Regime Permanente Senoidal
|
|
|
- Jose Centrone Neto
- 9 Há anos
- Visualizações:
Transcrição
1 egime Permanente Senoidal onceito Em regime permanente senoidal U ( t) U máx. sen( t) ( t) máx. sen( t)
2 egime Permanente Senoidal apacitor Em egime Permanente Senoidal Para um circuito em regime permanente senoidal, de corrente contínua, o capacitor apresenta-se como um circuito aberto. U U c c ( t) U U c máx 0º. sen( t) c c c c du c ( t). U máx..cos( t) dt ( t) ( t) c máx máx 90º.cos( t). sen( t 90º) orrente adiantada de 90º em relação à tensão.
3 egime Permanente Senoidal ndutor Em egime Permanente Senoidal Para um circuito em regime permanente senoidal, de corrente contínua, o indutor apresenta-se como um curto. Assumindo, por semelhança ao capacitor: U ( t) l. d dt l ( t) l U l máx ( t) U. sen( t) máx. sen( t 90º) orrente atrasada de 90º em relação à tensão.
4 Fasor onceito onsidere-se a função exponencial complexa: Ae j( ti ) Acos( ti ) jasen( ti ) Pode se perceber que a função se repete com uma periodicidade. A periodicidade da função indica que o segmento que une o centro complexo aos pontos sobre a circunferência de raio A, num instante t=t i,roda com uma velocidade angular de rad/s. T
5 Fasor onceito No entanto, se se considerar um novo referencial que roda no sentido anti- horário com uma velocidade angular, então nesse plano obtém-se:
6 Fasor onceito A importância da notação fasorial na análise do regime permanente senoidal deve-se ao fato de nos circuitos lineares excitados por fontes senoidais, as tensões e as correntes em todos os nós e componentes do circuito serem também senoidais e com a mesma frequência angular. As metodologias de análise e de representação das grandezas podem, portanto, serem abreviadas, de modo a conterem apenas a informação relativa à amplitude e à fase na origem, relegando para segundo plano aquela relativa à frequência angular (e ao tempo) que, como se disse, é comum a todo o circuito.
7 Fasor Notações Forma Polar: A A Forma Trigonométrica: A A. cos( ) ja. sen( )
8 Fasor Definição matemática Sejam V. sen( ) e ( t). sen( t ) v( t) m t máx A tensão e a corrente em um circuito indutivo
9 Fasor Definição matemática A tensão e a corrente pode ser escrita de outra forma: V V m e j0 V ef 0 m e j As relações entre as diversas grandezas presentes em um circuito podem ser representado conveniente num diagrama vetorial
10 Fasor Nota importante O método fasorial só é aplicável a funções senoidais Os módulos dos fasores, são valores eficazes Todas as propriedades dos vetores são aplicáveis nos fasores
11 Fasor Gráficos As relações entre as diversas grandezas presentes num circuito podem ser representadas convenientemente num diagrama vetorial
12 mpedância onceito A resistência e a reatância dos circuitos elétricos podem ser combinadas, de forma a definirem uma impedância (medida em ohms) V, onde é ( ) Ainda podemos definir como sendo: tan
13 mpedância mpedância num circuito capacitivo puro U U 90º
14 mpedância mpedância num circuito indutivo puro E U U 90º
15 Potência em circuito A onceito Num circuito em corrente alternada os valores da tensão e corrente variam periodicamente com o tempo. As energias armazenadas nos campos elétricos e magnéticos associados aos condutores estão periodicamente a variar. As trocas de energia correspondentes não correspondem ao consumo nos receptores.
