MATEMÁTICA - 3 o ANO MÓDULO 20 MATRIZES

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA - 3 o ANO MÓDULO 20 MATRIZES"

Transcrição

1 MATEMÁTICA - 3 o ANO MÓDULO 20 MATRIZES

2 Como pode cair no enem Uma empresa possui 3 filiais: a filial 2 e a filial 3. Ela comprou camisas para o uniforme de seus funcionários nos tamanhos P, M e G. Se representarmos o tamanho P pelo número 1, M pelo número 2 e G pelo número 3 teremos que, na matriz abaixo, cada elemento a ij representa o número de camisas tamanho i que a filial j comprou A = Se cada camisa custa R$ 7,00, quanto gastou a filial que gastou mais? a) R$ 133,00 b) R$ 126,00 c) R$ 119,00 d) R$ 147,00 e) R$ 161,00

3 Fixação 1) Seja X = (X ij ) uma matriz quadrada de ordem 2, onde i + j se i = j X ij = 1 - j se i > j, a soma dos seus elementos é igual a: 1 se i < j a) -1 d) 7 b) 1 e) 8 c) 6

4 Fixação 2) Dadas as matrizes: A = e B = Determine o elemento x 32 da matriz AB.

5 Fixação 3) A matriz A é do tipo 5x7 e a matriz B, do tipo 7x5. Assinale a alternativa correta. a) A matriz AB tem 49 elementos. b) A matriz BA tem 25 elementos. c) A matriz (AB)2 tem 625 elementos. d) A matriz (BA)2 tem 49 elementos. e) A matriz (AB) admite inversa.

6 Fixação F a b c d 4) (UERJ) A temperatura corporal de um paciente foi medida, em graus Celsius, três vezes 5 ao dia, durante cinco dias. Cada elemento aij da matriz abaixo corresponde à temperatura l observada no instante i do dia j. m 35,6 36,4 38,6 38,0 36,0 36,1 37,0 37,2 40,5 40,4 35,5 35,7 36,1 37,0 39,2 Determine: a) O instante e o dia em que o paciente apresentou a maior temperatura. b) A temperatura média do paciente no terceiro dia de observação. p A d

7 ixação ) (UERJ) Em um supermercado, um cliente empurra seu carrinho de compras passando peos setores 1, 2, e 3, com uma força de módulo constante de 4 newtons, na mesma direção e esmo sentido dos deslocamentos. Na matriz A abaixo, cada elemento a ij indica, em joules, o trabalho da força que o cliente faz ara deslocar o carrinho do setor i e j elementos do conjunto {1, 2, 3} = Ao se deslocar do setor 1 ao 2, do setor 2 ao 3 e, por fim, retornar ao setor 1, a trajetória o cliente descreve o perímetro de um triângulo. Nessas condições, o cliente percorreu, em metros, a distância de: ) 35 ) 40 ) 45 ) 50

8 Fixação 6) (UERJ) Três modelos de aparelhos de ar-condicionado, I, II e III, de diferentes potências, são produzidos por um determinado fabricante. Uma consulta sobre intenção de troca de modelo foi realizada com 1000 usuários desses produtos. Observe a matriz A, na qual cada elemento aij representa o número daqueles que pretendem trocar do modelo i para o modelo j A = Escolhendo-se aleatoriamente um dos usuários consultados, a probabilidade de que ele não pretenda trocar seu modelo de ar-condicionado é igual a: a) 20% b) 35% c) 40% d) 65%

9 1) (PUC) Dê a matriz 3x2 tal que a ij = i se i = j i 2 se i j

10 2) (PUC) O número de matrizes 3x3 cujos elementos pertencem ao conjunto {-1, 0, 1}, e nas quais não há dois elementos iguais na mesma linha e nem na mesma coluna, é igual a: a) 3 b) 6 c) 12 d) 36 e) 120

11 3) Dadas as matrizes e os produtos AB, AC, BC, BA, CA, CB, os produtos possíveis de calcular são: a) somente AC e CA; b) todos os produtos; c) somente AB e BC; d) somente AB, BA, BC, CB; e) somente AB e BA.

12 4) Sabe-se que as ordens das matrizes A, B e C são,respectivamente, 3 x r, 3 x s e 2 x t. Se a matriz (A - B). C é de ordem 3 x 4, então r + s + t é igual a: a) 6 b) 8 c) 10 d) 12 e) 14

13 5) (CESGRANRIO) Multiplicando 1 a. 2 3 b obtemos da primeira matriz é: a) 2 b) 1 c) 0 d) 1 e) 6. O produto dos elementos a e b

14 6) (UERJ) Cada par ordenado (x, y) do plano pode ser escrito como uma matriz. Para obter uma rotação de 90º do ponto de coordenadas (x, y) em torno da origem no sentido anti-horário basta multiplicar a matriz por. y 4 B -2 3 A 7 x Aplicando-se esse método para fazer a rotação do ponto médio do segmento da figura acima suas novas coordenadas serão: a) (5, -1) b) (-1, 5) c) (-5, -1) d) (-1, -5)

