sem considerar despesas adicionais, foi: a) R$ b) R$ c) R$ d) R$ e) R$ (Ufpr 011) Atribui-se ao matemático De Moivre uma lenda sobre um homem que previu sua própria morte. As condições da previsão estão dentro de uma narrativa que modela grosseiramente vários aspectos da realidade. Por exemplo, dormir 4 horas seguidas equivale a morrer, e assim por diante. A lenda é a seguinte: um homem observou que cada dia dormia 15 minutos a mais que no dia anterior. Se ele fez essa observação exatamente após ter dormido 8 horas, quanto tempo levará para que ele durma 4 horas seguidas, não mais acordando? 6. (Ufpb 011) Na organização de um determinado rali, quanto à quilometragem diária a ser percorrida pelas equipes participantes durante os 0 dias da competição, ficou estabelecida a seguinte regra. No primeiro dia, as equipes deveriam percorrer 500 km e, nos dias subsequentes, deveriam percorrer 0 km a mais que no dia anterior. A partir dos dados apresentados, é correto afirmar que uma equipe, para completar a prova, deverá percorrer no mínimo: a) km b) km c) km d) km e) km 7. (Uesc 011) Dois cidadãos, C 1 e C, devem a uma instituição financeira R$1458 e R$146, respectivamente. Após uma negociação dessa dívida, os valores foram parcelados de modo que C 1 deverá pagar prestações mensais de R$48 e C deverá pagar prestações mensais de R$39. Se ambos começarem a pagar hoje, o saldo devedor de C 1 ficará menor do que o de C em a) dez meses. b) um ano.

2 c) um ano e três meses. d) um ano e meio. e) dois anos. 8. (Uerj 010) Duas empresas, A e B, farão doações mensais a uma creche. A tabela a seguir mostra os valores, em reais, dos depósitos iniciais, a serem realizados nos cinco primeiros meses de 010. Empr esas A B janeir o ,0 0 fever eiro ,0 0 març o ,0 0 abril , 00 mai o A diferença entre os valores depositados pelas empresas entre dois meses subsequentes será mantida constante ao longo de um determinado período. Determine o mês e o ano desse período em que o valor mensal do depósito da empresa A será igual ao da empresa B. 9. (Fgv 010) Roberto obtém um financiamento na compra de um apartamento. O empréstimo deverá ser pago em prestações mensais, de modo que uma parte de cada prestação e o juro pago. Junto com a 1ª prestação, o juro pago é de R$ 00; com a ª prestação, o juro pago é R$ 1 98 e, genericamente, em cada mês, o juro pago é R$ inferior ao juro pago na prestação anterior. Nessas condições, a soma dos juros pagos desde a 1ª até a º prestação vale: a) R$ 00 b) R$ c) R$ d) R$ e) R$ (Unicamp 010) Dois sites de relacionamento desejam aumentar o número de integrantes usando estratégias agressivas de propaganda. O site A, que tem 150 participantes atualmente, espera conseguir novos integrantes em um período de uma semana e dobrar o número de novos participantes a cada semana subsequente. Assim, entrarão internautas novos na primeira semana, 00 na segunda, 400 na terceira, e assim por diante. Por sua vez, o site B, que já tem 00 membros, acredita que conseguirá mais associados na primeira semana e que, a cada semana subsequente, aumentará o número de internautas novos em pessoas. Ou seja, novos membros entrarão no site B na primeira semana, 00 entrarão na segunda, 300 na terceira etc. a) Quantos membros novos o site A espera atrair daqui a 6 semanas? Quantos associados o site A espera ter daqui a 6 semanas? b) Em quantas semanas o site B espera chegar à marca dos 00 membros? 11. (Pucrs 010) Devido à epidemia de gripe do último inverno, foram suspensos alguns concertos em lugares fechados. Uma alternativa foi realizar espetáculos em lugares abertos, como parques ou praças. Para uma apresentação, precisou-se compor uma plateia com oito filas, de tal forma que na primeira fila houvesse 10 cadeiras; na segunda, 14 cadeiras; na terceira, 18 cadeiras; e assim por diante. O total de cadeiras foi: a) 384 b) 19 c) 168 d) 9 e) (Uerj 009) Maurren Maggi foi a primeira brasileira a ganhar uma medalha olímpica de ouro na modalidade salto em distância. Em um treino, no qual saltou n vezes, a atleta obteve o seguinte desempenho: - todos os saltos de ordem ímpar foram válidos e os de ordem par inválidos; - o primeiro salto atingiu a marca de 7,04 m, o terceiro a marca de 7,07 m, e assim sucessivamente cada salto válido aumentou sua medida em 3 cm; - o último salto foi de ordem ímpar e atingiu a marca de 7, m. Calcule o valor de n. 13. (Uerj 009) O petróleo de base parafínica é uma mistura cujos principais componentes são os alcanos. A ordenação crescente da massa molar dos alcanos de cadeia normal gera uma progressão aritmética de razão igual a: a) 10 b) 1 c) 14 d) (Ufrj 009) Uma parede triangular de tijolos foi construída da seguinte forma. Na base foram dispostos tijolos, na camada seguinte, 99 tijolos, e assim sucessivamente até restar 1 tijolo na última camada, como mostra a figura. Os tijolos da base foram numerados de acordo com uma progressão aritmética, tendo o primeiro tijolo recebido o número 10, e o último, o número