16 Potência em circuito A Potência Ativa e Potência eativa Nos circuitos em corrente alternada é possível em cada instante:. A potência ativa, que corresponde à conversão que se efetua no receptor, da energia elétrica em outra forma de energia. P r. A potência, Pc, que corresponde à variação da energia armazenada nos campos elétricos existente no receptor e nos dispositivos que o alimentam. P c dwe dt du u dt 3. A potência, Pm, que corresponde à variação da energia armazenada nos campos magnéticos existente no receptor e nos dispositivos que o alimentam. dwm di Pm i dt dt
17 Potência em circuito A Potência Ativa e Potência eativa Podem definir-se as grandezas: Potência Ativa: P U..cos( watts) Potência eativa: Q U.. sen( VAr)
18 Potência em circuito A Fator de Potência A grandeza designa-se por fator de potência A potência ativa, P, é o valor médio da potência instantânea e, por conseguinte, corresponde à potência que é efetivamente transferida. A potência reativa, Q, é o valor máximo da componente da potência que oscila entre o gerador e a carga, cujo valor médio é nulo, resultante da variação da energia magnética ou elétrica armazenada nos elementos indutivos ou capacitivos, da impedância de carga.
19 Potência em circuito A Variação da Potência com o tipo de carga O ângulo pode variar entre / (carga capacitiva pura) e / (carga indutiva pura) A potência ativa é sempre positiva, ou nula para circuitos capacitivos ou indutivos puros. A potência reativa pode ser positiva ou negativa. Será positiva quando a carga for indutiva, >0; negativa se a carga for capacitiva <0; nula se a carga for resistiva = 0.
20 Potência em circuito A Potência omplexa Aparente A potência complexa S é definida pelo produto do fasor tensão pelo conjugado do fasor corrente: S P jq
21 Potência em circuito A Potência omplexa Aparente O módulo da potência complexa é a potência aparente: S P Q A potência aparente é medida em VA (Volt-ampére)
22 Elementos em Série Elementos em série: Dois elementos em série tem apenas um ponto em comum. aracterística principal: mesma corrente atravessando os elementos.
23 ircuitos em Série Equacionamento: Observando a figura anterior nota-se a toda tensão E recai sobre os elementos e, portanto: E E E E U U ( ).
24 Elementos em Paralelo Elementos em Paralelo: Há mais de um ponto comum entre dois elementos: aracterística principal: a tensão sobre os elementos é a mesma.
25 Elementos em Paralelo Equacionamento O equacionamento é feito de forma análoga ao dos elementos em série: E U U E ainda temos que: U.
26 Elementos em Paralelo Equacionamento E U U U U. E E E E
27 Elementos em Delta/Estrela Formulação Geral 3 Y AB ) //( 3 B A ) //( 3 B A
28 Fórmulas Mnemônicas Y B A B. B A A B. B A A. 3
29 Fórmulas Mnemônicas Y A B
30 Tipos de Fontes Fontes ndependentes Tensão: Mantêm as tensões nos terminais independentemente da corrente através das fontes
31 Tipos de Fontes orrente: Mantêm a corrente independentemente da tensão adquirida nos terminais.
32 Tipo de Fontes Fontes Dependentes Tensão: Depende da tensão em um elemento ou parte de um circuito V
33 Tipo de Fontes orrente: Depende da corrente em um elemento ou parte de um circuito.
34 Teorema da Superposição Enunciado: A corrente em um ramo ou as tensões em elementos ou partes do circuito são resultado das ações das fontes de tensão e corrente (independentes) agindo independentemente no circuito, ou seja, a corrente ou as tensões são o somatório das correntes ou tensões individuais que aparecem em partes do circuito quando cada fonte (corrente ou tensão) atua isoladamente.
35 Teorema da Superposição onsiderações: - Fonte de Tensão: urto-ircuito entre os terminais. - Fonte de orrente: ircuito Aberto entre os terminais. n - Total i { ontribuição de cada fonte. i n - V Total V i { ontribuição de cada fonte i - sobre o elemento.
36 TANSFOMAAO DE FONTE onclusão: Assim podemos concluir que = para máxima transferência de potencia para a carga, a resistência da carga deve ser igual a resistência do circuito.