15 c) ) (UERJ) Multiplicando-se = a b por x = b obtém-se AX = c que é uma permutação dos c a elementos de X. Existem 5 outras matrizes de mesma ordem da matriz A, com apenas elementos de X. A soma destas 5 matrizes é: a) d) b) e)

16 8) (UFRJ) Marlos Charada, o matemático espião, concebeu um código para transformar uma palavra P de três letras em um vetor Y de R 3 como descrito a seguir. A partir da correspondência: A B C D E F G H I J L M N O P Q R S T U V X Z A palavra P é transformada em um vetor X de R Em seguida, usando a matriz código A = o vetor Y é obtido pela equação Y = A. X Por exemplo, a palavra MAR corresponde ao vetor X = (12, 1, 17) e é codificada com Y = AX = (26, 56, 29). Usando o processo acima, decodifique Y = (64, 107, 29).

17 9) (UFRJ) Considere as matrizes: A = e B = Seja A 2 = A. A e B 2 = B. B Determine a matriz C= A 2 - B 2 - (A+B) (A-B)

18 10) (UFF) Seja A = a) Determine o valor do número k tal que A 2 = k. A. b) Sendo n um inteiro positivo, calcule.

19 11) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia calcular as médias anuais dessas disciplinas usando produto de matrizes. Todas as provas possuíam o mesmo peso, e a tabela que ele conseguiu é mostrada a seguir. 1º bimestre 2º bimestre 3º bimestre 4º bimestre Matemática 5,9 6,2 4,5 5,5 Português 6,6 7,1 6,5 9,4 Geografia 8,6 6,8 7,8 9,0 História 6,2 5,6 5,9 7,7 Para obter essas médias, ele multiplicou a matriz obtida a partir da tabela por a) b) c) d) e)

20 12) (UFRJ) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes cada um consumiu e como a despesa foi dividida: S = e D = S refere-se às despesas de sábado e D às de domingo. Cada elemento a ij nos dá o número de chopes que i pagou para j, sendo Antônio o número 1, Bernardo o número 2 e Cláudio o número 3 (a ij representa o elemento da linha i, coluna j de cada matriz). Assim, no sábado, Antônio pagou 4 chopes que ele próprio bebeu, 1 chope de Bernardo e 4 de Cláudio (primeira linha da matriz S). a) Quem bebeu mais chope no fim de semana? b) Quantos chopes Cláudio ficou devendo para Antônio?

21 13) Na matriz abaixo estão representadas as distâncias entre 4 cidades. Cada elemento a ij representa a distância entre a cidade i e a cidade j em quilômetros A = Calcule: a) A distância entre a cidade 2 e a cidade 4. b) A menor distância a ser percorrida quando se deseja ir da cidade 1 até a cidade 3, passando pela cidade 4.

22 14) Um edifício de 3 andares possui 3 apartamentos por andar. Na matriz abaixo cada elemento a ij representa a quantidade de quartos dos apartamentos i de andar j Qual o andar que possui mais quartos? Quantos quartos possui?

23 15) (UFF) Nos processos de digitalização, imagens podem ser representadas por matrizes cujos elementos são os algarismos 0 e 1. Considere que a matriz linha L=( ) representa a figura a seguir: onde 1 representa quadrinho escuro e 0 representa quadrinho branco. Seja X a matriz dada por X = LM, onde M é a matriz M = (m ij ) com m ij = 1, se i + j = 7 0, se i + j 7, 1 i 6, 1 j 6. Dessa forma, a matriz X representa a figura da opção: a) b) c) d) e)

24 16) (UERJ) Três barracas de frutas, B 1, B 2 e B 3, são propriedades de uma mesma empresa. suas vendas são controladas por meio de uma matriz, na qual cada elemento b ij representa a soma dos valores arrecadados pelas barracas B i e B j, em milhares de reais, ao final de uma determinado dia de feira. x 1,8 3,0 B = a y 2,0 d c 7 Calcule, para esse dia, o valor, em reais: a) arrecadado a mais pela barraca B 3 em relação à barraca B 2 ; b) arrecadado em conjunto pelas três barracas.

25 17) (UFF) Um dispositivo eletrônico, usado em segurança, modifica a senha escolhida por um usuário, de acordo com o procedimento descrito abaixo. A senha escolhida S 1 S 2 S 3 S 4 deve conter quatro dígitos, representados por S 1, S 2, S 3 e S 4. Esses dígitos são, então, transformados nos dígitos M 1, M 2, M 3 e M 4, da seguinte forma: M 1 S 1 M 3 S = P e S2 M = P onde P é a matriz 4 S M 2 Se a senha de um usuário, já modificada, é 0110, isto é, M 1 = 1, M 2 = 1, M 3 = 1 e M 4 = 0, pode-se afirmar que a senha escolhida pelo usuário foi: a) 0011 d) 1010 b) 0101 e) 1100 c) 1001

26 18) (UFRJ) Em uma cidade, há três revistas de noticiário semanal: 1,2,3. Na matriz A=(a ij ) abaixo, o elemento a ij representa a probabilidade de um assinante trocar a assinatura da revista i para a revista j, na época da renovação. 0,6 0,1 0,3 A = 0,1 0,7 0,2 0,4 0,2 0,4 a) Qual é a probabilidade de os assinantes da revista 2 trocarem de revista quando forem renovar a assinatura? b) Quais os leitores menos satisfeitos com a revista que estão assinando?

