MATEMÁTICA - 3 o ANO MÓDULO 20 MATRIZES
|
|
|
- Iasmin Terra Lemos
- 9 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA - 3 o ANO MÓDULO 20 MATRIZES
2 Como pode cair no enem Uma empresa possui 3 filiais: a filial 2 e a filial 3. Ela comprou camisas para o uniforme de seus funcionários nos tamanhos P, M e G. Se representarmos o tamanho P pelo número 1, M pelo número 2 e G pelo número 3 teremos que, na matriz abaixo, cada elemento a ij representa o número de camisas tamanho i que a filial j comprou A = Se cada camisa custa R$ 7,00, quanto gastou a filial que gastou mais? a) R$ 133,00 b) R$ 126,00 c) R$ 119,00 d) R$ 147,00 e) R$ 161,00
3 Fixação 1) Seja X = (X ij ) uma matriz quadrada de ordem 2, onde i + j se i = j X ij = 1 - j se i > j, a soma dos seus elementos é igual a: 1 se i < j a) -1 d) 7 b) 1 e) 8 c) 6
4 Fixação 2) Dadas as matrizes: A = e B = Determine o elemento x 32 da matriz AB.
5 Fixação 3) A matriz A é do tipo 5x7 e a matriz B, do tipo 7x5. Assinale a alternativa correta. a) A matriz AB tem 49 elementos. b) A matriz BA tem 25 elementos. c) A matriz (AB)2 tem 625 elementos. d) A matriz (BA)2 tem 49 elementos. e) A matriz (AB) admite inversa.
6 Fixação F a b c d 4) (UERJ) A temperatura corporal de um paciente foi medida, em graus Celsius, três vezes 5 ao dia, durante cinco dias. Cada elemento aij da matriz abaixo corresponde à temperatura l observada no instante i do dia j. m 35,6 36,4 38,6 38,0 36,0 36,1 37,0 37,2 40,5 40,4 35,5 35,7 36,1 37,0 39,2 Determine: a) O instante e o dia em que o paciente apresentou a maior temperatura. b) A temperatura média do paciente no terceiro dia de observação. p A d
7 ixação ) (UERJ) Em um supermercado, um cliente empurra seu carrinho de compras passando peos setores 1, 2, e 3, com uma força de módulo constante de 4 newtons, na mesma direção e esmo sentido dos deslocamentos. Na matriz A abaixo, cada elemento a ij indica, em joules, o trabalho da força que o cliente faz ara deslocar o carrinho do setor i e j elementos do conjunto {1, 2, 3} = Ao se deslocar do setor 1 ao 2, do setor 2 ao 3 e, por fim, retornar ao setor 1, a trajetória o cliente descreve o perímetro de um triângulo. Nessas condições, o cliente percorreu, em metros, a distância de: ) 35 ) 40 ) 45 ) 50
8 Fixação 6) (UERJ) Três modelos de aparelhos de ar-condicionado, I, II e III, de diferentes potências, são produzidos por um determinado fabricante. Uma consulta sobre intenção de troca de modelo foi realizada com 1000 usuários desses produtos. Observe a matriz A, na qual cada elemento aij representa o número daqueles que pretendem trocar do modelo i para o modelo j A = Escolhendo-se aleatoriamente um dos usuários consultados, a probabilidade de que ele não pretenda trocar seu modelo de ar-condicionado é igual a: a) 20% b) 35% c) 40% d) 65%
9 1) (PUC) Dê a matriz 3x2 tal que a ij = i se i = j i 2 se i j
10 2) (PUC) O número de matrizes 3x3 cujos elementos pertencem ao conjunto {-1, 0, 1}, e nas quais não há dois elementos iguais na mesma linha e nem na mesma coluna, é igual a: a) 3 b) 6 c) 12 d) 36 e) 120
11 3) Dadas as matrizes e os produtos AB, AC, BC, BA, CA, CB, os produtos possíveis de calcular são: a) somente AC e CA; b) todos os produtos; c) somente AB e BC; d) somente AB, BA, BC, CB; e) somente AB e BA.