3 490. Cada tijolo das camadas superiores recebeu um número igual à média aritmética dos números dos dois tijolos que o sustentam. Determine a soma dos números escritos nos tijolos. 15. (Unifesp 009) Uma pessoa resolveu fazer sua caminhada matinal passando a percorrer, a cada dia, metros mais do que no dia anterior. Ao completar o 1 0. dia de caminhada, observou ter percorrido, nesse dia, metros. A distância total percorrida nos 1 dias foi de: a) m. b) m. c) m. d) m. e) m. 16. (Ufrgs 008) Sobre uma superfície plana são dispostos palitos formando figuras, como mostrado abaixo. Contando os palitos de cada uma dessas figuras e denotando por an o número de palitos da n- ésima figura, encontra-se: a1 = 3, a = 9, a3 = 18,... Então, a é igual a a) b) c) d) e) (Uece 008) A sequência de triângulos equiláteros, ilustrada na figura a seguir, apresenta certo número de pontos assinalados em cada triângulo. Seguindo a lógica utilizada na construção da sequência, o número de pontos que estarão assinalados no oitavo triângulo é a) 65 b) 54 c) 45 d) (Ufal 007) Um atleta fez vários lançamentos de dardo e um fato interessante foi que a cada vez a distância alcançada pelo dardo aumentou em cm. Se ele fez 30 lançamentos e o alcance do último deles foi 15 m, quantos metros foram alcançados no terceiro lançamento? a) 14,40 b) 14,44 c) 14,46 d) 14,5 e) 14, (Pucmg 007) Uma atleta amadora começa a treinar diariamente e, a cada dia, anda 00 metros a mais que no dia anterior. Se, ao final de 10 dias, essa atleta tiver percorrido um total de metros, a distância percorrida por ela, durante o treino do segundo dia, em metros, foi igual a: a) 800 b) c) 1.00 d) (Ufu 007) Os irmãos José e Maria visitam regularmente seu avô Pedro. José visita-o a cada 8 dias e Maria a cada 6 dias, ambos, rigorosamente, sem nunca falharem. Se José e Maria visitaram simultaneamente o avô no primeiro dia do ano de 004, quantas vezes mais eles fizeram a visita simultânea até o dia 31 de dezembro de 006? Obs.: Considere cada ano com 365 dias. a) 48 b) 44 c) 46 d) (Pucmg 007) Durante cinco dias da semana, uma pessoa deixa seu veículo em certo estacionamento, sempre de 7h 30min às 1h 10min. Nesse estacionamento, são cobrados R$

4 3,50 pela primeira hora, ou parte dela, e R$ 3,0 por hora sucessiva, ou parte. Com base nos dados apresentados, pode-se estimar que o gasto semanal dessa pessoa, com estacionamento, é: a) R$ 81,50 b) R$ 78,0 c) R$ 7,90 d) R$ 66,70. (Ufsm 007) O diretório acadêmico de uma Universidade organizou palestras de esclarecimento sobre o plano de governo dos candidatos a governador. O anfiteatro, onde foram realizados os encontros, possuía 1 filas de poltronas distribuídas da seguinte forma: na primeira fila 1 poltronas, na segunda 5, na terceira 9, e assim sucessivamente. Sabendo que, num determinado dia, todas as poltronas foram ocupadas e que 4 pessoas ficaram em pé, o total de participantes, excluído o palestrante, foi de a) 474 b) 516 c) 557 d) 558 e) 559 e) menos de 00 km, no vigésimo dia. 5. (Unesp 007) Um fazendeiro plantou árvores em sua propriedade no período de 4 meses. A plantação foi feita mês a mês, em progressão aritmética. No primeiro mês foram plantadas x árvores, no mês seguinte (x + r) árvores, r > 0, e assim sucessivamente, sempre plantando no mês seguinte r árvores a mais do que no mês anterior. Sabendo-se que ao término do décimo quinto mês do início do plantio ainda restavam.160 árvores para serem plantadas, o número de árvores plantadas no primeiro mês foi: a) 50. b) 75. c). d) 150. e) (Pucmg 007) De 1996 a 005, a população de certa cidade aumentou anualmente em progressão aritmética. Em 005, constatou-se que o número de habitantes dessa cidade era 5% maior do que no ano anterior. Com base nessas informações, pode-se concluir que, de 1996 a 005, a população dessa cidade aumentou em: a) 45% b) 60% c) 75% d) 90% 4. (Ufpb 007) Um piloto testou um automóvel de um determinado modelo, para medir o consumo médio de combustível desse veículo. Com relação ao teste, considere as seguintes informações: - O automóvel foi testado durante vinte dias. - O automóvel percorreu exatamente 30 km, no primeiro dia. - O automóvel percorreu, a partir do segundo dia, 10 km a mais do que no dia anterior. Considerando essas informações, é correto afirmar que o automóvel percorreu a) uma distância inferior a km, nos três primeiros dias. b) uma distância superior a 300 km, nos cinco primeiros dias. c) menos de 150 km, no décimo dia. d) mais de 30 km, no décimo quinto dia.

5 Gabarito: Resposta da questão 1: Os múltiplos de 13 entre e 0 formam a P.A. de razão 13 a: (104, 6, 39,..., 988) Admitindo que n é o número de termos da P.A., temos: n n n 1 13 n 1 68 n 69 Resposta da questão : A soma dos n primeiros termos da P.A. será dada por: n S n. A média dos n termos será n 310 t. n Resposta da questão 3: A soma dos naturais de 1 a 16 é dada por Além disso, como a soma de todos os elementos de uma linha, coluna ou diagonal é constante, segue que essa soma vale Daí, vem que A 1, 4 B 13, C 9 e D 5. Portanto, A B C D 8. Resposta da questão 4: Jorge alugou, diariamente, 0,8 80 cadeiras e 0, guarda-sóis. Logo, sabendo que os números de cadeiras, cadeiras & guarda-sóis e guarda-sóis alugados por dia, nessa ordem, formam uma progressão aritmética, obtemos (c, 80 c, g), com 80 c 40 g g c 40. Assim, da progressão aritmética (c, 80 c, g), vem (80 c) c g 160 c c c 40 e, portanto, g c 50 Daí, como o custo de Jorge foi de R$ 7.50 e a receita obtida durante os 9 dias foi de ( ) 9 R$ 68.08, segue que o lucro líquido foi de R$ Resposta da questão 5: O número de horas consecutivas dormidas n dias após o início da observação é dado por n 8. Logo, o homem morrerá quando: 4 n 8 4 n Portanto, após 64 dias o homem dormirá 4 horas seguidas. Resposta da questão 6: Temos então a P.A. ( 500, 50, 540,... an) No vigésimo dia a quilometragem percorrida será: a km Calculando o total percorrido: a1 a 0 ( ).0 S Resposta da questão 7: [E] Sendo n o número de prestações pagas por C 1 e C, para que o saldo devedor de C 1 fique menor do que o de C, devemos ter n n 90 n 10 n 3,56. Portanto, em dois anos a condição do enunciado será satisfeita. Resposta da questão 8: (1.000, , ,..., an,...) P.A. a1 = e ra = 600 (300, 600, 900,..., bn,...) P.A. b1 = 300 e rb = 300 an = bn a1 + (n 1) ra = b1 + (n 1) rb (n 1) ( 600) = (n 1) (300) = (n 1) ( ) = (n 1) 900