27 19) (UERJ) Observe parte da tabela do quadro de medalhas dos Jogos Pan-Americanos no Rio de Janeiro em 2007: País Tipos Medalhas 1- ouro 2 - prata 3 - bronze Total 1 - Estados Unidos Cuba Brasil Com base na tabela, é possível formar a matriz quadrada A cujos elementos a ij representam o número de medalhas do tipo j que o país i ganhou, sendo i e j pertencentes ao conjunto {1, 2, 3}. Para fazer uma outra classificação desses países,são atribuídos às medalhas os seguintes valores: - ouro: 3 pontos - prata: 2 pontos - bronze: 1 ponto 3 Esses valores compõem a matriz V = 2 1 Determine, a partir do cálculo do produto AV, o número de pontos totais obtidos pelos três países separadamente.

28 20) (UFRJ) Há 5 senadores designados para uma Comissão Parlamentar de Inquérito. Eles devem escolher entre si um presidente para a Comissão, sendo que cada senador pode votar em até 3 nomes. Realizada a votação onde cada um deles recebeu um número de 1 a 5, os votos foram tabulados na matriz A = (a ij ), abaixo indicada. Na matriz A, cada elemento aij é igual a 1(um), se i votou em j; e é igual a 0 (zero), caso contrário. A = Responda, justificando: a) Qual é o candidato mais votado? b) Quantos candidatos votaram em si mesmos?

Lista de Exercícios Matrizes

Lista de Exercícios Matrizes 2º ano Regular / Comércio Exterior Nome: Classe: -2 Professor: Fábio Jun 3º período Lista de Exercícios Matrizes Questões dissertativas. (FGV) Uma fábrica decide distribuir os excedentes de três produtos

Leia mais

Exercícios de Matemática Matrizes

Exercícios de Matemática Matrizes Exercícios de Matemática Matrizes 4. (Unesp) Determine os valores de x, y e z na igualdade a seguir, envolvendo matrizes reais 2 2: 1. (Fuvest) a) Dada a matriz A, calcule a sua inversa A. b) A relação

Leia mais

PLANO DE TRABALHO SOBRE MATRIZES E DETERMINANTES

PLANO DE TRABALHO SOBRE MATRIZES E DETERMINANTES FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP/BRIZOLÃO- 419 BENIGNO BAIRRAL PROFESSORA: DIONE BRAGA FREITAS MATRÍCULA: 927813-6 SÉRIE: 2º ANO ENSINO MÉDIO

Leia mais

Lista de matemática. professor Habib

Lista de matemática. professor Habib Lista de 4 a avaliação (Orientação de estudo) 1. (Ufpe) Nos quilômetros 31 e 229 de uma rodovia estão instalados telefones de emergência. Ao longo da mesma rodovia e entre estes quilômetros, pretende-se

Leia mais

Lista de Atividades - semana 1. 4a Avaliação

Lista de Atividades - semana 1. 4a Avaliação Lista de Atividades - semana 1 4a Avaliação 1. (Ufrj) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes

Leia mais

Matrizes. a inversa da matriz , onde cada elemento aij

Matrizes. a inversa da matriz , onde cada elemento aij Matrizes. (Ufpe 03) Seja a c b d a inversa da matriz 3. 4 Indique a b c d.. (Espm 03) A distribuição dos n moradores de um pequeno prédio de apartamentos é 4 x 5 dada pela matriz 3 y, onde cada elemento

Leia mais

LISTA DE EXERCÍCIOS 2017

LISTA DE EXERCÍCIOS 2017 CURSO LISTA DE EXERCÍCIOS 2017 DISCIPLINA ESTUDANTE PROFESSOR (A) DATA Questão 1) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas

Leia mais

Matrizes. 2 e satisfaz a identidade matricial. = 2 2, então, o valor. sen cos. 4) Seja a matriz M = (mij)2x3, tal que mij = j 2 - i 2.

Matrizes. 2 e satisfaz a identidade matricial. = 2 2, então, o valor. sen cos. 4) Seja a matriz M = (mij)2x3, tal que mij = j 2 - i 2. Matrizes ) Antônio, Bernardo e Cláudio saíram para tomar chope, de bar em bar, tanto no sábado quanto no domingo. As matrizes a seguir resumem quantos chopes cada um consumiu e como a despesa foi dividida:

Leia mais

Para obter essas médias, ele multiplicou a matriz obtida a partir da tabela por:

Para obter essas médias, ele multiplicou a matriz obtida a partir da tabela por: Exercícios Matrizes 1. (Enem) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia

Leia mais

Matemática. Exercícios de Revisão II

Matemática. Exercícios de Revisão II Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 2 a Matemática Exercícios de Revisão II 1) (Unifesp-2009) Sob determinadas condições, o antibiótico gentamicina, quando ingerido, é eliminado