37 Teorema de Thévenin e Norton Aplicação do Teorema de Thévenin Permite transformar uma rede linear complexa (com fontes dependentes e independentes) em uma fonte de tensão V (tensão Thévenin) em série, com uma impedância TH TH (impedância de Thévenin).
38 Teorema de Thévenin e Norton lustrações: V AB TH V TH VAB
39 Teorema de Thévenin e Norton Observações: V A tensão TH é obtida a partir dos terminais AB em aberto, excluindo o restante do circuito, ou seja, é a própria tensão AB A impedância TH é a impedância equivalente vista a partir dos terminais AB em aberto, com as fontes de tensão e corrente em repouso
40 Máxima Transferência de Potencia em ircuitos.. - ircuito Aberto - urto ircuito 3- orrente que da a potência máxima. Desenvolvendo a Equação temos: P E E E. E E E E
41 Máxima Transferência de Potencia em ircuitos.. onclusão: Assim podemos concluir que = para máxima transferência de potencia para a carga, a resistência da carga deve ser igual a resistência do circuito.
42 Máxima Transferência de Potencia em ircuitos.. endimento na condição de máxima transferência de potência: P P util total 50 E %.. E. E
43 Máxima Transferência de Potencia em ircuitos. onsiderações: Metade da potência entregue a carga é perdida no circuito. Em sistemas de potência a condição de máxima transferência de potência é inconveniente, metade é perdida e metade é aproveitada. Já em sistema de telecomunicação exige-se sempre a máxima transferência de potência.
44 Máxima Transferência de Potência com circuito.a. mpedância do circuito: = + j mpedância do circuito: = + j ) ( ) ( j V j V j j V V P Máxima Transferência de Potencia com circuito.a
45 Máxima Transferência de Potência com circuito.a ) (. ) ( P P V P V Máxima Transferência de Potencia com circuito.a
46 Máxima Transferência de Potência com circuito.a. 0.. ] ) ( [ ] ) (.[. )..( V V P Máxima Transferência de Potencia com circuito.a
47 Máxima Transferência de Potência com circuito.a. onclusão: A condição para máxima transferência de potencia é: = * Ou seja, dever ser igual ao conjugado de (impedâncias casadas)
48 essonância Série/Paralelo lustrações: Abaixo estão as ilustrações de circuito ressonante série (a) e circuito ressonante paralelo (b).
49 essonância Série/Paralelo Admitância A impedância de um componente ou circuito é a sua relação entre os vetores de tensão e de corrente. A admitância de um elemento ou circuito é simplesmente o inverso de sua impedância. Quando se trabalha com ressonância paralela ela (a admitância) facilita em muitos os cálculos. A admitância tem unidade S (Siemen). impedância j reatância resistência admitância Y G jb susceptância condutância
50 essonância Série/Paralelo essonância Paralelo Para se obter um circuito ressonante paralelo é necessário que B seja igual a 0 (zero), e portanto é preciso que B seja igual a B. Fazendo isso chegase à conclusão de que a freqüência de ressonância é a mesma para circuitos ressonantes em série ou em paralelo. Um circuito em paralelo ressonante também é chamado de anti-ressonante.
