INTERSEÇÃO DE SUPERFÍCIES
|
|
|
- Lucca Stachinski Natal
- 9 Há anos
- Visualizações:
Transcrição
1 1 INTERSEÇÃO DE SUPERFÍCIES INTRODUÇÃO Nesta aula você aprenderá a encontrar a linha de inteseção de duas superfícies, a classificar o tipo de interseção e além disso verá alguns exemplos de estruturas arquitetônicas compostas por interseções de superfícies. MÉTODO GERAL PARA ENCONTRAR A LINHA DE INTERSEÇÃO Sejam duas superfícies C (cônica) e E (esférica) que se intersectam na linha I. O método geral para achar a interseção de duas superfícies consiste em cortar ambas por outra auxiliar a (plano da figura abaixo). Depois, achar as interseções (a e b) do plano auxiliar com as superfícies dadas. Os pontos de interseção M e N de a e b são comuns às duas superfícies e pertencerão, portanto, à interseção i.
2 2 Repetindo esta construção com outras superfícies auxiliares (outros planos) cada um desses planos determinarão novos pontos que, unidos ordenadamente, nos darão a interseção procurada. A superfície auxiliar deve cortar as superfícies dadas segundo linhas simples e fáceis de determinar (por exemplo: retas, círculos de plano normal ou paralelo ao de projeção etc.) A superfície auxiliar cortante mais utilizada é o plano, mas às vezes também se empregam as cilíndricas e as esféricas. TIPOS DE INTERSEÇÕES Na figura abaixo é representado um prisma P cortado por quatro cilindros de bases circulares, para que se possa visualizar os orifícios produzidos no prisma e as curvas de entrada e saída resultantes da interseção. Os diversos casos de interseção de superfícies podem ser agrupados seguindo os tipos determindos a partir do exemplo abaixo. 1. Tangencial 2. Parcial 3. Total 4. Mútua ou Máxima 1. A tangencial é uma interseção caracterizada pelas curvas de entrada e saída serem tangentes em um ponto T e terem em comum o dito ponto T (ponto duplo). O
3 3 plano tangente às duas superfícies em T, se existe, contém as tangentes a ambas curvas no dito ponto. Daí, seu nome. 2. A parcial é uma interseção caracterizada por cada superfície cortar parcialmente a outra. A curva de interseção é uma linha contínua quebrada ou curva. Na figura onde o cilindro corta parcialmente o prisma, algumas de sua geratrizes são exteriores ao prisma e reciprocamente. As curvas de entrada e saída são quebradas e se unem nos pontos A e B formando uma só linha. 3. A total é uma interseção caracterizada por uma das superfícies penetrar na outra, atravessando-a por completo. A interseção se compõe de uma curva de entrada (C1) e outra de saída (C2), distintas e independentes entre si, podendo-se aplicar esses nomes a uma e outra indistintamente. 4. A mútua ou máxima é caracterizada pelas curvas de entrada e saída terem dois pontos comuns (T1 e T2) e serem tangentes em dois pontos, sendo portanto, uma penetração tangencial dupla. Assim, como nos outros casos de penetração, somente uma das superfícies penetra toda na outra, neste caso a penetração é recíproca e ao mesmo tempo máxima. É o único caso de penetração mútua. ALGUNS EXEMPLOS DE INTERSEÇÕES NA ARQUITETURA Como aplicação imediata de interseções de superfícies de revolução, exporemos alguns casos de frequente uso em arquitetura. Construções projetadas para cubrir ou fechar um espaço como abóbodas e cúpulas ou para dar luz a estas coberturas como os lunetos, são, muitas vezes, compostas por interseções de superfícies. O 'Luneto" é uma abóboda pequena, aberta em outra maior ou principal, com a função de dar luz a esta. Dependendo de sua abóboda, o luneto pode ser cilíndrico, cônico ou esférico, e dentro de sua abóboda, reto ou oblíquo, segundo seu eixo seja normal ou oblíquo ao eixo da abóboda principal.