Leia mais

Camarões Se nos concentrarmos apenas nas informações numéricas, teremos três matrizes A = B = Podemos observar que:

Camarões Se nos concentrarmos apenas nas informações numéricas, teremos três matrizes A = B = Podemos observar que: 2. 11. Multiplicação entre Matrizes Os exemplos abaixo servirão para compreendermos a definição de multiplicação, porque não é óbvia como as operações anteriores. Esses exemplos poderiam ser resolvidos

Leia mais

Ciências da Natureza e Matemática

Ciências da Natureza e Matemática Introdução e Operações com 1 CEDAE Acompanhamento Escolar [Type the company name] Introdução e Operações com 2 CEDAE Acompanhamento Escolar [Type the company name] Introdução e Operações com 3 CEDAE Acompanhamento

Leia mais

Considerando log2 = 0,3 e log3 = 0,5, determine:

Considerando log2 = 0,3 e log3 = 0,5, determine: log 27 log 25 log 3 5 2 64 log 64 log5125 4 log100.000 log0,001 log3 81 log1000 Considerando log2 = 0,3 e log3 = 0,5, determine: log16 log128 Considerando log2 = 0,3 e log3 = 0,5, determine: log5 Considerando

Leia mais

MATRIZES E DETERMINANTES. a, com índices duplos, onde

MATRIZES E DETERMINANTES. a, com índices duplos, onde MATRIZES E DETERMINANTES Para designar com clareza situações que apresentam um grupo ordenado de números dispostos em tabelas com linhas e colunas, introduziremos o conceito de matriz. Nesse sentido, matrizes

Leia mais

1)(UERJ) Observe parte da tabela do quadro de medalhas dos Jogos Pan-americanos do Rio de Janeiro em 2007.

1)(UERJ) Observe parte da tabela do quadro de medalhas dos Jogos Pan-americanos do Rio de Janeiro em 2007. COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III NOTA: PROFESSORES: Eduardo/ Vicente DATA: NOME: Nº: NOME: Nº: NOME: N : NOME: N : TURMA: GRUPO I: Alunos 1 ; 2 ; 3 ; 4. 1)(UERJ) Observe parte da tabela

Leia mais

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA

LISTA DE EXERCÍCIOS DE RECUPERAÇÃO 1º TRIMESTRE MATEMÁTICA LISTA DE EXERCÍCIOS DE RECUPERAÇÃO º TRIMESTRE MATEMÁTICA ALUNO(a): Nº: TURMA: 2ª SÉRIE UNIDADE: VV JC JP PC DATA: / /209 OBS.: Esta lista deve ser entregue resolvida no dia da prova de Recuperação. Valor:

Leia mais

g.( ) Se A é a matriz dada por 1* - Julgue se verdadeiro (V) ou falso (F), justificando sua escolha.

g.( ) Se A é a matriz dada por 1* - Julgue se verdadeiro (V) ou falso (F), justificando sua escolha. LISTA DE EXERCÍCIOS MATRIZES E DETERMINANTES PROESSOR: Claudio Saldan CONTATO: [email protected] PARTE * - Julgue se verdadeiro () ou falso (), ustificando sua escolha. *Referente a proposições de questões

Leia mais

Mat. Professores: PC Sampaio Gabriel Ritter Rafael Jesus Monitor: Gabriella Teles

Mat. Professores: PC Sampaio Gabriel Ritter Rafael Jesus Monitor: Gabriella Teles Semana 19 Professores: PC Sampaio Gabriel Ritter Rafael Jesus Monitor: Gabriella Teles RESUMO Ex: Adição de matrizes Vamos considerar duas Matrizes A e B do mesmo tipo (ou seja a soma de duas matrizes

Leia mais

= A. 3x t t+z. uma matriz quadrada de ordem 2 tal que a ij = 2i j +3 e seja 3 2 B =. Encontre a matriz X tal que X +2A = B. 5 10

= A. 3x t t+z. uma matriz quadrada de ordem 2 tal que a ij = 2i j +3 e seja 3 2 B =. Encontre a matriz X tal que X +2A = B. 5 10 Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Ciência da Computação Disciplina: Álgebra Linear I Professor: Renato Ferreira da Cruz 1 a Lista de Exercícios 1 Seja A =

Leia mais

Equipe de Matemática MATEMÁTICA. Matrizes

Equipe de Matemática MATEMÁTICA. Matrizes Aluno (a): Série: 3ª Turma: TUTORIAL 14B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Matrizes Introdução O crescente uso dos computadores tem feito com que a teoria das matrizes seja cada vez mais

Leia mais

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5

Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5 Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c

Leia mais

1. (Unirio) Dada a matriz representada na figura adiante. 4. (Ufes) Considere a matriz mostrada na figura a. seguir. Determine o valor de A + A - I.