12 4) Sabe-se que as ordens das matrizes A, B e C são,respectivamente, 3 x r, 3 x s e 2 x t. Se a matriz (A - B). C é de ordem 3 x 4, então r + s + t é igual a: a) 6 b) 8 c) 10 d) 12 e) 14
13 5) (CESGRANRIO) Multiplicando 1 a. 2 3 b obtemos da primeira matriz é: a) 2 b) 1 c) 0 d) 1 e) 6. O produto dos elementos a e b
14 6) (UERJ) Cada par ordenado (x, y) do plano pode ser escrito como uma matriz. Para obter uma rotação de 90º do ponto de coordenadas (x, y) em torno da origem no sentido anti-horário basta multiplicar a matriz por. y 4 B -2 3 A 7 x Aplicando-se esse método para fazer a rotação do ponto médio do segmento da figura acima suas novas coordenadas serão: a) (5, -1) b) (-1, 5) c) (-5, -1) d) (-1, -5)
15 c) ) (UERJ) Multiplicando-se = a b por x = b obtém-se AX = c que é uma permutação dos c a elementos de X. Existem 5 outras matrizes de mesma ordem da matriz A, com apenas elementos de X. A soma destas 5 matrizes é: a) d) b) e)
16 8) (UFRJ) Marlos Charada, o matemático espião, concebeu um código para transformar uma palavra P de três letras em um vetor Y de R 3 como descrito a seguir. A partir da correspondência: A B C D E F G H I J L M N O P Q R S T U V X Z A palavra P é transformada em um vetor X de R Em seguida, usando a matriz código A = o vetor Y é obtido pela equação Y = A. X Por exemplo, a palavra MAR corresponde ao vetor X = (12, 1, 17) e é codificada com Y = AX = (26, 56, 29). Usando o processo acima, decodifique Y = (64, 107, 29).
17 9) (UFRJ) Considere as matrizes: A = e B = Seja A 2 = A. A e B 2 = B. B Determine a matriz C= A 2 - B 2 - (A+B) (A-B)
18 10) (UFF) Seja A = a) Determine o valor do número k tal que A 2 = k. A. b) Sendo n um inteiro positivo, calcule.
19 11) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia calcular as médias anuais dessas disciplinas usando produto de matrizes. Todas as provas possuíam o mesmo peso, e a tabela que ele conseguiu é mostrada a seguir. 1º bimestre 2º bimestre 3º bimestre 4º bimestre Matemática 5,9 6,2 4,5 5,5 Português 6,6 7,1 6,5 9,4 Geografia 8,6 6,8 7,8 9,0 História 6,2 5,6 5,9 7,7 Para obter essas médias, ele multiplicou a matriz obtida a partir da tabela por a) b) c) d) e)
20 12) (UFRJ) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes cada um consumiu e como a despesa foi dividida: S = e D = S refere-se às despesas de sábado e D às de domingo. Cada elemento a ij nos dá o número de chopes que i pagou para j, sendo Antônio o número 1, Bernardo o número 2 e Cláudio o número 3 (a ij representa o elemento da linha i, coluna j de cada matriz). Assim, no sábado, Antônio pagou 4 chopes que ele próprio bebeu, 1 chope de Bernardo e 4 de Cláudio (primeira linha da matriz S). a) Quem bebeu mais chope no fim de semana? b) Quantos chopes Cláudio ficou devendo para Antônio?
21 13) Na matriz abaixo estão representadas as distâncias entre 4 cidades. Cada elemento a ij representa a distância entre a cidade i e a cidade j em quilômetros A = Calcule: a) A distância entre a cidade 2 e a cidade 4. b) A menor distância a ser percorrida quando se deseja ir da cidade 1 até a cidade 3, passando pela cidade 4.
22 14) Um edifício de 3 andares possui 3 apartamentos por andar. Na matriz abaixo cada elemento a ij representa a quantidade de quartos dos apartamentos i de andar j Qual o andar que possui mais quartos? Quantos quartos possui?