51 essonância Série/Paralelo essonância em ircuitos eais Num circuito real existem as resistências do indutor e/ou do capacitor que devem ser levadas em consideração. Aplicando a ei de Ohm para circuitos reais: j j j j j Y Y Y Y V
52 essonância Série/Paralelo essonância em ircuitos eais Para que haja ressonância é preciso que a parte imaginária da equação do slide acima seja nula Sabe-se que: e Substituindo isso na expressão conclui-se:
53 essonância Série/Paralelo essonância em ircuitos eais Fazendo as devidas manipulações matemáticas no resultado é possível encontrar a freqüência de ressonância, que é descrita pela equação abaixo: f r / /
54 essonância Série/Paralelo onsiderações Finais /. Sendo : surgirá uma indeterminação do tipo 0/0 que torna todas as freqüências ressonantes.. Sendo = = 0: condição ideal, indutores e capacitores sem resistência própria
55 essonância Série/Paralelo Parâmetros do circuito ressonante (,,, ) São parâmetros que influem diretamente no valor da freqüência de ressonância. e são associados aos indutores e capacitores. Os valores e podem ser calculados a partir das seguintes fórmulas: e Onde
56 Fator de Qualidade onceito O fator de qualidade de um circuito ou componente (indutor ou capacitor) representa a relação entre a máxima energia armazenada e a energia dissipada em um ciclo. O fator de qualidade é representado pela letra Q. Num circuito toda a energia armazenada é dissipada em cima dos resistores (capacitores e indutores não dissipam potência). Q = Máxima energia armazenada energia dissipada no ciclo Escrito matematicamente a formulação do fator de qualidade fica: Q W W W máx
ANÁLISE DE CIRCUITOS ELÉTRICOS II
ANÁLISE DE CIRCUITOS ELÉTRICOS II Módulo III FASORES E IMPEDÂNCIA Números Complexos Forma Retangular: 2 Números Complexos Operações com o j: 3 Números Complexos Forma Retangular: z = x+jy sendo j=(-1)
Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6
Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 6 Steinmetz Tesla Hertz Westinghouse Conteúdo 6 - Análise de Regime Permanente Senoidal...1 6.1 - Números complexos...1
Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues
Circuitos Elétricos Circuitos Contendo Resistência, Indutância e Capacitância Prof.: Welbert Rodrigues Introdução Serão estudadas as relações existentes entre as tensões e as correntes alternadas senoidais
LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada
LINHAS DE TRANSMISSÃO DE ENERGIA LTE Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada Tópicos da Aula Tensões e Correntes Variantes no Tempo Sistema em Regime Permanente Senoidal Interpretação
Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9
Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 9 Steinmetz Tesla Hertz Westinghouse Conteúdo 9 - Análise de Regime Permanente Senoidal...1 9.1 - Números complexos...1 9.2 -
Potência em CA AULA II. Vitória-ES
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Potência em Corrente Alternada II - 1-25. 14 Curso Técnico em Eletrotécnica Potência (CA) 1. Revisão; 2. Triângulo das
Revisão de Eletricidade
Departamento Acadêmico de Eletrônica Pós-Graduação em Desen. de Produtos Eletrônicos Conversores Estáticos e Fontes Chaveadas Revisão de Eletricidade Prof. Clóvis Antônio Petry. Florianópolis, fevereiro
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Potência em CA Prof. Clóvis Antônio Petry. Florianópolis, agosto de 2007. Nesta aula Capítulo 19: Potência
CIRCUITOS ELÉTRICOS. Aula 06 POTÊNCIA EM CORRENTE ALTERNADA
CIRCUITOS ELÉTRICOS Aula 06 POTÊNCIA EM CORRENTE ALTERNADA Introdução Potência em corrente Alternada: Quando falamos em potência em circuitos de corrente alternada, temos que ser específicos sobre qual
Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua
Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém
Análise de Circuitos 2
Análise de Circuitos 2 Introdução (revisão) Prof. César M. Vargas Benítez Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná (UTFPR) 1 Análise de Circuitos 2 - Prof. César
Oscilações Eletromagnéticas e Corrente Alternada. Curso de Física Geral F328 1 o semestre, 2008
Oscilações Eletromagnéticas e orrente Alternada urso de Física Geral F38 o semestre, 008 Oscilações Introdução os dois tipos de circuito estudados até agora ( e ), vimos que a carga, a corrente e a diferença
IMPEDÂNCIA Impedância
IMPEDÂNCIA Em um circuito real a resistência elétrica, que é propriedade física dos materiais que o constituem, está sempre presente. Ela pode ser minimizada, mas não eliminada. Portanto, circuitos indutivos
Verificando a parte imaginária da impedância equivalente na forma complexa
Aula 7 Circuitos RLC Objetivos Aprender analisar circuitos RLC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos, forma matemática, forma de
Aquino, Josué Alexandre.