6 13 = n 1 n = 14 1 ano + meses fevereiro de 011 Resposta da questão 9: (000, 1980, 1960,...) PA de razão r = -0 a = (-0) a = 0 S S (000 0). 100 Resposta da questão 10: a) ( Site A: = portanto na sexta semana 300 participantes e no total b) Site B:.00 + ( ) = n. n n n n + n 156 = 0 Resolvendo a equação temos n = 1 ou n = - 13(não convém) Resposta: 1 semanas Resposta da questão 11: Sequência do número de cadeiras por fila (10, 14, 18,...) P.A Na oitava fila: a8 =a1 + 7.r a8 = = 38 cadeiras ( a1 a8 Total de cadeiras: ). n S8 = (10 38).8 19 a a1 6 a3 a 9 a4 a3 1 a a b a a b b (6 300) 99 a a 99 3 Resposta da questão 17: Resposta da questão 18: Resposta da questão 19: Resposta da questão 0: [D] Resposta da questão 1: Resposta da questão : [D] Resposta da questão 3: Resposta da questão 4: Resposta da questão 5: Resposta da questão 1: n = 13 Resposta da questão 13: Resposta da questão 14: Resposta da questão 15: Resposta da questão 16:

Nome: Data: / / 3) (Unicamp 2010) Dois sites de relacionamento desejam aumentar o número de integrantes usando estratégias agressivas de propaganda.

Nome: Data: / / 3) (Unicamp 2010) Dois sites de relacionamento desejam aumentar o número de integrantes usando estratégias agressivas de propaganda. Nome: Data: / / Disciplina: Matemática 1 Série: 1 EM 1) (Unesp 2011) Após o nascimento do filho, o pai comprometeu-se a depositar mensalmente, em uma caderneta de poupança, os valores de R$ 1,00, R$ 2,00,

Leia mais

Matemática. Progressão Aritmética. Eduardo. Matemática Progressões

Matemática. Progressão Aritmética. Eduardo. Matemática Progressões Matemática Progressão Aritmética Eduardo Progressão Aritmética P.A. CRESCENTE r > 0 Ex: (-4, -2, 0,...) P.A. DECRESCENTE r < 0 Ex: (10, 8, 6,...) P.A. CONSTANTE r = 0 Ex: (8, 8, 8,...) Progressão Aritmética

Leia mais

Curso Wellington Matemática Progressões Aritméticas Prof Hilton Franco

Curso Wellington Matemática Progressões Aritméticas Prof Hilton Franco 1. Progressão aritmética é uma sequência de números tal que a diferença entre cada um desses termos (a partir do segundo) e o seu antecessor é constante. Essa diferença constante é chamada razão da progressão

Leia mais

Matemática PROGRESSÕES. Professor Dudan

Matemática PROGRESSÕES. Professor Dudan Matemática PROGRESSÕES Professor Dudan Uma série numérica é uma sequencia de números que respeita uma regra, uma lei de formação. Sendo assim todos foram produzidos à partir de uma mesma ideia. Exemplos:

Leia mais

Trabalho de Recuperação Paralela 2º ano EM Matemática - Prof. Luis Edmundo (Mundico)

Trabalho de Recuperação Paralela 2º ano EM Matemática - Prof. Luis Edmundo (Mundico) 1. (Fuvest) Em uma progressão aritmética a, a,..., aš,... a soma dos n primeiros termos é dada por SŠ = bn + n, sendo b um número real. Sabendo-se que aƒ = 7, determine a) o valor de b e a razão da progressão

Leia mais

Ao final de 10 anos, o número de exames por imagem aumentou de 40 milhões por ano para 94 milhões por ano. Isso

Ao final de 10 anos, o número de exames por imagem aumentou de 40 milhões por ano para 94 milhões por ano. Isso Resposta da questão 1: [C] a1 = 6 an = 4 n = número de dias r = 4 = 6 + (n 1) 18 = n 1 n = 19 (6 + 4) 19 48 19 S = = S = 456km Resposta da questão : [C] Tem-se que os elementos de uma mesma coluna estão

Leia mais

MATEMÁTICA Revisão II Módulo 2. Professor Marcelo Gonzalez Badin

MATEMÁTICA Revisão II Módulo 2. Professor Marcelo Gonzalez Badin MATEMÁTICA Revisão II Módulo 2 Professor Marcelo Gonzalez Badin 1.(Unicamp-2009) Em uma bandeja retangular, uma pessoa dispôs brigadeiros formando n colunas, cada qual com m brigadeiros, como mostra a

Leia mais

Matéria: Matemática Assunto: Progressão Aritmética Prof. Dudan

Matéria: Matemática Assunto: Progressão Aritmética Prof. Dudan Matéria: Matemática Assunto: Progressão Aritmética Prof. Dudan Matemática PROGRESSÃO ARITMÉTICA Definição Uma progressão aritmética (abreviadamente, P. A.) é uma sequência numérica em que cada termo,

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) MATEMÁTICA 1 MATÉRIA A SER ESTUDADA VOLUME CAPÍTULO ASSUNTO 4 1 4 14 5 15 5 1 5 17 5 18 5 19 0 1 Função modular I Atividades para sala: 1 Atividades para casa:

Leia mais

Lista de PA/PG. Escola SESC de Ensino Médio. 9. (UEL) Uma progressão aritmética de n termos tem. razão igual a 3. Se retirarmos os termos de ordem

Lista de PA/PG. Escola SESC de Ensino Médio. 9. (UEL) Uma progressão aritmética de n termos tem. razão igual a 3. Se retirarmos os termos de ordem Lista de PA/PG Aluno(a): Turma: Professores: Data: André/Edu Vicente/Ulício. PA 1) Calcule sabendo que ( 2x 1; 3x 1; 15x uma P.A. 2) formam, nessa ordem, 2) Calcule o 18º termo de uma progressão aritmética

Leia mais

Determine o mês e o ano desse período em que o valor mensal do depósito da empresa A será igual ao da empresa B.

Determine o mês e o ano desse período em que o valor mensal do depósito da empresa A será igual ao da empresa B. Questão 0 - (IBMEC RJ) No triângulo podemos afirmar que o primeiro elemento da 3ª linha é o número: a) 993 b) 989 c) 93 d) 937 e) 973 Questão 02 - (PUC RJ) Considere a progressão aritmética (a,a2,a3,...)