4 4 Exporemos abaixo várias figuras as quais ilustram o luneto cilindrico reto, luneto cilindrico obliquo, luneto cônico, luneto esférico, a abóboda vazada e a cúpula bizantina. LUNETO CILINDRICO RETO Observamos na figura abaixo a abóboda semicilíndrica reta (abóboda principal) de eixo (e) paralelo ao plano horizontal de projeção e dois lunetos determinados por uma abóboda semicilíndrica de eixo (f) perpendicular ao eixo da abóboda principal. A superfície acima é caracterizada pela interseção do tipo penetração, na qual o luneto penetra totalmente na abóboda semicilíndrica, portanto temos duas curvas (1 e 2): uma de entrada e outra de saída. Essas duas curvas podem ser visualizadas em vermelho. Iniciando a representação das tres vistas (superior, frontal e lateral) procedemos da seguinte maneira. Desenha-se primeiro as duas abóbodas semicilíndricas. Para encontrar os pontos das duas curvas de interseção é preciso empregar planos auxiliares horizontais que cortem ambos cilindros segundo suas geratrizes. Primeiro são traçados dois planos horizontais (a e b). Estes dois planos são chamados de "planos limites" porque eles passam pelo início e fim da linha de interseção.
5 5 Esses dois planos intersectam os dois cilindros determinando seções. Na interseção dessas seções tem-se os "pontos limites". Na figura abaixo é possível visualizar os "pontos limites" A, B, C, D, E e F. Utilizando planos auxiliares intermediários é possível encontrar pontos limites intermediários. A posição desses planos intermediários pode ser definida pela divisão do arco AF ou BE em 3 ou mais partes iguais.
6 6 Ligar os pontos obtendo assim, a linha de interseção. Parte 1 DESENVOLVIMENTO DA SUPERFÍCIE
7 Parte 2 7 LUNETO CILÍNDRICO OBLÍQUO É determinado pelo semicilindro de diâmetro menor ao cortar obliquamente a abóboda principal de diâmetro maior. A linha de interseção é determinada como no Luneto Cilíndrico Reto. Quando as abóbodas são de mesmo diâmetro a penetração é máxima e resulta nos seguintes casos particulares: 1 Abóboda Acoplada: é obtida a partir do encontro de duas abóbodas cilíndricas de mesmo diâmtro cujos eixos se cortam obliquamente. A interseção i1 - i2 é uma elipse que se projeta verticalmete no plano vertical de projeção segundo a circunferência de centro Cúpulas de Lunetos: é formada por lunetos de mesmo diâmetro cujos eixos se cortam obliquamente em um ponto. Na figura abaixo a cúpula é constituida por três semicilindros de mesmo comprimento, situados em um plano horizontal e que se
8 8 cortam. Os semi-eixos de cada luneto são os apótemas do hexágono regular da planta. A interseção dos semicilindros são curvas elípticas. LUNETO CÔNICO É determinado pela superfície cônica circular ao cortar uma abóboda cilíndrica circular. LUNETO ESFÉRICO É determinado pela superfície esférica ao cortar uma abóboda cilíndrica circular. ABÓBODA VAZADA É determinado pela interseção de uma semi-esfera cuja base está situada em um plano horizontal, com um prisma reto quadrangular cuja base é um quadrado inscrito no círculo máximo da esfera.
9 9 As faces verticais do prisma cortam a esfera segundo semicírculos que se projetam horizontalmente sobre os lados do quadrado e verticalmente segundo as semi-elipses. Dentro deste tipo de abóbodas se encontram a retangular, se a base do prisma é retangular e a "cúpula de Bohemia", produzida por um prisma cuja base é um quadrado menor que o círculo máximo da semi-esfera. Esta cúpula também é chamada de "4 pontas". CÚPULA BIZANTINA É formada por uma abóboda vazada e uma semi-esfera.
10 10 BIBLIOGRAFIA ASENSI, Fernando Izquierdo (1990). Geometria Descriptiva. Madrid: Editorial Dossat, S.A. 597p. ASENSI, Fernando Izquierdo (1990). Ejercicios de Geometría Descriptiva. Madrid: Editorial Dossat, S.A. 505p. CHAPUT, Frère Ignace (1957). Elementos de Geometria. Rio de Janeiro: F. Briguet & CIA. Editores. 15a ed. 577p. MACHADO, Ardevan. Desenho Aplicado à Engenharia e Arquitetura. São Paulo.