23 15) (UFF) Nos processos de digitalização, imagens podem ser representadas por matrizes cujos elementos são os algarismos 0 e 1. Considere que a matriz linha L=( ) representa a figura a seguir: onde 1 representa quadrinho escuro e 0 representa quadrinho branco. Seja X a matriz dada por X = LM, onde M é a matriz M = (m ij ) com m ij = 1, se i + j = 7 0, se i + j 7, 1 i 6, 1 j 6. Dessa forma, a matriz X representa a figura da opção: a) b) c) d) e)
24 16) (UERJ) Três barracas de frutas, B 1, B 2 e B 3, são propriedades de uma mesma empresa. suas vendas são controladas por meio de uma matriz, na qual cada elemento b ij representa a soma dos valores arrecadados pelas barracas B i e B j, em milhares de reais, ao final de uma determinado dia de feira. x 1,8 3,0 B = a y 2,0 d c 7 Calcule, para esse dia, o valor, em reais: a) arrecadado a mais pela barraca B 3 em relação à barraca B 2 ; b) arrecadado em conjunto pelas três barracas.
25 17) (UFF) Um dispositivo eletrônico, usado em segurança, modifica a senha escolhida por um usuário, de acordo com o procedimento descrito abaixo. A senha escolhida S 1 S 2 S 3 S 4 deve conter quatro dígitos, representados por S 1, S 2, S 3 e S 4. Esses dígitos são, então, transformados nos dígitos M 1, M 2, M 3 e M 4, da seguinte forma: M 1 S 1 M 3 S = P e S2 M = P onde P é a matriz 4 S M 2 Se a senha de um usuário, já modificada, é 0110, isto é, M 1 = 1, M 2 = 1, M 3 = 1 e M 4 = 0, pode-se afirmar que a senha escolhida pelo usuário foi: a) 0011 d) 1010 b) 0101 e) 1100 c) 1001
26 18) (UFRJ) Em uma cidade, há três revistas de noticiário semanal: 1,2,3. Na matriz A=(a ij ) abaixo, o elemento a ij representa a probabilidade de um assinante trocar a assinatura da revista i para a revista j, na época da renovação. 0,6 0,1 0,3 A = 0,1 0,7 0,2 0,4 0,2 0,4 a) Qual é a probabilidade de os assinantes da revista 2 trocarem de revista quando forem renovar a assinatura? b) Quais os leitores menos satisfeitos com a revista que estão assinando?
27 19) (UERJ) Observe parte da tabela do quadro de medalhas dos Jogos Pan-Americanos no Rio de Janeiro em 2007: País Tipos Medalhas 1- ouro 2 - prata 3 - bronze Total 1 - Estados Unidos Cuba Brasil Com base na tabela, é possível formar a matriz quadrada A cujos elementos a ij representam o número de medalhas do tipo j que o país i ganhou, sendo i e j pertencentes ao conjunto {1, 2, 3}. Para fazer uma outra classificação desses países,são atribuídos às medalhas os seguintes valores: - ouro: 3 pontos - prata: 2 pontos - bronze: 1 ponto 3 Esses valores compõem a matriz V = 2 1 Determine, a partir do cálculo do produto AV, o número de pontos totais obtidos pelos três países separadamente.
28 20) (UFRJ) Há 5 senadores designados para uma Comissão Parlamentar de Inquérito. Eles devem escolher entre si um presidente para a Comissão, sendo que cada senador pode votar em até 3 nomes. Realizada a votação onde cada um deles recebeu um número de 1 a 5, os votos foram tabulados na matriz A = (a ij ), abaixo indicada. Na matriz A, cada elemento aij é igual a 1(um), se i votou em j; e é igual a 0 (zero), caso contrário. A = Responda, justificando: a) Qual é o candidato mais votado? b) Quantos candidatos votaram em si mesmos?