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Gabriel Ritter Rafael Jesus. (Roberta Teixeira) (Gabriella Teles)

Mat.Semana. PC Sampaio Alex Amaral Gabriel Ritter Rafael Jesus. (Roberta Teixeira) (Gabriella Teles) 12 PC Sampaio Alex Amaral Gabriel Ritter Rafael Jesus Semana (Roberta Teixeira) (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e

Leia mais

PROGRESSÃO ARITMÉTICA

PROGRESSÃO ARITMÉTICA PROGRESSÃO ARITMÉTICA 9º ANO MATEMÁTICA PROF. ALDO 4º BIM Questão 1 A figura indica o empilhamento de três cadeiras idênticas e perfeitamente encaixadas umas nas outras, sendo h a altura da pilha em relação

Leia mais

Matemática SÉRIES NUMÉRICAS. Professor Dudan

Matemática SÉRIES NUMÉRICAS. Professor Dudan Matemática SÉRIES NUMÉRICAS Professor Dudan Uma série numérica é uma sequencia de números que respeita uma regra, uma lei de formação. Sendo assim todos foram produzidos à partir de uma mesma ideia. Exemplos:

Leia mais

Portanto, o comprimento total de vigas necessárias para fazer a sequência completa de grades, em metros, foi de

Portanto, o comprimento total de vigas necessárias para fazer a sequência completa de grades, em metros, foi de 1. (Unesp 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,?

Séries Numéricas 2,10,12,16,17,18,19,? 2,4,6,8,10,? 2,4,8,16,32,? SÉRIES NUMÉRICAS Séries Numéricas Uma série numérica é uma sequencia de números que respeita uma regra, uma lei de formação. Sendo assim todos foram produzidos à partir de uma mesma ideia. Exemplos: 2,10,12,16,17,18,19,?

Leia mais

EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA 1ª Série do E. M. 4º Bimestre

EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA 1ª Série do E. M. 4º Bimestre EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA 1ª Série do E. M. 4º Bimestre 01. Interpolando-se sete termos aritméticos entre os números 10 e 98, obtém-se uma progressão aritmética cujo termo central é: a) 45.

Leia mais

Receita, Custo e Lucro

Receita, Custo e Lucro Receita, Custo e Lucro 1. (Espcex (Aman) 014) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é V(x) 3x 1x e o custo mensal da produção é dado por

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS PROGRESSÃO ARITMÉTICA P.A.

PROF. LUIZ CARLOS MOREIRA SANTOS PROGRESSÃO ARITMÉTICA P.A. TEXTO: 1 Tales, um aluno do Curso de Matemática, depois de terminar o semestre com êxito, resolveu viajar para a Europa. Questão 01) O Portão de Brandemburgo, em Berlim, possui cinco entradas, cada uma

Leia mais

7 1 3 e) 1,3. 4) O termo geral de uma progressão aritmética é dado por a 2n 1. A razão dessa PA é PROGRESSÕES ARITMÉTICAS

7 1 3 e) 1,3. 4) O termo geral de uma progressão aritmética é dado por a 2n 1. A razão dessa PA é PROGRESSÕES ARITMÉTICAS PROGRESSÕES ARITMÉTICAS 1) Considere um polígono convexo de nove lados, em que as medidas de seus ângulos internos constituem uma progressão aritmética de razão igual a 5 o. então, seu maior ângulo mede,

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA 01. (UNESP 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate) 11 PC Sampaio Alex Amaral Rafael Jesus Semana (Fernanda Aranzate) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

MATEMÁTICA PROGRESSÕES ARITMÉTICAS (P.A.) PROFº. ADRIANO PAULO. 02. Calcule o 17º termo da P.A. cujo primeiro termo é 3 e cuja razão é 5.

MATEMÁTICA PROGRESSÕES ARITMÉTICAS (P.A.) PROFº. ADRIANO PAULO. 02. Calcule o 17º termo da P.A. cujo primeiro termo é 3 e cuja razão é 5. MATEMÁTICA PROGRESSÕES ARITMÉTICAS (P.A.) PROFº. ADRIANO PAULO Determine x de modo que (x, 2x + 1, 5x + 7) seja uma P.A. 01. Determine a de modo que (a 2, (a + 1) 2, (a + 5) 2 ) seja uma P.A. 02. Calcule

Leia mais

Progressão aritmética e progressão geométrica

Progressão aritmética e progressão geométrica Progressão aritmética e progressão geométrica Qualquer conjunto cujos elementos obedecem a uma ordem é uma sequência. No cotidiano, encontramos várias sequências: a lista de chamada de uma turma, as palavras

Leia mais

- MATEMÁTICA - PUC-MG

- MATEMÁTICA - PUC-MG Vestibulando Web Page 1. Uma empresa deve instalar telefones de emergência a cada 42 quilômetros, ao longo da rodovia de 2.184 km, que liga Maceió ao Rio de Janeiro. Considere que o primeiro desses telefones

Leia mais

Matemática Unidade I Álgebra Série 14 - Progressão aritmética. a 2 = 2 + a 1 = 3 a 3 = 3 + a 2 = 6 a 4 = 4 + a 3 = 10 a 5 = 5 + a 4 = 15.

Matemática Unidade I Álgebra Série 14 - Progressão aritmética. a 2 = 2 + a 1 = 3 a 3 = 3 + a 2 = 6 a 4 = 4 + a 3 = 10 a 5 = 5 + a 4 = 15. 01 a 2 = 2 + a 1 = 3 a 3 = 3 + a 2 = 6 a 4 = 4 + a 3 = 10 a 5 = 5 + a 4 = 15 Resposta: C 1 02 a 3 = a 2 + a 1 = 2 a 4 = a 3 + a 2 = 3 a 5 = a 4 + a 3 = 5 Resposta: D 2 03 O que Ronaldo percebeu é que a

Leia mais

LISTA DE EXERCÍCIOS 2º ANO GABARITO

LISTA DE EXERCÍCIOS 2º ANO GABARITO º ANO GABARITO Questão Matemática I 8 9 7 a9 = = 7 9 6 a8 = = 6 9 55 a7 = = Portanto, a média aritmética dos últimos termos será dada por: 8 7 6 55 + + + 7 7 M = = = 6 Questão O número de vigas em cada