INTERSECÇÕES DE SÓLIDOS INTERSECÇÕES DE SÓLIDOS DETERMINAÇÃO DOS PLANOS LIMITES DE SÓLIDOS DETERMINAÇÃO DOS PLANOS LIMITES DOS SÓLIDOS
DETERMINAÇÃO DOS PLANOS LIMITES DOS SÓLIDOS DETERMINAÇÃO DOS PLANOS LIMITES DE SÓLIDOS Planos limites, são os planos auxiliares que são tangentes àssuperfícies,ouaindaosquesãotangentesaumadas superfícies
SUPERFÍCIES REGRADAS NÃO DESENVOLVÍVEIS
1 INTRODUÇÃO SUPERFÍCIES REGRADAS NÃO DESENVOLVÍVEIS Na aula sobre esfera você deve ter notado que é praticamente impossível construir o desenvolvimento perfeito de uma superfície esférica e que, se você
ESTUDO DA RETA COMO DETERMINAR UMA RETA COMO É A PROJEÇÃO DE UM SEGMENTO DE RETA. Por um ponto passam infinitas retas.
1 ESTUDO DA RETA COMO DETERMINAR UMA RETA Por um ponto passam infinitas retas. Uma reta é definida por dois pontos. COMO É A PROJEÇÃO DE UM SEGMENTO DE RETA Raios ortogonais ao plano de projeção incidem
Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA
1 PRISMA: DEFINIÇÃO PRISMA O prisma é um poliedro irregular compreendido entre dois polígonos iguais e paralelos, e cujas faces laterais são paralelogramos. Os dois polígonos iguais e paralelos são as
ESTUDO DO PLANO. Quando o plano intersecta o PH tem traço horizontal. Quando o plano intersecta o PV tem traço vertical.
ESTUDO DO PLANO GENERALIDADES SOBRE PLANOS Um plano α pode ser determinado por:. Três pontos (A, B e C) não alinhados.. Um ponto e uma reta (A e r). 3. Duas retas que se cortam (r e s). REPRESENTAÇÃO DO
DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008
DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma
4.4 Secções planas de superfícies e sólidos
4.4 Secções planas de superfícies e sólidos Geometria Descritiva 2006/2007 e sólidos Quando um plano intersecta uma superfície geométrica determina sobre ela uma linha plana que pertence à superfície A
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2016/2017
Apresentação da disciplina: Objetivos, funcionamento e avaliação. 1. Módulo inicial 2. Introdução à Geometria Descritiva Domínios: Socio Afetivo e Cognitivo. Avaliação e sumativa. Lista de material e sua
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2018/2019. Documento(s) Orientador(es): Aprendizagens Essenciais
Apresentação da disciplina: Objetivos, funcionamento e avaliação. 1. Módulo inicial 2. Introdução à Geometria Descritiva Domínios: Socio Afetivo e Cognitivo. Avaliação e sumativa. Lista de material e sua
Cones, cilindros, esferas e festividades, qual a ligação?
Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo [email protected] Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5
Profª.. Deli Garcia Ollé Barreto
CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro
Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
Metas/Objetivos Descritores/Conteúdos Aulas previstas
1º Período Apresentação Levar os alunos a descobrir conceitos essenciais ao programa da disciplina através da Metodologia de Resolução de Problemas. Despertar nos alunos a curiosidade, o prazer da aprendizagem
Desenho Auxiliado por Computador
UNIVERSIDADE FEDERAL DE JUIZ DE FORA ENE073 Seminários em Eletrotécnica Desenho Auxiliado por Computador (CAD - Computer Aided Design) Prof. Flávio Vanderson Gomes E-mail: [email protected] Aula
Perspectiva. Perspectiva Isométrica. Fonte: Miceli, Perspectiva Cavaleira. Fonte: Miceli, 2008.
Perspectiva De acordo com MICELI (2008) a Perspectiva é o método de representação gráfica dos objetos que apresenta sua forma no modo mais próximo como são vistos. É uma representação tridimensional que
Resumo de Geometria Espacial Métrica
1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO
ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.
PLANIFICAÇÃO ANUAL. 3º Período Até 16 de junho 2.ª ª ª ª ª º Período 2º Período
ESCOLA SECUNDÁRIA INFAN TA D. MAR IA GEOMETRIA DESCRITIVA 10º ANO PLANIFICAÇÃO ANUAL Ano letivo 2016/17 Dias da semana 1º Período 2º Período 3º Período Até 16 de junho 2.ª 13 12 7 3.ª 12 13 7 4.ª 12 12
P L A N I F I C A Ç Ã O A N U A L 1 º A N O
P L A N I F I C A Ç Ã O A N U A L 1 º A N O DEPARTAMENTO: EXPRESSÕES ÁREA DISCIPLINAR: 600 - ARTES VISUAIS DISCIPLINA: GEOMETRIA DESCRITIVA CURSO PROFISSIONAL: Técnico de Design ANO: 1.º - ANO LETIVO:
c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.
Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência
MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS
MATÉRIAS SOBRE QUE INCIDIRÁ CADA UMA DAS PROVAS DE CONHECIMENTOS ESPECÍFICOS Prova de: GEOMETRIA DESCRITIVA Conteúdos: 1.1 Ponto 1.2 Recta 1.3 Posição relativa de duas rectas: - complanares - paralelas
Perspectiva / / Perspectiva Isométrica. Fonte: Miceli, Perspectiva Cavaleira. Fonte: Miceli, 2008.
Perspectiva De acordo com MICELI (2008) a Perspectiva é o método de representação gráfica dos objetos que apresenta sua forma no modo mais próximo como são vistos. É uma representação tridimensional que
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
A perspectiva geométrica é uma projeção que resulta numa imagem semelhante aquela vista pelo nosso sentido da visão.
PERSPECTIVA GEOMÉTRICA OU EXATA A. Introdução B. Elementos C. Tipos: paralela ou axonométrica / cônica D. Projeção paralela: isométrica, militar, cavaleira. A. Na perspectiva geométrica Utilizamos os sistemas
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c
1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma
Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8
Índice Item Representação diédrica Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Reta e plano 8 Ponto pertencente a uma reta 8 Traços de uma reta
Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a
CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
Capítulo 3 - Geometria Analítica
1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico
PLANIFICAÇÃO DA DISCIPLINA. Geometria Descritiva A 10º Ano Artes Visuais Curso Científico - Humanísticos do Ensino Secundário
PLANIFICAÇÃO DA DISCIPLINA Escola Secundária Campos de Melo Geometria Descritiva A 10º Ano Artes Visuais Curso Científico - Humanísticos do Ensino Secundário Professor: Ana Fidalgo Ano letivo 2011/2012
Desenho Geométrico e Concordâncias
UnB - FGA Desenho Geométrico e Concordâncias Disciplina: DIAC-1 Prof a Eneida González Valdés CONSTRUÇÕES GEOMÉTRICAS Todas as construções da geometria plana são importantes, há, entretanto algumas, que
8.1 Áreas Planas. 8.2 Comprimento de Curvas
8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura
CRITÉRIOS DE AVALIAÇÃO i
COGNITIVO (90%) INTRODUÇÃO À GEOMETRIA DESCRITIVA Geometria Descritiva Tipos de Projeção- Sistemas de Representação - Introdução ao estudo dos sistemas de representação triédrica e diédrica ESCOLA SECUNDÁRIA
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
Apostila De Matemática ESFERA
Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual
SISTEMAS DE PROJEÇÃO
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD020 Geometria Descritiva Curso
PARTE I - INTRODUÇÃO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Luzia Vidal de Souza e Paulo Henrique Siqueira Disciplina: Geometria Descritiva
4.1 Superfície Cilíndrica
4. SUPERFÍCIES QUÁDRICAS CÁLCULO VETORIAL - 2017.2 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana,
4. Superfícies e sólidos geométricos
4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das
A GEOMETRIA DO GLOBO TERRESTRE
Sumário A GEOMETRIA DO GLOBO TERRESTRE Grupo de Pesquisa em Matemática para o Ensino Médio GPMatEM Prof Luciana Martino: [email protected] Prof Marcos: [email protected] Prof Maria Helena:
AGRUPAMENTO DE CLARA DE RESENDE COD COD
CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO ( Aprovados em Conselho Pedagógico de 16 outubro de 2012 ) No caso específico da disciplina de Geometria Descritiva do 11º ano de escolaridade, a avaliação incidirá ainda
Ricardo Bianconi. Fevereiro de 2015
Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das
PLANIFICAÇÃO A MÉDIO/LONGO PRAZO
2017/2018 1º Período PLANIFICAÇÃO A MÉDIO/LONGO PRAZO DISCIPLINA: A (Iniciação) ANO: 10º CURSO: Artes Visuais Total de Previstas: 74 Set. 1 MÓDULO INICIAL 1.1 Ponto 1.2 Reta 1. Posição relativa de duas
COLÉGIO DE SANTA DOROTEIA LISBOA ANO LETIVO 2018/2019 DEPARTAMENTO DE ARTES DISCIPLINA: GEOMETRIA DESCRITIVA A ANO: 11º Planificação (Conteúdos)...