Aquino, Josué Alexandre. A657e Eletrotécnica para engenharia de produção : análise de circuitos : corrente e tensão alternada / Josué Alexandre Aquino. Varginha, 2015. 53 slides; il. Sistema requerido:
Revisão de Eletricidade
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Pós-Graduação em Desen. de Produtos Eletrônicos Conversores Estáticos e Fontes Chaveadas Revisão
ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA
ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA Eletricidade Aplicada I 12ª Aula Corrente Alternada Corrente Alternada: Introdução A expressão em função do tempo é: v(t)=v máx sen(wt+a). V máx é
Aula 4 Circuitos básicos em corrente alternada continuação
Aula 4 Circuitos básicos em corrente alternada continuação Objetivos Continuar o estudo sobre circuitos básicos iniciado na aula anterior. Conhecer o capacitor e o conceito de capacitância e reatância
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031
Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Aula 10 - Espaço de Estados (II) e Circuitos sob Excitação
Experiência 4 - Sinais Senoidais e Fasores
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2017 Cinthia Itiki, Inés Pereyra, Marcelo Carreño Experiência
Corrente Alternada. Circuitos Monofásicos (Parte 2)
Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO
Aula 26. Introdução a Potência em CA
Aula 26 Introdução a Potência em CA Valor eficaz - RMS Valor eficaz de uma corrente periódica é a CC que libera a mesma potência média para um resistor que a corrente periódica Potência média para um circuito
RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS
RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS Sabemos, do estudo da física, que uma relação entre causa e efeito não ocorre sem um oposição, ou seja, a relação entre causa
Sumário. CAPÍTULO 1 A Natureza da Eletricidade 13. CAPÍTULO 2 Padronizações e Convenções em Eletricidade 27. CAPÍTULO 3 Lei de Ohm e Potência 51
Sumário CAPÍTULO 1 A Natureza da Eletricidade 13 Estrutura do átomo 13 Carga elétrica 15 Unidade coulomb 16 Campo eletrostático 16 Diferença de potencial 17 Corrente 17 Fluxo de corrente 18 Fontes de eletricidade
Aula 5 Análise de circuitos indutivos em CA circuitos RL
Aula 5 Análise de circuitos indutivos em CA circuitos RL Objetivos Aprender analisar circuitos RL em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos,
Exemplo-) Determinar a potência aparente do circuito a seguir. Figura 68 Cálculo da potência aparente.
55 10. POTÊNCIA EM CORRENTE ALTERNADA Além da tensão e da corrente, a potência é um parâmetro muito importante para o dimensionamento dos diversos equipamentos elétricos. A capacidade de um consumidor
I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L
Impedância Em um circuito de corrente alternada puramente resistivo, vimos que, se uma tensão v(t) = V m sen(ωt + ), a corrente que fluirá no resistor será i(t) = I m sen(ωt + ), onde I m = V m /R. Representando
= 2πf é a freqüência angular (medida em rad/s) e f é a freqüência (medida
44 2. Roteiros da Segunda Sequência Experimento 1: Circuito RLC e Ressonância 2.1.1 Objetivos Fundamentar o conceito de impedância; Obter a frequência de ressonância em um circuito RLC; Obter a indutância
Sumário CIRCUITOS DE CORRENTE ALTERNADA. Prof. Fábio da Conceição Cruz 21/10/ Introdução. 2. Formas de ondas alternadas senoidais
CIRCUITOS DE CORRENTE ALTERNADA Prof. Fábio da Conceição Cruz Sumário 1. Introdução 2. Formas de ondas alternadas senoidais 3. Respostas dos dispositivos às tensões senoidais 4. Potência em corrente alternada
Oscilações Eletromagnéticas e Corrente Alternada
Oscilações Eletromagnéticas e Corrente Alternada Oscilações LC Introdução Nos dois tipos de circuito estudados até agora (C e L), vimos que a carga, a corrente e a diferença de potencial crescem ou decrescem