Lista de Exercícios Matrizes
2º ano Regular / Comércio Exterior Nome: Classe: -2 Professor: Fábio Jun 3º período Lista de Exercícios Matrizes Questões dissertativas. (FGV) Uma fábrica decide distribuir os excedentes de três produtos
Exercícios de Matemática Matrizes
Exercícios de Matemática Matrizes 4. (Unesp) Determine os valores de x, y e z na igualdade a seguir, envolvendo matrizes reais 2 2: 1. (Fuvest) a) Dada a matriz A, calcule a sua inversa A. b) A relação
PLANO DE TRABALHO SOBRE MATRIZES E DETERMINANTES
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP/BRIZOLÃO- 419 BENIGNO BAIRRAL PROFESSORA: DIONE BRAGA FREITAS MATRÍCULA: 927813-6 SÉRIE: 2º ANO ENSINO MÉDIO
Lista de matemática. professor Habib
Lista de 4 a avaliação (Orientação de estudo) 1. (Ufpe) Nos quilômetros 31 e 229 de uma rodovia estão instalados telefones de emergência. Ao longo da mesma rodovia e entre estes quilômetros, pretende-se
Lista de Atividades - semana 1. 4a Avaliação
Lista de Atividades - semana 1 4a Avaliação 1. (Ufrj) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes
Matrizes. a inversa da matriz , onde cada elemento aij
Matrizes. (Ufpe 03) Seja a c b d a inversa da matriz 3. 4 Indique a b c d.. (Espm 03) A distribuição dos n moradores de um pequeno prédio de apartamentos é 4 x 5 dada pela matriz 3 y, onde cada elemento
LISTA DE EXERCÍCIOS 2017
CURSO LISTA DE EXERCÍCIOS 2017 DISCIPLINA ESTUDANTE PROFESSOR (A) DATA Questão 1) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas
Matrizes. 2 e satisfaz a identidade matricial. = 2 2, então, o valor. sen cos. 4) Seja a matriz M = (mij)2x3, tal que mij = j 2 - i 2.
Matrizes ) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes cada um consumiu e como a despesa foi dividida:
Para obter essas médias, ele multiplicou a matriz obtida a partir da tabela por:
Exercícios Matrizes 1. (Enem) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia
Matemática. Exercícios de Revisão II
Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 2 a Matemática Exercícios de Revisão II 1) (Unifesp-2009) Sob determinadas condições, o antibiótico gentamicina, quando ingerido, é eliminado
Camarões Se nos concentrarmos apenas nas informações numéricas, teremos três matrizes A = B = Podemos observar que:
2. 11. Multiplicação entre Matrizes Os exemplos abaixo servirão para compreendermos a definição de multiplicação, porque não é óbvia como as operações anteriores. Esses exemplos poderiam ser resolvidos
Ciências da Natureza e Matemática
Introdução e Operações com 1 CEDAE Acompanhamento Escolar [Type the company name] Introdução e Operações com 2 CEDAE Acompanhamento Escolar [Type the company name] Introdução e Operações com 3 CEDAE Acompanhamento
Considerando log2 = 0,3 e log3 = 0,5, determine:
log 27 log 25 log 3 5 2 64 log 64 log5125 4 log100.000 log0,001 log3 81 log1000 Considerando log2 = 0,3 e log3 = 0,5, determine: log16 log128 Considerando log2 = 0,3 e log3 = 0,5, determine: log5 Considerando
MATRIZES E DETERMINANTES. a, com índices duplos, onde
MATRIZES E DETERMINANTES Para designar com clareza situações que apresentam um grupo ordenado de números dispostos em tabelas com linhas e colunas, introduziremos o conceito de matriz. Nesse sentido, matrizes
1)(UERJ) Observe parte da tabela do quadro de medalhas dos Jogos Pan-americanos do Rio de Janeiro em 2007.
COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1)(UERJ) Observe parte da tabela
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA
LISTA DE EXERCÍCIOS DE RECUPERAÇÃO º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: TURMA: 2ª SÉRIE UNIDADE: VV JC JP PC DATA: / /209 OBS.: Esta lista deve ser entregue resolvida no dia da prova de Recuperação. Valor:
g.( ) Se A é a matriz dada por 1* - Julgue se verdadeiro (V) ou falso (F), justificando sua escolha.