1. (Unirio) Dada a matriz representada na figura adiante. 4. (Ufes) Considere a matriz mostrada na figura a. seguir. Determine o valor de A + A - I. COLÉGIO ADVENTISTA DE SÃO JOSÉ DO RIO PRETO NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B BIMESTRE: 1º PROFESSOR: Alexandre da Silva Bairrada 1. (Unirio) Dada

Leia mais

Visite : c) 2 d) 1. a) 1000.(P t.q) -1 b) P t.q.1000 c) Q -1.P.1000 d) 1000.(Q t ) -1.P e) (Q -1 ) t.p.

Visite :  c) 2 d) 1. a) 1000.(P t.q) -1 b) P t.q.1000 c) Q -1.P.1000 d) 1000.(Q t ) -1.P e) (Q -1 ) t.p. Exercícios de Matemática, Matrizes Se e satisfaz a identidade matricial ) (Unicamp-999) Considere as matrizes: 5 cos sen x cos sen sen cos y sen cos =, então, o valor M=, X = z e Y = correto de tg é igual

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 3º BIMESTRE/2013 INTERPRETAÇÃO DE MATRIZES

FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 3º BIMESTRE/2013 INTERPRETAÇÃO DE MATRIZES FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 3º BIMESTRE/2013 INTERPRETAÇÃO DE MATRIZES Tarefa 1 Aluno: Thiago Milani Cabral Introdução: A presente

Leia mais

1) Considere cidades de uma região que serão numeradas de a. Na matriz a seguir:

1) Considere cidades de uma região que serão numeradas de a. Na matriz a seguir: COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA AVALIAÇÃO: EXERCÍCIO COMPLEMENTAR I DISCIPLINA: MATEMATICA PROFESSOR (A: ALUNO(A): DATA: / / SÉRIE: 2º ANO ENTREGA: / / ORIENTAÇÕES IMPORTANTES! Leia a atividade

Leia mais

Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros.

Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros. MATRIZES DEFINIÇÃO Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros. M = à M é uma matriz 2 x 3. Cada elemento da matriz

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele

Leia mais

Matemática Matrizes e Determinantes

Matemática Matrizes e Determinantes . (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números

Leia mais

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6).

Ficha de Trabalho 02 Sistemas. Matriz Inversa. (Aulas 4 a 6). F I C H A D E R A B A L H O 0 Ficha de rabalho 0 Sistemas. Matriz Inversa. (Aulas 4 a 6). Sistemas de equações lineares. Equação linear. Sistema de equações lineares. Equação matricial. Soluções do sistema.

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA

MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA MATEMÁTICA - 3 o ANO MÓDULO 22 GEOMETRIA ANALÍTICA y Ya d =? A Yb B Xb Xa x y Ya d =? A Yb B Xb Xa x y Ya d =? A Ya - Yb Yb B Xb Xa - Xb Xa x y Ya A Ym =? M Yb B Xb Xm=? Xa x y Ya A Ym =? M T Yb B R Xb

Leia mais

COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 1ª PROVA PARCIAL DE MATEMÁTICA

COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 1ª PROVA PARCIAL DE MATEMÁTICA COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 2016 1ª PROVA PARCIAL DE MATEMÁTICA Aluno(a): Nº Ano: 2º Turma: Data: 09/4/2016 Nota: Professor(a): Flávio/Gustavo Valor da Prova: 40 pontos Orientações

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

tal que = +3 tal que 2+, > em que / 01 =2 3) ( > seja igual à matriz identidade. 3(+4 1

tal que = +3 tal que 2+, > em que / 01 =2 3) ( > seja igual à matriz identidade. 3(+4 1 " COLÉGIO ODELO LUIZ EDUARDO AGALHÃES ATEÁTICA LISTA : ATRIZES E DETERINANTES 2ª SÉRIE TURA: II UNIDADE PROFESSOR: HENRIQUE PLÍNIO DATA: / /206 CAAÇARI - BA ALUNO(A): Nenhum obstáculo é tão grande se a

Leia mais

2. Escreva em cada caso o intervalo real representado nas retas:

2. Escreva em cada caso o intervalo real representado nas retas: ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:

Leia mais

A soma dos quadrados das constantes x, y, a, b e c que satisfazem

A soma dos quadrados das constantes x, y, a, b e c que satisfazem Florianópolis Professor: BAIANO Matrizes x 9 a 0 x 3 b 1 1. (Udesc ) Considere as matrizes A =, B = e y 4 16 1 2y 1 1 1 4 2 27 13 6 C =. 2y 1 A soma dos quadrados das constantes x, y, a, b e c que satisfazem

Leia mais

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA 8 -MATRIZES /SISTEMAS LINEARES 1. (Uerj 2017) Observe a matriz: 3 t 4 3 t 4 Para que o determinante dessa matriz seja nulo,

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

- MATEMÁTICA - PUC-MG

- MATEMÁTICA - PUC-MG Vestibulando Web Page 1. Uma empresa deve instalar telefones de emergência a cada 42 quilômetros, ao longo da rodovia de 2.184 km, que liga Maceió ao Rio de Janeiro. Considere que o primeiro desses telefones