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS PROGRESSÕES

MATEMÁTICA E SUAS TECNOLOGIAS PROGRESSÕES PROGRESSÕES A cada 76 anos o cometa Halley pode ser visto da Terra. Ele passou por aqui, pela última vez em 986 e deverá reaparecer no ano de 06. Depois em 38,, 90... e assim sucessivamente. Os números

Leia mais

PA Nível Básico

PA Nível Básico PA 207 Nível Básico. (Upf 207) Seja a n uma sequência de números reais cujo termo geral é an n, n. Qual das afirmações seguintes é verdadeira? a) a n é uma progressão aritmética de razão. b) a n é uma

Leia mais

1. Progressão aritmética Resumo e lista

1. Progressão aritmética Resumo e lista Colégio Estadual Conselheiro Macedo Soares ª ano do Ensino Médio Atividade de Matemática do 1º bimestre de 019 Conteúdo: Progressão aritmética, Progressão geométrica Aluno(s):... N o(s) :... Aluno(s):...

Leia mais

x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos

x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos 0) Nas figuras a seguir, a curva é o gráfico da função x retângulos hachurados para infinitos que possuem as mesmas características. f x. Observe atentamente o que ocorre com os x. Em cada uma das figuras,

Leia mais

Banco de questões. Progressões aritmética e geométrica ( ) ( ) ( ) ( ) ( ) { } ) são numericamente iguais à ( ) 1. progressões UNIDADE III

Banco de questões. Progressões aritmética e geométrica ( ) ( ) ( ) ( ) ( ) { } ) são numericamente iguais à ( ) 1. progressões UNIDADE III UNIDADE III progressões CAPÍTULO 8 Progressões aritmética e geométrica Banco de questões 1 (FGV SP) O conjunto solução da equação x x x 1 x x = é: 9 7 1 a ), 1 d ) { 1, 4} b ) 1, 1 c ) 1, 4 { } e ) { 1,

Leia mais

Módulo de Progressões Geométricas. Soma dos termos da P.G. finita. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Geométricas. Soma dos termos da P.G. finita. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Geométricas Soma dos termos da P.G. finita a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Geométrica Soma dos termos da P.G. finita Exercícios Introdutórios Exercício.

Leia mais

EXERCÍCIOS EXTRAS MATEMÁTICA (P.A) PROF.: PITI

EXERCÍCIOS EXTRAS MATEMÁTICA (P.A) PROF.: PITI EXERCÍCIOS EXTRAS MATEMÁTICA (P.A) PROF.: PITI 1. Escreva os 4 primeiros termos da seqüência a n = 3n + 2; n IN*. 2. Verifique, em cada seqüência, se é uma P.A. Em caso afirmativo, determine a razão e

Leia mais

a 1 a 2 = a 7 = a 31 = a 44 = a 51 = Podemos escrever qualquer termo de uma PA se soubermos o 1º termo e a razão desta PA. n ln.

a 1 a 2 = a 7 = a 31 = a 44 = a 51 = Podemos escrever qualquer termo de uma PA se soubermos o 1º termo e a razão desta PA. n ln. 1.6. Progressão Aritmética (PA). Observe as sequências abaixo: (a n) = (1, 4, 7, 10, 13,...) (b n) = ( -7, -5, -3, -1, 1, 3,...) (c n) = (2016, 2012, 2008, 2004,...) Elas possuem um padrão semelhante.

Leia mais

MATEMÁTICA SEGUNDO ANO

MATEMÁTICA SEGUNDO ANO O único lugar onde o sucesso vem antes do trabalho é no dicionário Albert Einstein MATEMÁTICA SEGUNDO ANO NOME COMPLETO: TURMA: TURNO: ANO: PROFESSORA: Progressão Aritmética Conceito; Termo Geral; Soma

Leia mais

PA Nível Básico

PA Nível Básico PA 016 Nível Básico 1. (Fatec 016) Em 015, um arranha-céu de 04 metros de altura foi construído na China em somente 19 dias, utilizando um modelo de arquitetura modular pré-fabricada. Suponha que o total

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA)

MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA) MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA) Como pode cair no enem (ENEM) Jogar baralho é uma atividade que estimula o raciocínio. Um jogo tradicional é a Paciência, que utiliza 52 cartas.

Leia mais

Progressão Aritmética

Progressão Aritmética CEFET - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Definição Uma (P.A.) é uma sequência de números (a 1, a 2,..., a n,...) (n N) na qual a diferença entre cada termo a n+1 e o seu antecessor

Leia mais

RACIOCÍNIO LÓGICO - MATEMÁTICA

RACIOCÍNIO LÓGICO - MATEMÁTICA RACIOCÍNIO LÓGICO MATEMÁTICO WWW.CONCURSOVIRTUAL.COM.BR 1 QUESTÕES - RACIOCINIO LÓGICO 12. Uma sequência de números segue a seguinte lei de formação: se um número N dessa sequência é par, adicione a ele

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA I EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 3º Ano:C31 Nº Professora: Maria das Graças COMPONENTE CURRICULAR:

Leia mais

Whats: PROGRESSÃO ARITMÉTICA

Whats: PROGRESSÃO ARITMÉTICA Questões Vídeos 1. Considere o gráfico: Enquanto no mundo o número de turistas cresce, no Brasil ele diminui. Essa é uma das conclusões do relatório da Organização Mundial de Turismo, divulgado recentemente.

Leia mais

Questão 1. Investindo a juros mensais de 8%, em quanto tempo seu capital dobrará? 33 = 903

Questão 1. Investindo a juros mensais de 8%, em quanto tempo seu capital dobrará? 33 = 903 Conteúdo: Matemática financeira (logaritmo, Tabela SAC e Tabela Price) Aluno(s):... N o(s) :... Professor: Fábio Vinícius Turma:... Data:... Nota:... [X] Para o lar [X] Individual [X] Dupla [X] Trio [X]

Leia mais

Módulo de Matemática Financeira. Juros Simples e Compostos. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Matemática Financeira. Juros Simples e Compostos. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Matemática Financeira Juros Simples e Compostos 1 a série E.M. Professores Tiago Miranda e Cleber Assis Matemática Financeira Juros Simples e Compostos 1 Exercícios Introdutórios Exercício 1.