LISTA DE EXERCÍCIOS MATRIZES E DETERMINANTES PROESSOR: Claudio Saldan CONTATO: [email protected] PARTE * - Julgue se verdadeiro () ou falso (), ustificando sua escolha. *Referente a proposições de questões
Mat. Professores: PC Sampaio Gabriel Ritter Rafael Jesus Monitor: Gabriella Teles
Semana 19 Professores: PC Sampaio Gabriel Ritter Rafael Jesus Monitor: Gabriella Teles RESUMO Ex: Adição de matrizes Vamos considerar duas Matrizes A e B do mesmo tipo (ou seja a soma de duas matrizes
= A. 3x t t+z. uma matriz quadrada de ordem 2 tal que a ij = 2i j +3 e seja 3 2 B =. Encontre a matriz X tal que X +2A = B. 5 10
Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Ciência da Computação Disciplina: Álgebra Linear I Professor: Renato Ferreira da Cruz 1 a Lista de Exercícios 1 Seja A =
Equipe de Matemática MATEMÁTICA. Matrizes
Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais
Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5
Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c
1. (Unirio) Dada a matriz representada na figura adiante. 4. (Ufes) Considere a matriz mostrada na figura a. seguir. Determine o valor de A + A - I.
COLÉGIO ADVENTISTA DE SÃO JOSÉ DO RIO PRETO NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B BIMESTRE: 1º PROFESSOR: Alexandre da Silva Bairrada 1. (Unirio) Dada
Visite : c) 2 d) 1. a) 1000.(P t.q) -1 b) P t.q.1000 c) Q -1.P.1000 d) 1000.(Q t ) -1.P e) (Q -1 ) t.p.
Exercícios de Matemática, Matrizes Se e satisfaz a identidade matricial ) (Unicamp-999) Considere as matrizes: 5 cos sen x cos sen sen cos y sen cos =, então, o valor M=, X = z e Y = correto de tg é igual
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 3º BIMESTRE/2013 INTERPRETAÇÃO DE MATRIZES
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 3º BIMESTRE/2013 INTERPRETAÇÃO DE MATRIZES Tarefa 1 Aluno: Thiago Milani Cabral Introdução: A presente
1) Considere cidades de uma região que serão numeradas de a. Na matriz a seguir:
COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA AVALIAÇÃO: EXERCÍCIO COMPLEMENTAR I DISCIPLINA: MATEMATICA PROFESSOR (A: ALUNO(A): DATA: / / SÉRIE: 2º ANO ENTREGA: / / ORIENTAÇÕES IMPORTANTES! Leia a atividade
Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros.
MATRIZES DEFINIÇÃO Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros. M = à M é uma matriz 2 x 3. Cada elemento da matriz
Interbits SuperPro Web
MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele
Matemática Matrizes e Determinantes
. (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números
Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).
F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.
MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA
MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA y Ya d =? A Yb B Xb Xa x y Ya d =? A Yb B Xb Xa x y Ya d =? A Ya - Yb Yb B Xb Xa - Xb Xa x y Ya A Ym =? M Yb B Xb Xm=? Xa x y Ya A Ym =? M T Yb B R Xb
COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 1ª PROVA PARCIAL DE MATEMÁTICA
COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 2016 1ª PROVA PARCIAL DE MATEMÁTICA Aluno(a): Nº Ano: 2º Turma: Data: 09/4/2016 Nota: Professor(a): Flávio/Gustavo Valor da Prova: 40 pontos Orientações
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
tal que = +3 tal que 2+, > em que / 01 =2 3) ( > seja igual à matriz identidade. 3(+4 1
" COLÉGIO ODELO LUIZ EDUARDO AGALHÃES ATEÁTICA LISTA : ATRIZES E DETERINANTES 2ª SÉRIE TURA: II UNIDADE PROFESSOR: HENRIQUE PLÍNIO DATA: / /206 CAAÇARI - BA ALUNO(A): Nenhum obstáculo é tão grande se a
2. Escreva em cada caso o intervalo real representado nas retas:
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:
A soma dos quadrados das constantes x, y, a, b e c que satisfazem
Florianópolis Professor: BAIANO Matrizes x 9 a 0 x 3 b 1 1. (Udesc ) Considere as matrizes A =, B = e y 4 16 1 2y 1 1 1 4 2 27 13 6 C =. 2y 1 A soma dos quadrados das constantes x, y, a, b e c que satisfazem
Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA 8 -MATRIZES /SISTEMAS LINEARES 1. (Uerj 2017) Observe a matriz: 3 t 4 3 t 4 Para que o determinante dessa matriz seja nulo,
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
- MATEMÁTICA - PUC-MG
Vestibulando Web Page 1. Uma empresa deve instalar telefones de emergência a cada 42 quilômetros, ao longo da rodovia de 2.184 km, que liga Maceió ao Rio de Janeiro. Considere que o primeiro desses telefones
2 LISTA DE MATEMÁTICA
LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.