Leia mais

2 LISTA DE MATEMÁTICA

2 LISTA DE MATEMÁTICA LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.

Leia mais

PROCESSO SELETIVO/ O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15

PROCESSO SELETIVO/ O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 PROCESSO SELETIVO/006 1 O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Para arrecadar doações, uma Entidade Beneficente usou uma conta telefônica do tipo 0800. O número de pessoas que ligaram, por dia,

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2005 1 Considere as matrizes A, B, C, D e E com respectivas ordens,

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO

MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO MATEMÁTICA - 3 o ANO MÓDULO 09 PROBLEMAS DE MÁXIMO E MÍNIMO E INEQUAÇÃO - -2 + - 1/2 + - 1/2 + + 1 - + + + -1 2 x -1 3 - - - x Como pode cair no enem Um menino chutou uma bola. Esta atingiu altura máxima

Leia mais

2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4.

2. Determine a ordem das matrizes A, B, C, D e E, sabendo-se que AB T tem ordem 5 3, (C T +D)B tem ordem 4 6 e E T C tem ordem 5 4. Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear 2016/II 1 Considere as matrizes A, B, C, D e E com respectivas

Leia mais

CURSO PRÉ VESTIBULAR UECEvest TD DE MATEMÁTICA/ENEM PROFESSOR: DANIEL EUFRAZIO/DATA 11/10/2014

CURSO PRÉ VESTIBULAR UECEvest TD DE MATEMÁTICA/ENEM PROFESSOR: DANIEL EUFRAZIO/DATA 11/10/2014 1. Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia calcular as médias anuais dessas

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) Prof. Arthur Lima

MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) Prof. Arthur Lima MATEMÁTICA E SUAS TECNOLOGIAS EXAME NACIONAL DO ENSINO MÉDIO (ENEM) PROPORCIONALIDADE ENEM 2016) Num mapa com escala 1 : 250 000, a distância entre as cidades A e B é de 13 cm. Num outro mapa, com escala

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 05 DIVISIBILIDADE E MÉDIAS

MATEMÁTICA - 1 o ANO MÓDULO 05 DIVISIBILIDADE E MÉDIAS MATEMÁTICA - 1 o ANO MÓDULO 05 DIVISIBILIDADE E MÉDIAS Como pode cair no enem (PUC) 1440 soldados são divididos em x equipes de modo que todas as equipes tenham o mesmo número de soldados e este número

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA. Os conteúdos selecionados para a recuperação são:

TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA. Os conteúdos selecionados para a recuperação são: TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA Os conteúdos selecionados para a recuperação são: 8) RESOLVA os seguintes sistemas pelo método que achar conveniente: (Valor: 1,0). 9) CALCULE as adições

Leia mais

1) (UFV) Seja A uma matriz invertível de ordem 2. Se det (2A) det (A ), então o valor de det A é: a) 2 b) 1 c) 3. e) 4

1) (UFV) Seja A uma matriz invertível de ordem 2. Se det (2A) det (A ), então o valor de det A é: a) 2 b) 1 c) 3. e) 4 ) (UFV) Seja uma matriz invertível de ordem. Se det () det ( ), então o valor de det é: e) 4 ) (UFV) Na matriz quadrada ( a ij ) de ordem, os elementos a, a, a e a, nesta ordem, apresentam a seguinte propriedade:

Leia mais

FÍSICA - 2 o ANO MÓDULO 11 ELETROSTÁTICA: POTENCIAL, TRABALHO E ENERGIA

FÍSICA - 2 o ANO MÓDULO 11 ELETROSTÁTICA: POTENCIAL, TRABALHO E ENERGIA FÍSICA - 2 o ANO MÓDULO 11 ELETROSTÁTICA: POTENCIAL, TRABALHO E ENERGIA + - + + + + + A B + d + q q - - - - - Q q P d 6.V 5.V V -V c 2.d3.d 4.d 5.d 6.d d 4.V 3.V 2.V Q>0-2.V -3.V -4.V Q

Leia mais

Teste Intermédio de MATEMÁTICA - 8o ano 11 de maio de 2011

Teste Intermédio de MATEMÁTICA - 8o ano 11 de maio de 2011 Teste Intermédio de MATEMÁTICA - 8o ano de maio de 20 Proposta de resolução. Analisando exclusivamente os votos, da população de negros, nos três candidatos, podemos verificar que o candidato Q foi mais

Leia mais

Exercícios de matemática - 2º ano - Ensino Médio - 4º bimestre

Exercícios de matemática - 2º ano - Ensino Médio - 4º bimestre Exercícios de matemática - º ano - Ensino Médio - º bimestre Pergunta de 0 - Assunto: Álgebra [0 - FUVEST-USP] Considere a matriz a a + A = [ a a + ] em que aa é um número real. Sabendo que AA admite inversa

Leia mais

, a segunda coluna da matriz A é um múltiplo da primeira coluna.