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 3 ANO 3º TRIMESTRE

LISTA DE RECUPERAÇÃO ÁLGEBRA 3 ANO 3º TRIMESTRE LISTA DE RECUPERAÇÃO ÁLGEBRA 3 ANO 3º TRIMESTRE. (G - ifsc 08) Considere x o resultado da operação 55 53. Assinale a alternativa CORRETA, que representa a soma dos algarismos de x. a) 8 b) 3 c) 0 d) 7

Leia mais

Lista de Exercícios: Substitutiva e A.P.E. 3º Trimestre

Lista de Exercícios: Substitutiva e A.P.E. 3º Trimestre Lista de Exercícios: Substitutiva e A.P.E. 3º Trimestre 1. (Uefs 2017) Considerando-se que, sob certas condições, o número de colônias de bactérias, t horas após t t ser preparada a cultura, pode ser dado

Leia mais

Universidade do Estado do Rio Grande do Norte

Universidade do Estado do Rio Grande do Norte Universidade do Estado do Rio Grande do Norte Faculdade de Ciências Exatas e Naturais Departamento de Matemática e Estatística Disciplina: Princípios da Contagem Semestre: 205.2 Prof.:Laudelino Gomes Ferreira

Leia mais

CURSO ON-LINE MATEMÁTICA E RACIOCÍNIO LÓGICO - SENADO PROFESSOR: GUILHERME NEVES

CURSO ON-LINE MATEMÁTICA E RACIOCÍNIO LÓGICO - SENADO PROFESSOR: GUILHERME NEVES Conteúdo 1. Apresentação.... Progressão Aritmética... 3. Relação das questões comentadas... 1 4. Gabaritos... 7 1 1. Apresentação Seja bem vindo ao Ponto dos Concursos. Esta é a aula demonstrativa de Matemática

Leia mais

Por exemplo: Resolução: a 10 = a 1 + (10-1)r a 10 = (-4) a 10 = a 10 = -26. Resolução:

Por exemplo: Resolução: a 10 = a 1 + (10-1)r a 10 = (-4) a 10 = a 10 = -26. Resolução: PROGREÃO ARITMÉTICA (PA) DEFINIÇÃO: Uma seqüência (a 1, a, a 3, a 4, a 5,..., a n ) de números reais, com a 1 =primeiro termo, a =segundo termo, a 3 =terceiro termo, assim sucessivamente até o último termo

Leia mais

1. (Fgv) Calcule as seguintes somas

1. (Fgv) Calcule as seguintes somas 1. (Fgv) Calcule as seguintes somas Nas 20 primeiras vezes, ela perdeu. Na 21 vez, ela ganhou. Comparando-se a quantia total T por ela desembolsada e a quantia Q recebida na 21 jogada, tem-se que Q é igual

Leia mais

Matemática. Exame Discursivo 07 / 12 / ª Fase. Caderno de prova. Boa prova!

Matemática. Exame Discursivo 07 / 12 / ª Fase. Caderno de prova. Boa prova! 2ª Fase Exame Discursivo 07 / 12 / 2008 Matemática Caderno de prova Este caderno, com dezesseis páginas numeradas seqüencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber

Leia mais

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas. LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo

Leia mais

PROGRESSÃO ARITMÉTICA

PROGRESSÃO ARITMÉTICA Matemática Matemática Avançada 3 o ano João mar/12 Nome: PROGRESSÃO ARITMÉTICA Definição Sejam a e r dois números reais. Chama-se Progressão Aritmética (PA) a sequência tal que:!! = a!!!! =!! + r, n Є

Leia mais

Exercícios de Matemática II

Exercícios de Matemática II Eercícios de Matemática II Sequências 1) Os números 4, + 1 e + 1 formam, nesta ordem, uma progressão aritmética. O maior desses três números é: R$ 1 000,00. Quanto esse cliente pagou de entrada na aquisição

Leia mais

Módulo de Progressões Aritméticas. Exercícios de PA. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Aritméticas. Exercícios de PA. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Aritméticas Exercícios de PA 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Exercícios de PA 1 Exercícios Introdutórios Exercício 1. Analise as sequências

Leia mais

Professor: Danilo Menezes de Oliveira Machado

Professor: Danilo Menezes de Oliveira Machado Professor: Danilo Menezes de Oliveira Machado O QUE PRECISA SER LEMBRADO Progressão aritmética: a n = a 1 + (n 1)r Parte fixa: a 1 Parte variável: (n 1)r Variável: n Tipo de variável: Discreta (IN) Juros

Leia mais

MATEMÁTICA. Sequências Numéricas P.A e P.G. Professor : Dêner Rocha

MATEMÁTICA. Sequências Numéricas P.A e P.G. Professor : Dêner Rocha MATEMÁTICA Sequências Numéricas P.A e P.G Professor : Dêner Rocha Sequência Podemos observar facilmente que o termo sequencia é facilmente encontrado no nosso dia-adia. Vejamos alguns explos: a) As notas

Leia mais

2ª Série 2016 MATEMÁTICA E SUAS TECNOLOGIAS

2ª Série 2016 MATEMÁTICA E SUAS TECNOLOGIAS ª Série 6 MATEMÁTICA E SUAS TECNOLOGIAS ) A sequência (, 4, 8, 6,...) é uma: a) Função constante b) Progressão aritmética c) Progressão geométrica d) Função exponencial e) Funcão implícita ) O valor de

Leia mais

Matemática. Nas mesmas condições, juntando 16 mesas, o número de pessoas que poderão ser acomodadas é: a) 32 b) 40 c) 36 d) 38 e) 34

Matemática. Nas mesmas condições, juntando 16 mesas, o número de pessoas que poderão ser acomodadas é: a) 32 b) 40 c) 36 d) 38 e) 34 Matemática 01- A negação da proposição Ana viu uma assombração ou Bia não ficou assustada é equivalente a: a) Ana não viu uma assombração ou Bia ficou assustada. b) Ana viu uma assombração ou Bia não ficou

Leia mais

Tópico D mtm B PROGRESSÃO GEOMÉTRICA

Tópico D mtm B PROGRESSÃO GEOMÉTRICA Tópico D mtm B PROGRESSÃO GEOMÉTRICA Definição Progressão geométrica é uma sequência numérica em que cada termo, a partir do segundo, é igual ao anterior, multiplicado por uma constante chamada razão da

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 4...2 Capitalização Simples...2 Exercícios...6 Resposta... 14 Capitalização Composta... 16 Exercícios... 17 Respostas... 19 Capitulo 5... 20 Progressões... 20 Progressão Aritmética (P.