Corrente alternada em Circuitos monofásicos
Corrente alternada em Circuitos monofásicos Forma de onda A forma de onda de uma grandeza elétrica é representada pelo respectivo gráfico em função do tempo. Por exemplo, a tensão u 1 (t) dada por: u 1
Aula-11 Corrente alternada
Aula-11 orrente alternada urso de Física Geral F-38 1º semestre, 014 F38 1014 1 Oscilações forçadas ( com fem) As oscilações de um circuito não serão totalmente amortecidas se um dispositivo de fem externo
ELETROTÉCNICA (ENE078)
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mail: [email protected] Aula Número: 20 Revisão da aula passada... Circuitos
Física Teórica II. Terceira Prova 2º. semestre de /11/2017 ALUNO : Gabarito NOTA DA PROVA TURMA: PROF. :
Física Teórica II Terceira Prova 2º. semestre de 2017 09/11/2017 ALUNO : Gabarito TURMA: PROF. : NOTA DA PROVA ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine a prova antes de começar. 2 Os professores não
Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo uiz Viana Referências bibliográficas: H. 36-1, 36-3, 36-4, 36-5, 36-6 S. 32-2, 32-3, 32-4,
Lista de exercícios de: Circuitos Elétricos de Corrente Alternada Prof.: Luís Fernando Pagotti
nome: Parte I Conceitos de Corrente Alternada e de Transformada Fasorial 1 a Questão: (a) Converta as ondas senoidais de tensão e corrente em seus respectivos fasores, indicando-os em um diagrama fasorial.
Aula 6 Análise de circuitos capacitivos em CA circuitos RC
Aula 6 Análise de circuitos capacitivos em CA circuitos RC Objetivos Aprender analisar circuitos RC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números
Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia
Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Guia da 2 a aula prática 2014 Carga RLC Monofásica Assunto: - Medição de potência em carga RLC monofásica e correção
Eletricidade Geral. Guia de Estudos P1
Eletricidade Geral Guia de Estudos P1 1. Revisão de Elétrica Campo elétrico: E = # $%&' ( Força elétrica: F *+ = # - $%&' ( q / Potencial elétrico: independente dos corpos que está interagindo, só é função
Potência em Corrente Alternada
Potência em Corrente Alternada Evandro Bastos dos Santos 22 de Maio de 2017 (Esse material pode ser ministrado em duas aulas) 1 Introdução A discussão sobre potência que vimos nas aulas anteriores é apenas
Capítulo 12. Potência em Regime Permanente C.A.
Capítulo Potência em Regime Permanente C.A. . Potência Média Em circuitos lineares cujas entradas são funções periódicas no tempo, as tensões e correntes em regime permanente produzidas são periódicas.
Corrente alternada. Prof. Fábio de Oliveira Borges
Corrente alternada Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php
FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada.
FIS53 Projeto de Apoio Eletromagnetismo 23-Maio-2014. Lista de Problemas 12 -Circuito RL, LC Corrente Alternada. QUESTÃO 1: Considere o circuito abaixo onde C é um capacitor de pf, L um indutor de μh,
Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = Indutor; C = Capacitor
Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = ndutor; C = Capacitor No Resistor Considerando uma corrente i( = m cos( ω t + φ) circulando no resistor, teremos nos seus terminais
Aula 3 Corrente alternada circuitos básicos
Aula 3 Corrente alternada circuitos básicos Objetivos Aprender os princípios básicos de corrente alternada. Aprender a analisar circuitos puros em corrente alternada utilizando as diversas formas de representação
Notas de aula da disciplina de Ana lise de Circuitos 2
1 Notas de aula da disciplina de Ana lise de Circuitos 2 Prof. Luciano Baracho Rocha Maio de 2016 Sumário Potência aparente e fator de potência... 2 Exercício 1:... 4 Exercício 2:... 5 Potência Complexa...