, a segunda coluna da matriz A é um múltiplo da primeira coluna. Lista de exercícios - 2º ano - Matemática Aluno: Série: Turma: Data: Questão 1 Segundo diversos estudos, a função relaciona o número de dias y necessários para que um corpo, após sua morte, se torne esqueleto,

Leia mais

PROPOSTA DE RESOLUÇÃO DO EXAME NACIONAL DE MATEMÁTICA B (PROVA 735) 2ªFASE. =3 log 3,5+1 =3 log 3,5+1

PROPOSTA DE RESOLUÇÃO DO EXAME NACIONAL DE MATEMÁTICA B (PROVA 735) 2ªFASE. =3 log 3,5+1 =3 log 3,5+1 PROPOSTA DE RESOLUÇÃO DO EXAME NACIONAL DE MATEMÁTICA B (PROVA 735) 2ªFASE Grupo I 1. O tempo que o recipiente demorou a ficar vazio é o zero da função Q, pelo que é necessário calcular o zero da função

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita

Simulado enem. Matemática e suas Tecnologias. Volume 2. distribuição gratuita Simulado 015 enem G a b a r i t o ạ série Matemática e suas Tecnologias Volume distribuição gratuita Simulado Enem 015 Questão 1 Matemática e suas Tecnologias Gabarito: Alternativa D ( A ) Incorreta. O

Leia mais

1º VESTIBULAR DE 2019

1º VESTIBULAR DE 2019 Secretaria de Educação Profissional e Tecnológica Instituto Federal do Norte de Minas Gerais 1º VESTIBULAR DE 2019 Horário: 14h às 17h CADERNO 02 MATEMÁTICA IDENTIFICAÇÃO DO CANDIDATO Nome: Documento:

Leia mais

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaio. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA

Leia mais

Acadêmico(a) Turma: Capítulo 2: MATRIZES

Acadêmico(a) Turma: Capítulo 2: MATRIZES 1 Acadêmico(a) Turma: 2.1. Definição Capítulo 2: MATRIZES A teoria das matrizes e a teoria dos determinantes são pré-requisitos para resolução e discussão de um sistema linear. Define-se matriz m x n uma

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 13 PROGRESSÃO ARITMÉTICA

MATEMÁTICA - 2 o ANO MÓDULO 13 PROGRESSÃO ARITMÉTICA MATEMÁTICA - 2 o ANO MÓDULO 13 PROGRESSÃO ARITMÉTICA a n = a 1 + (n - 1)r a k = a k-1 + a k+1 2 Ex.: ( 2, 5, 8, 11, 14, 17, 20,...) 11 = 8 + 14 2 11 = 2 + 20 2 11 = 5 + 17 2 Como pode cair no enem (ENEM)

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B. Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e

Leia mais

7 o ano/6 a série E.F.

7 o ano/6 a série E.F. Módulo de Notação Algébrica e Introdução às Equações Eercícios de Notação Algébrica. 7 o ano/6 a série E.F. Eercícios de Notação Algébrica Notação Algébrica e Introdução às Equações. 1 Eercícios Introdutórios

Leia mais

MATEMÁTICA. Aula 14 Matrizes. Prof. Anderson

MATEMÁTICA. Aula 14 Matrizes. Prof. Anderson MATEMÁTICA Aula Matrizes Prof. Anderson Assuntos Conceito Matrizes com Nomes Especiais Igualdade de Matrizes Operações com Matrizes Matriz Inversa Conceito As matrizes são quantidades de dados passíveis

Leia mais

1ª série EM - Questões para a RECUPERAÇÃO FINAL RF 2017 MATEMÁTICA

1ª série EM - Questões para a RECUPERAÇÃO FINAL RF 2017 MATEMÁTICA 1ª série EM - Questões para a RECUPERAÇÃO FINAL RF 2017 MATEMÁTICA 01. Transforme: a) 30º para radianos b) 60º para radianos c) 3π 2 rad para graus d) π rad para graus 6 02. Calcule: a) O complemento de

Leia mais

CEM Centro De Estudos Matemáticos

CEM Centro De Estudos Matemáticos 1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de

Leia mais

n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo:

n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo: n. Matrizes Foi um dos primeiros matemáticos a estudar matrizes, definindo a ideia de operarmos as matrizes como na Álgebra. Historicamente o estudo das Matrizes era apenas uma sombra dos Determinantes.

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 3 Bimestre Matemática Prof. Leandro Conteúdo: Área de figuras planas. Ponto médio. Distância entre 2 pontos; Equação fundamental da reta. Poliedros.

Leia mais

Matemática 2 Prof. Heitor Achilles

Matemática 2 Prof. Heitor Achilles 2 ª SÉRIE EM ORIENTAÇÕES FINAIS Matemática 2 Prof. Heitor Achilles ORIENTAÇÃO DE ESTUDO CONTEÚDOS PARA A RECUPERAÇÃO FINAL COMBINATÓRIA: PFC, Permutações simples, Combinações simples, Permutação com elementos

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA)

MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA) MATEMÁTICA - 3 o ANO MÓDULO 01 PROGRESSÃO ARITMÉTICA (PA) Como pode cair no enem (ENEM) Jogar baralho é uma atividade que estimula o raciocínio. Um jogo tradicional é a Paciência, que utiliza 52 cartas.