Leia mais

... Onde usar os conhecimentos os sobre s?...

... Onde usar os conhecimentos os sobre s?... Manual de IV Matemática SEQÜÊNCIA OU SUCESSÃO Por que aprender Progr ogressõe ssões? s?... O estudo das Progressões é uma ferramenta que nos ajuda a entender fenômenos e fatos do cotidiano, desde situações

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. Se a idade da pessoa, em dias terrestres, é igual a 45 365, então sua idade em Vênus é 45 365 73 5 anos. SOLUÇÃO PC. A cada volta do piloto mais rápido o piloto mais

Leia mais

Matemática Financeira Aplicada

Matemática Financeira Aplicada MATEMÁTICA FINANCEIRA BÁSICA... 3 1.1 Introdução... 3 1.2 Conceitos básicos da Matemática Financeira... 3 1.2.1) Valor do dinheiro no tempo... 3 1.2.2) Capital inicial, montante e prazo... 4 1.2.3) Operação

Leia mais

TURMA: M COMPONENTE CURRICULAR: Matemática II. ETAPA: 1º bim DISCENTE: MATRÍCULA: NOTA: [Sem nota] PROFESSOR: Thiago Pardo Severiano

TURMA: M COMPONENTE CURRICULAR: Matemática II. ETAPA: 1º bim DISCENTE: MATRÍCULA: NOTA: [Sem nota] PROFESSOR: Thiago Pardo Severiano INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS NATAL CIDADE ALTA CURSO: Técnico Integrado em Multimídia TURMA: 1.20151.12807. M COMPONENTE CURRICULAR: Matemática II PROFESSOR:

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS/2015) Para fazer a aposta mínima na mega sena uma pessoa deve escolher 6 números diferentes em um cartão de apostas que contém os números de 1 a 60. Uma pessoa escolheu

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 2º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 2º Ano do Ensino Médio

Leia mais

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r Sequências. (Uem 03) Seja r um número inteiro positivo fixado. Considere a sequência numérica a definida por r e assinale o que for correto. an an a 0) A soma dos 50 primeiros termos da sequência (a, a,

Leia mais

Programação de Computadores I - BCC 701 Lista de Exercícios 1 Módulo 1

Programação de Computadores I - BCC 701 Lista de Exercícios 1 Módulo 1 Programação de Computadores I - BCC 701 Lista de Exercícios 1 Módulo 1 e de Dados Exercício 01 Codifique um programa que, dado dois números inteiros quaisquer, efetue a soma desses números e imprima o

Leia mais

ww.vestibularsc.com.br

ww.vestibularsc.com.br 1) Encontre os cinco primeiros termoss da seqüência definida por an = n² n + 2n, n e N*. 2) Seja a sequência definida por a n = ( 1) n. n 2, n N *, determine o valor de a 4 a 2 3) Dada a sequência por

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por

Leia mais

Módulo de Progressões Aritméticas. Tópico Extra: PA de Segunda Ordem. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Aritméticas. Tópico Extra: PA de Segunda Ordem. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Aritméticas Tópico Extra: PA de Segunda Ordem 1 a série EM Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Tópico Extra: PA de Segunda Ordem 1 Exercícios Introdutórios

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

Lista 3-B Acréscimos e decréscimos Prof. Ewerton

Lista 3-B Acréscimos e decréscimos Prof. Ewerton Lista 3-B Acréscimos e decréscimos Prof. Ewerton 01) (Unicamp 2015 1ª fase) (Acréscimo e decréscimo percentual) Uma compra no valor de 1.000 reais será paga com uma entrada de 600 reais e uma mensalidade

Leia mais

Prova de Raciocínio Quantitativo Edição setembro de 2007

Prova de Raciocínio Quantitativo Edição setembro de 2007 Prova de Raciocínio Quantitativo Edição setembro de 2007 21. Marcus, José e Roberto constituíram uma empresa. Marcus contribuiu com R$ 60.000,00 e Roberto, com R$ 40.000,00. Considerando-se que, a distribuição

Leia mais

Registro CMI Aulas 4 e 5

Registro CMI Aulas 4 e 5 Registro CMI 4317 Aulas 4 e 5 QUESTÃO 01 Seja a n uma sequência de números reais cujo termo geral é verdadeira? a) a n é uma progressão aritmética de razão 1. b) a n é uma progressão geométrica de razão

Leia mais

Tópico C mtm B PROGRESSÃO ARITMÉTICA

Tópico C mtm B PROGRESSÃO ARITMÉTICA Tópico C mtm B PROGRESSÃO ARITMÉTICA Definição Sequência numérica em que cada termo, a partir do segundo, é igual ao anterior somado com uma constante chamada razão da progressão aritmética. Exemplo 1:

Leia mais

Matemática I. Professor Cezar Rios

Matemática I. Professor Cezar Rios Matemática I 1710 Professor Cezar Rios 1. (Ufc) Os lados de um triângulo retângulo estão em progressão aritmética. Determine a tangente do menor ângulo agudo deste triângulo. 2. (Unicamp) Caminhando em

Leia mais

Matemática Financeira. 1ª Parte: Porcentagem Comparação entre Valores - Aumento e Desconto Juros

Matemática Financeira. 1ª Parte: Porcentagem Comparação entre Valores - Aumento e Desconto Juros Matemática ª série Lista 08 Junho/2016 Profª Helena Matemática Financeira 1ª Parte: Porcentagem Comparação entre Valores - Aumento e Desconto Juros 1) (GV) Carlos recebeu R$ 240.000,00 pela venda de um

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 13 PROGRESSÃO ARITMÉTICA

MATEMÁTICA - 2 o ANO MÓDULO 13 PROGRESSÃO ARITMÉTICA MATEMÁTICA - 2 o ANO MÓDULO 13 PROGRESSÃO ARITMÉTICA a n = a 1 + (n - 1)r a k = a k-1 + a k+1 2 Ex.: ( 2, 5, 8, 11, 14, 17, 20,...) 11 = 8 + 14 2 11 = 2 + 20 2 11 = 5 + 17 2 Como pode cair no enem (ENEM)

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 Dada a expressão 9x² - 24x + P. Sabendo

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +

Leia mais

O total das vendas foi de 500 mil reais. A vendeu 225 mil reais, B vendeu 175 mil reais. Portanto, C vendeu = 100 mil reais.