Período Letivo: 1º Dar a conhecer os critérios de avaliação e os objetivos da disciplina, procurando motivar a sua aprendizagem. Ordenar os conhecimentos do ano anterior e trazê-los de novo à memória,
Equação da circunferência e Geometria Espacial
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Equação da circunferência e Geometria Espacial Questão 01 No plano cartesiano,
Tempo Conteúdos Atividades/Estratégias Objetivos Gerais
Escola Secundária Homem Cristo ANO LETIVO 2018/2019 PLANIFICAÇÃO Disciplina: Geometria Descritiva A 11º ANO Tempo Conteúdos Atividades/Estratégias Objetivos Gerais 1º Período 2 aulas 1.Revisão de conteúdos
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
EXERCÍCIOS RESOLVIDOS TANGÊNCIA
1 Resumo. Maria Bernadete Barison apresenta exercícios e resoluções sobre TANGÊNCIA em Desenho Geométrico. Geométrica vol.1 n.6c. 2005. Desenhos construídos por: Enéias de A. Prado. EXERCÍCIOS RESOLVIDOS
Aula 4 Leitura e Interpretação de Desenhos Pearson Education do Brasil. Todos os direitos reservados.
Aula 4 Leitura e Interpretação de Desenhos slide 1 reservados. Definição e Pré- Requisitos Ler um desenho significa entender a forma espacial do objeto representado O principal pré-requisito para fazer
Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff
Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma
10º ANO DE ESCOLARIDADE 2016/2017. Aulas Previstas (45 ) Temas/ Unidades Conteúdos programáticos Lecionação de Avaliação 1
AGRUPAMENTO DE ESCOLAS N.º2 DE ABRANTES PLANIFICAÇÃO ANUAL DA DISCIPLINA DE GEOMETRIA DESCRITIVA-A 0º ANO DE ESCOLARIDADE 20/207 Períodos Escolares Aulas Previstas (45 ) Temas/ Unidades Conteúdos programáticos
UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:
5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u
Aula 2-ARQ-011 Desenho Técnico 1:
Aula 2-ARQ-011 Desenho Técnico 1: Revisão de Geometria Descritiva: Vistas Ortográficas Antonio Pedro Carvalho Aula baseada em: CARVALHO, A. P. A.; FONSECA, A. A. S. E.; PEDROSO, G. M. (orgs) Geometria
CONHECIMENTOS ESPECÍFICOS
De acordo com o comando a que cada um dos itens de 51 a 120 se refira, marque, na folha de respostas, para cada item: o campo designado com o código C, caso julgue o item CERTO; ou o campo designado com
Curiosidades relacionadas com o Cartaz da OBMEP 2017
Curiosidades relacionadas com o Cartaz da OBMEP 2017 As esferas de Dandelin A integração das duas maiores competições matemáticas do país, a OBMEP e a OBM, inspirou-nos a anunciar nos quatro cantos do
Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é
QUESTÕES-AULA 17 1. A equação x 2 + y 2 12x + 8y + 0 = 0 representa uma circunferência de centro C = (a, b) e de raio R. Determinar o valor de a + b + R. Solução Completamos quadrados na expressão dada.