Leia mais

Dado: g 10 m / s a) 20 b) 16 c) 24 d) 38 e) 15

Dado: g 10 m / s a) 20 b) 16 c) 24 d) 38 e) 15 1. (Unicamp 016) Músculos artificiais feitos de nanotubos de carbono embebidos em cera de parafina podem suportar até duzentas vezes mais peso que um músculo natural do mesmo tamanho. Considere uma fibra

Leia mais

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM 1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função: Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão

Leia mais

Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática

Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 0-0 PROVA DE MATEMÁTICA Questão Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel é igual

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA

MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA Como pode cair no enem (UFMG) A população de uma colônia da bactéria E. coli dobra a cada 20 minutos. Em um experimento, colocou-se, inicialmente, em

Leia mais

Guia-1. a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn

Guia-1. a 11 a a 1n a 21 a a 2n A = a m1 a m2... a mn Guia-1 Revisão de Matrizes, Determinantes, Vetores e Sistemas Lineares SMA00 - Complementos de Geometria e Vetores Estagiária PAE: Ingrid Sofia Meza Sarmiento 1 Introdução Este texto cobre o material sobre

Leia mais

Lista de exercícios para serem entregues no dia 22 de Janeiro de 2016.

Lista de exercícios para serem entregues no dia 22 de Janeiro de 2016. Lista de eercícios para serem entregues no dia de Janeiro de 6 ) Dadas as matries A [ a ij ] tal que j aij i e [ b ij ] B tal que b ij j i, determine: a) a b b) a( b b) c) a b ) As meninas Amanda (); Bianca

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) C 11) A 16) D 21) D 2) B 7) A 12) B 17) A 22) E 3) B 8) C 13) D 18) C

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MTEMÁTI - 3o ciclo 015 - Época especial Proposta de resolução aderno 1 1. omo foi escolhido um dos convidados que gostam de gelatina, existem escolhas possíveis (a na, o Paulo, o Rui, a

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

MATEMÁTICA A figura mostra as medidas a, b, e c dos ângulos assinalados, sendo. Nessas condições, podemos afirmar que:

MATEMÁTICA A figura mostra as medidas a, b, e c dos ângulos assinalados, sendo. Nessas condições, podemos afirmar que: MÓDULO 1 - Matemática 3 a série do Ensino Médio QUESTÕES OBJETIVAS MATEMÁTICA 01 - A figura mostra as medidas a, b, e c dos ângulos assinalados, sendo. Nessas condições, podemos afirmar que: (A) a + b

Leia mais

Gabarito. De acordo com os dados da tabela, percebe-se que a possibilidade de compra de dois itens variou na mesma

Gabarito. De acordo com os dados da tabela, percebe-se que a possibilidade de compra de dois itens variou na mesma CAp UFRJ Admissão 005 ensino médio Matemática / 1 a série Gabarito QUESTÃO 1 A revista VEJA de 11/08/004 trouxe a tabela a seguir ilustrando a desvalorização do real a partir da possibilidade de compra

Leia mais

2 ª Fase Exame Discursivo

2 ª Fase Exame Discursivo 02/12/2007 2 ª Fase Exame Discursivo matemática Caderno de prova Este caderno, com doze páginas numeradas seqüencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 14 SOMA DOS TERMOS DE UMA PA

MATEMÁTICA - 2 o ANO MÓDULO 14 SOMA DOS TERMOS DE UMA PA MATEMÁTICA - 2 o ANO MÓDULO 14 SOMA DOS TERMOS DE UMA PA Como pode cair no enem (ENEM) As projeções para a produção de arroz no período de 2012 2021, em uma determinada região produtora, apontam para uma

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por

Leia mais

Exercício Termodinâmica (com solução comentada)

Exercício Termodinâmica (com solução comentada) Exercício ermodinâmica (com solução comentada ara o cálculo do trabalho realizado pelo gás em uma transformação em que a pressão varia devemos calcular a área do gráfico, porém deve-se dividir a área do

Leia mais

Exercícios de Matemática II

Exercícios de Matemática II Nome: nº Professor(a): Série: ª EM. Turma: Data: / /014 Sem limite para crescer Exercícios de Matemática II 1º Trimestre 1. (Uem 011) Um cientista deseja determinar o calor específico de um material. Para

Leia mais

Elaine Cristina e Aline Heloisa

Elaine Cristina e Aline Heloisa ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES ANO 2018 PROFESSOR (a) DISCIPLINA Valor: Elaine Cristina e Aline Heloisa Matemática 30 pontos ALUNO (a) SÉRIE 2º ANO ENSINO MÉDIO

Leia mais

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)

Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1) UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se

Leia mais

Sistemas lineares e matrizes, C = e C =

Sistemas lineares e matrizes, C = e C = 1. Considere as matrizes ( 2 1 A 4 0 1 MATEMÁTICA I (M 195 (BIOLOGIA, BIOQUÍMICA E ARQUITETURA PAISAGISTA 2014/2015, B Sistemas lineares e matrizes ( 4 1 2 5 1 Verifique se está definida e, caso esteja,

Leia mais