PROCESSO SELETIVO/ O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15
PROCESSO SELETIVO/006 1 O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Para arrecadar doações, uma Entidade Beneficente usou uma conta telefônica do tipo 0800. O número de pessoas que ligaram, por dia,
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2005 1 Considere as matrizes A, B, C, D e E com respectivas ordens,
MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO
MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO - -2 + - 1/2 + - 1/2 + + 1 - + + + -1 2 x -1 3 - - - x Como pode cair no enem Um menino chutou uma bola. Esta atingiu altura máxima
2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4.
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear 2016/II 1 Considere as matrizes A, B, C, D e E com respectivas
CURSO PRÉ VESTIBULAR UECEvest TD DE MATEMÁTICA/ENEM PROFESSOR: DANIEL EUFRAZIO/DATA 11/10/2014
1. Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia calcular as médias anuais dessas
MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) Prof. Arthur Lima
MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) PROPORCIONALIDADE ENEM 2016) Num mapa com escala 1 : 250 000, a distância entre as cidades A e B é de 13 cm. Num outro mapa, com escala
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
MATEMÁTICA - 1 o ANO MÓDULO 05 DIVISIBILIDADE E MÉDIAS
MATEMÁTICA - 1 o ANO MÓDULO 05 DIVISIBILIDADE E MÉDIAS Como pode cair no enem (PUC) 1440 soldados são divididos em x equipes de modo que todas as equipes tenham o mesmo número de soldados e este número
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA. Os conteúdos selecionados para a recuperação são:
TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA Os conteúdos selecionados para a recuperação são: 8) RESOLVA os seguintes sistemas pelo método que achar conveniente: (Valor: 1,0). 9) CALCULE as adições
1) (UFV) Seja A uma matriz invertível de ordem 2. Se det (2A) det (A ), então o valor de det A é: a) 2 b) 1 c) 3. e) 4
) (UFV) Seja uma matriz invertível de ordem. Se det () det ( ), então o valor de det é: e) 4 ) (UFV) Na matriz quadrada ( a ij ) de ordem, os elementos a, a, a e a, nesta ordem, apresentam a seguinte propriedade:
FÍSICA - 2 o ANO MÓDULO 11 ELETROSTÁTICA: POTENCIAL, TRABALHO E ENERGIA
FÍSICA - 2 o ANO MÓDULO 11 ELETROSTÁTICA: POTENCIAL, TRABALHO E ENERGIA + - + + + + + A B + d + q q - - - - - Q q P d 6.V 5.V V -V c 2.d3.d 4.d 5.d 6.d d 4.V 3.V 2.V Q>0-2.V -3.V -4.V Q
Teste Intermédio de MATEMÁTICA - 8o ano 11 de maio de 2011
Teste Intermédio de MATEMÁTICA - 8o ano de maio de 20 Proposta de resolução. Analisando exclusivamente os votos, da população de negros, nos três candidatos, podemos verificar que o candidato Q foi mais
Exercícios de matemática - 2º ano - Ensino Médio - 4º bimestre
Exercícios de matemática - º ano - Ensino Médio - º bimestre Pergunta de 0 - Assunto: Álgebra [0 - FUVEST-USP] Considere a matriz a a + A = [ a a + ] em que aa é um número real. Sabendo que AA admite inversa
, a segunda coluna da matriz A é um múltiplo da primeira coluna.