Expressão Gráfica. Perspectiva. Professor: Dr. João Paulo Bestete de Oliveira
Expressão Gráfica Perspectiva Professor: Dr. João Paulo Bestete de Oliveira Perspectiva é um tipo de desenho projetivo que mostra em um plano que os objetos ocupam um lugar no espaço, ou seja, possuem
FORMAÇÃO CONTINUADA EM MATEMÁTICA
1 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação Cecierj/Consórcio CEDERJ. COLÉGIO ESTADUAL ESTEFÂNIA PEREIRA PINTO MATEMÁTICA 2º ANO- 4º BIMESTRE/ 2012 PLANO DE TRABALHO ESFERAS TAREFA 2 CURSISTA: MARCIA
SISTEMAS DE PROJEÇÃO. 1. Conceito de projeção cônica (ou central)
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD028 Expressão Gráfica II Curso
III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso
EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS
1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a
REGRAS GERAIS DE GEOMETRIA DESCRITIVAII 2010
1 Isabel coelho 20. SECÇÕES PLANAS 20.1 Secções planas em poliedros 20.1.2 Secções planas produzidas por planos paralelos aos planos das bases A figura da secção será paralela à figura da base. Identificar
PREPARATÓRIO PROFMAT/ AULA 8 Geometria
PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e
2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito
Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura
CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18
Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de
Exame ª fase 2ª Chamada (Código 408)
Exame 2002 1ª fase 2ª Chamada (Código 408) Construa uma representação axonométrica oblíqua (clinogonal) de uma pirâmide quadrangular regular, em perspectiva cavaleira, de acordo com os dados abaixo apresentados.
Elementos do cone Em um cone, podem ser identificados vários elementos:
Cones O conceito de cone Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos
PROJECÇÃO DE SÓLIDOS
PROJECÇÃO DE SÓLIDOS I- GENERALIDADES 1- BREVES NOÇÕES SOBRE SUPERFÍCIES 1.1- Noção Uma superfície pode definir-se como sendo o lugar geométrico gerado por uma linha (geratriz) que se desloca, segundo
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA PROF. ANDERSON ROGES TEIXEIRA GÓES GEOMETRIA NO ENSINO
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA PROF. ANDERSON ROGES TEIXEIRA GÓES GEOMETRIA NO ENSINO Representações Geométricas Uma das formas de comunicação
Geometria Analítica II - Aula
Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço
Superfícies Quádricas
Superfícies Quádricas Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Superfícies de Revolução São superfícies criadas pela rotação
PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas
PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas 1 Escalas escala medida _ no _ desenho medida _ real _ ou _ verdadeira _ grandeza D VG Escala de ampliação Objeto real
Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa
1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste
3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.
Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar
V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral
UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é
Prof. Breno Duarte Site:
Prof. Breno Duarte Email: [email protected] Site: www.fenemi.org.br/ifmec O desenho, para transmitir a ideia de três dimensões (3D - comprimento, largura e altura), precisa recorrer a um modo especial
SEM DESENHO TÉCNICO MECÂNICO I
SEM 0564 - DESENHO TÉCNICO MECÂNICO I Notas de Aulas v.2017 Aula 02 Projeção: tipos, vistas e diedros Prof. Assoc. Carlos Alberto Fortulan Departamento de Engenharia Mecânica Escola de Engenharia de São
SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS)
SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) 56. Exame de 1998 Prova Modelo (código 109) Represente, no sistema de dupla projecção ortogonal, dois segmentos de recta concorrentes, [AE] e [AI]. Os
REPRESENTAÇÕES EM MÚLTIPLAS VISTAS
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA REPRESENTAÇÕES EM MÚLTIPLAS VISTAS Professor: João Carmo INTRODUÇÃO A representação de Objetos em Desenho Técnico é feita, principalmente, a partir de
Geometria Métrica Espacial
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial
Perspectivas Professora Valéria Peixoto Borges
Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Perspectivas Professora Valéria Peixoto Borges INTRODUÇÃO A perspectiva é um tipo especial de projeção, na qual são
DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO
DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...
Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza
Geometria Analítica Superfícies Prof Marcelo Maraschin de Souza Superfícies Quadráticas A equação geral do 2º grau nas três variáveis x,y e z ax 2 + by 2 + cz 2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q
COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016
COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
2017/2018 2º semestre GDCII turmas MiARQ 1ED Professor Luís Mateus Plano semanal do semestre. Semana 1 (22 de Fevereiro)
2017/2018 2º semestre GDCII turmas MiARQ 1ED Professor Luís Mateus Plano semanal do semestre Semana 1 (22 de Fevereiro) Apresentação (programa e regras sobre o funcionamento da disciplina) BLOCO 1 dos
Aplicação de Integral Definida: Volumes de Sólidos de Revolução
Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno
Geometria Analítica II - Aula 5 108
Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ
Cálculo diferencial de Funções de mais de uma variável
MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 Cálculo diferencial de Funções de mais de uma variável 1. Funções de mais de uma variável 2. Limites de funções de mais de uma variável 3. Continuidade