O total das vendas foi de 500 mil reais. A vendeu 225 mil reais, B vendeu 175 mil reais. Portanto, C vendeu = 100 mil reais. (TCE-SC 2016/CESPE-UnB) Em cada um dos itens a seguir, é apresentada uma situação hipotética relativa a proporcionalidade, porcentagem e juros, seguida de uma assertiva a ser julgada. 111. A participação

Leia mais

Álgebra. Progressão geométrica (P.G.)

Álgebra. Progressão geométrica (P.G.) Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 018 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 Qual é o valor da expressão? 016 1 01

Leia mais

Projeto Jovem Nota 10 Permutação Lista 1 Professor Marco Costa 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E.

Projeto Jovem Nota 10 Permutação Lista 1 Professor Marco Costa 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E. 1 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E. a) Quantas seqüências de etapas podem ser delineadas se A e B devem ficar juntas no início do processo e A deve anteceder B?

Leia mais

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA DE MATEMÁTICA 2015 GABARITO 5º E 6º ANOS Questão Resposta 1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) 450 13) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA

Leia mais

Matemática & Raciocínio Lógico

Matemática & Raciocínio Lógico Matemática & Raciocínio Lógico Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur JUROS SIMPLES: o juro de cada intervalo de tempo sempre é calculado sobre o capital inicial

Leia mais

Unidade 7 Estudo de funções

Unidade 7 Estudo de funções Sugestões de atividades Unidade 7 Estudo de funções 9 MATEMÁTICA 1 Matemática 1. Dada a função y 5 f (x) 5 x 10, determine: a) f (0); b) x tal que f (x) 5 0.. Num escritório de forma retangular, a parte

Leia mais

XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível

XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível XX OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase - Nível 1-1998 01. Qual dos números a seguir é o maior? A) 3 45 B) 9 20 C) 27 14 D) 243 9 E) 81 12 02. Um menino joga três dados e soma os números que

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Inequações Modulares 1.- Resolver em IR a) x 1 < 2 b) 1-2x > 3 c) x 2 4x < 0 Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...)

Leia mais

BANCO DE QUESTÕES. 4ª) Qual o primeiro termo de uma P.G sabendo que seu nono termo é 1280 e sua razão 2?

BANCO DE QUESTÕES. 4ª) Qual o primeiro termo de uma P.G sabendo que seu nono termo é 1280 e sua razão 2? Escola de Ensino Médio Professora Maria Edilce Dias Fernandes Rua Capitão Manuel Antônio 1044 Centro - C.E.P.: 62.955-000 - Ibicuitinga Ceará Telefone: (88) 3425-1000 BANCO DE QUESTÕES 1ª) Identifique

Leia mais

ENGENHARIA ECONÔMICA. Capítulo 6 Séries Uniformes. Prof. Msc. Roberto Otuzi de Oliveira. Três objetivos do capítulo

ENGENHARIA ECONÔMICA. Capítulo 6 Séries Uniformes. Prof. Msc. Roberto Otuzi de Oliveira. Três objetivos do capítulo ENGENHARIA ECONÔMICA Prof. Msc. Roberto Otuzi de Oliveira Capítulo 6 Séries Uniformes Três objetivos do capítulo Entender o DFC em séries Saber diferenciar séries postecipadas e antecipadas Compreender

Leia mais

Lista de Matemática II (Geometria).

Lista de Matemática II (Geometria). Unidade São Judas Tadeu Professor: Oscar Joaquim da Silva Neto Aluno (a): Série: 1ª Data: / / 017. Lista de Matemática II (Geometria). Orientações: - A lista deverá ser respondida na própria folha impressa

Leia mais

PROGRESSÕES. 2) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados.

PROGRESSÕES. 2) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados. PROGRESSÕES 1) (UFPI) Numa PA, a 5 = 10 e a 15 = 40; então a é igual a (a) 3 (b) (c) 1 (d) 0 (e) -1 ) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados. - triângulo

Leia mais

LISTA DE RECUPERAÇÃO ÁLGEBRA 1 ANO 3º TRIMESTRE

LISTA DE RECUPERAÇÃO ÁLGEBRA 1 ANO 3º TRIMESTRE LISTA DE RECUPERAÇÃO ÁLGEBRA ANO 3º TRIMESTRE ) O valor de é: A) 3 B) 3 C) 3 D) E) ) A soma das raízes reais distintas da equação x é igual a A) 0 B) C) 4 D) 6 E) 8 3) O produto das raízes da equação abaixo

Leia mais

SEQUÊNCIAS NUMÉRICAS

SEQUÊNCIAS NUMÉRICAS SEQUÊNCIAS NUMÉRICAS MÓDULO 12 SEQUÊNCIAS NUMÉRICAS SEQUÊNCIAS NUMÉRICAS SEQUÊNCIAS NUMÉRICAS que denominaremos de razão (r) da P.A. Uma sequência numérica pode ser determinada por uma lei de formação,

Leia mais

Numa PA, qualquer termo, a partir do segundo, é a média aritmética do seu antecessor e do seu sucessor.

Numa PA, qualquer termo, a partir do segundo, é a média aritmética do seu antecessor e do seu sucessor. EEAR/AFA/EFOMM 0-0-015 FELIPE MATEMÁTICA Progressão aritmética ( PA ) Definição Consideremos a seqüência (, 4, 6, 8, 10, 1, 14, 16). Observamos que, a partir do segundo termo, a diferença entre qualquer

Leia mais

Módulo de Progressões Aritméticas. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Aritméticas. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Aritméticas Definição e Lei de Formação 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Definição e Lei de Formação 1 Exercícios Introdutórios Exercício

Leia mais

MATEMÁTICA QUESTÕES DE PORCENTAGEM EXTRAS. B no valor de R$ ,00. O valor de cada. 40% do número de carros no modelo A e 60%

MATEMÁTICA QUESTÕES DE PORCENTAGEM EXTRAS. B no valor de R$ ,00. O valor de cada. 40% do número de carros no modelo A e 60% MATEMÁTICA Prof. Favalessa QUESTÕES DE PORCENTAGEM EXTRAS 1. (Faculdade Albert Einstein) Suponha que, em certo país, observou-se que o número de exames por imagem, em milhões por ano, havia crescido segundo

Leia mais