Lista de exercícios - 2º ano - Matemática Aluno: Série: Turma: Data: Questão 1 Segundo diversos estudos, a função relaciona o número de dias y necessários para que um corpo, após sua morte, se torne esqueleto,
PROPOSTA DE RESOLUÇÃO DO EXAME NACIONAL DE MATEMÁTICA B (PROVA 735) 2ªFASE. =3 log 3,5+1 =3 log 3,5+1
PROPOSTA DE RESOLUÇÃO DO EXAME NACIONAL DE MATEMÁTICA B (PROVA 735) 2ªFASE Grupo I 1. O tempo que o recipiente demorou a ficar vazio é o zero da função Q, pelo que é necessário calcular o zero da função
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita
Simulado 015 enem G a b a r i t o ạ série Matemática e suas Tecnologias Volume distribuição gratuita Simulado Enem 015 Questão 1 Matemática e suas Tecnologias Gabarito: Alternativa D ( A ) Incorreta. O
1º VESTIBULAR DE 2019
Secretaria de Educação Profissional e Tecnológica Instituto Federal do Norte de Minas Gerais 1º VESTIBULAR DE 2019 Horário: 14h às 17h CADERNO 02 MATEMÁTICA IDENTIFICAÇÃO DO CANDIDATO Nome: Documento:
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaio. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
Acadêmico(a) Turma: Capítulo 2: MATRIZES
1 Acadêmico(a) Turma: 2.1. Definição Capítulo 2: MATRIZES A teoria das matrizes e a teoria dos determinantes são pré-requisitos para resolução e discussão de um sistema linear. Define-se matriz m x n uma
MATEMÁTICA - 2 o ANO MÓDULO 13 PROGRESSÃO ARITMÉTICA
MATEMÁTICA - 2 o ANO MÓDULO 13 PROGRESSÃO ARITMÉTICA a n = a 1 + (n - 1)r a k = a k-1 + a k+1 2 Ex.: ( 2, 5, 8, 11, 14, 17, 20,...) 11 = 8 + 14 2 11 = 2 + 20 2 11 = 5 + 17 2 Como pode cair no enem (ENEM)
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.
Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e
7 o ano/6 a série E.F.
Módulo de Notação Algébrica e Introdução às Equações Eercícios de Notação Algébrica. 7 o ano/6 a série E.F. Eercícios de Notação Algébrica Notação Algébrica e Introdução às Equações. 1 Eercícios Introdutórios
MATEMÁTICA. Aula 14 Matrizes. Prof. Anderson
MATEMÁTICA Aula Matrizes Prof. Anderson Assuntos Conceito Matrizes com Nomes Especiais Igualdade de Matrizes Operações com Matrizes Matriz Inversa Conceito As matrizes são quantidades de dados passíveis
1ª série EM - Questões para a RECUPERAÇÃO FINAL RF 2017 MATEMÁTICA
1ª série EM - Questões para a RECUPERAÇÃO FINAL RF 2017 MATEMÁTICA 01. Transforme: a) 30º para radianos b) 60º para radianos c) 3π 2 rad para graus d) π rad para graus 6 02. Calcule: a) O complemento de
CEM Centro De Estudos Matemáticos
1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de
n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo:
n. Matrizes Foi um dos primeiros matemáticos a estudar matrizes, definindo a ideia de operarmos as matrizes como na Álgebra. Historicamente o estudo das Matrizes era apenas uma sombra dos Determinantes.
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Recuperação do 3 Bimestre Matemática Prof. Leandro Conteúdo: Área de figuras planas. Ponto médio. Distância entre 2 pontos; Equação fundamental da reta. Poliedros.
Matemática 2 Prof. Heitor Achilles
2 ª SÉRIE EM ORIENTAÇÕES FINAIS Matemática 2 Prof. Heitor Achilles ORIENTAÇÃO DE ESTUDO CONTEÚDOS PARA A RECUPERAÇÃO FINAL COMBINATÓRIA: PFC, Permutações simples, Combinações simples, Permutação com elementos
MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA)
MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA) Como pode cair no enem (ENEM) Jogar baralho é uma atividade que estimula o raciocínio. Um jogo tradicional é a Paciência, que utiliza 52 cartas.
Dado: g 10 m / s a) 20 b) 16 c) 24 d) 38 e) 15
1. (Unicamp 016) Músculos artificiais feitos de nanotubos de carbono embebidos em cera de parafina podem suportar até duzentas vezes mais peso que um músculo natural do mesmo tamanho. Considere uma fibra
ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM
1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros
C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:
Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão
Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática
Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com
Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)
UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual
MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA
MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA Como pode cair no enem (UFMG) A população de uma colônia da bactéria E. coli dobra a cada 20 minutos. Em um experimento, colocou-se, inicialmente, em
Guia-1. a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn
Guia-1 Revisão de Matrizes, Determinantes, Vetores e Sistemas Lineares SMA00 - Complementos de Geometria e Vetores Estagiária PAE: Ingrid Sofia Meza Sarmiento 1 Introdução Este texto cobre o material sobre
Lista de exercícios para serem entregues no dia 22 de Janeiro de 2016.
Lista de eercícios para serem entregues no dia de Janeiro de 6 ) Dadas as matries A [ a ij ] tal que j aij i e [ b ij ] B tal que b ij j i, determine: a) a b b) a( b b) c) a b ) As meninas Amanda (); Bianca
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) C 11) A 16) D 21) D 2) B 7) A 12) B 17) A 22) E 3) B 8) C 13) D 18) C
Prova final de MATEMÁTICA - 3o ciclo Época especial
Prova final de MTEMÁTI - 3o ciclo 015 - Época especial Proposta de resolução aderno 1 1. omo foi escolhido um dos convidados que gostam de gelatina, existem escolhas possíveis (a na, o Paulo, o Rui, a
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
MATEMÁTICA A figura mostra as medidas a, b, e c dos ângulos assinalados, sendo. Nessas condições, podemos afirmar que:
MÓDULO 1 - Matemática 3 a série do Ensino Médio QUESTÕES OBJETIVAS MATEMÁTICA 01 - A figura mostra as medidas a, b, e c dos ângulos assinalados, sendo. Nessas condições, podemos afirmar que: (A) a + b
Gabarito. De acordo com os dados da tabela, percebe-se que a possibilidade de compra de dois itens variou na mesma
CAp UFRJ Admissão 005 ensino médio Matemática / 1 a série Gabarito QUESTÃO 1 A revista VEJA de 11/08/004 trouxe a tabela a seguir ilustrando a desvalorização do real a partir da possibilidade de compra
2 ª Fase Exame Discursivo
02/12/2007 2 ª Fase Exame Discursivo matemática Caderno de prova Este caderno, com doze páginas numeradas seqüencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
Eduardo. Matemática Matrizes
Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos
MATEMÁTICA - 2 o ANO MÓDULO 14 SOMA DOS TERMOS DE UMA PA
MATEMÁTICA - 2 o ANO MÓDULO 14 SOMA DOS TERMOS DE UMA PA Como pode cair no enem (ENEM) As projeções para a produção de arroz no período de 2012 2021, em uma determinada região produtora, apontam para uma
PROFESSOR FLABER 2ª SÉRIE Circunferência
PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por
Exercício Termodinâmica (com solução comentada)
Exercício ermodinâmica (com solução comentada ara o cálculo do trabalho realizado pelo gás em uma transformação em que a pressão varia devemos calcular a área do gráfico, porém deve-se dividir a área do
Exercícios de Matemática II
Nome: nº Professor(a): Série: ª EM. Turma: Data: / /014 Sem limite para crescer Exercícios de Matemática II 1º Trimestre 1. (Uem 011) Um cientista deseja determinar o calor específico de um material. Para
Elaine Cristina e Aline Heloisa
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES ANO 2018 PROFESSOR (a) DISCIPLINA Valor: Elaine Cristina e Aline Heloisa Matemática 30 pontos ALUNO (a) SÉRIE 2º ANO ENSINO MÉDIO
Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)
UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel
PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x
RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se
Sistemas lineares e matrizes, C = e C =
1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,