ELETROTÉCNICA ENGENHARIA
Aquino, Josué Alexandre. A657e Eletrotécnica : engenharia / Josué Alexandre Aquino. Varginha, 2015. 50 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World Wide Web 1. Eletrotécnica.
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor
ENGC25 - ANÁLISE DE CIRCUITOS ELÉTRICOS II
ENGC25 - ANÁLISE DE CIRCUITOS ELÉTRICOS II Módulo IV POTÊNCIA E VALOR EFICAZ UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Potência Instantânea Potência entregue a um elemento em um
CIRCUITOS ELÉTRICOS EM CA. Fonte: profezequias.net
CIRCUITOS ELÉTRICOS EM CA Fonte: profezequias.net OBJETIVO Ao final deste capitulo o aluno estará apto a entender, aplicar e realizar cálculos referente a Circuitos Elétricos em CA. CIRCUITOS DE CORRENTE
Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita
Eletricidade Aplicada Aulas eóricas Professor: Jorge Andrés Cormane Angarita Análise da Potência Eletricidade Aplicada Introdução Existem duas formas de calcular a potência fornecida ou recebida por um
PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:
P3 1/6/13 PUC-IO CB-CTC P3 DE ELETOMAGNETISMO 1.6.13 quarta-feira Nome : Assinatura: Matrícula: Turma: NÃO SEÃO ACEITAS ESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 05 SEGUNDA PARTE OSCILOSCÓPIO 1 INTRODUÇÃO Nas aulas anteriores de laboratório
ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS
ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA - Departamento de Engenharia de Energia e Automação Elétricas Eletrotécnica Geral Lista de Exercícios
Circuitos Elétricos I
Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides
Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores Potência em CA Triângulo das Potências e Correção de Fator de Potência Prof. Clóvis Antônio Petry.
CIDADE DE CHARQUEADAS INSTRUÇÕES GERAIS
SERVIÇO PÚBLICO FEDERAL MEC / SETEC CIDADE DE CHARQUEADAS INSTRUÇÕES GERAIS 1 - Este caderno de prova é constituído por 40 (quarenta) questões objetivas. 2 - A prova terá duração máxima de 04 (quatro)
PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO segunda-feira. Nome : Assinatura: Matrícula: Turma:
P3 18/11/013 PUC-RIO CB-CTC P3 DE ELETROMAGNETISMO 18.11.13 segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar
Lista de Exercícios P1. Entregar resolvida individualmente no dia da 1ª Prova. a) 25Hz b) 35MHz c) 1Hz d)25khz. a) 1/60s b) 0,01s c) 35ms d) 25µs
1 Universidade Tecnológica Federal do Paraná Campus Campo Mourão Engenharia Eletrônica LT34C - Circuitos Elétricos Prof. Dr. Eduardo G Bertogna Lista de Exercícios P1 Entregar resolvida individualmente
EXPERIÊNCIA 07 CIRCUITO SÉRIE RLC
EXPEIÊNCIA 07 CICUITO SÉIE LC 1. OBJETIOS a) Medir correntes e tensões em circuitos série C, L, LC e LC em corrente alternada. b) Construir o diagrama de tensões do circuito LC. c) Calcular os valores
Curso Técnico em Eletrotécnica Impedância e o Diagrama de Fasores. Vitória-ES
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Impedância e o Diagrama de Fasores -1-19. 9 Curso Técnico em Eletrotécnica Impedância e o Diagrama de Fasores Circuitos
Eletricidade Geral. Resumo do Curso Fórmulas e Conceitos
Eletricidade Geral Resumo do Curso Fórmulas e Conceitos 1. Revisão de Elétrica Campo elétrico: E = # $%&' Força elétrica: F *+ = # - $%&' q / Potencial elétrico: independente dos corpos que está interagindo,
CIRCUITOS ELÉTRICOS. Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL
CIRCUITOS ELÉTRICOS Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL Mas como sempre, primeiro a revisão... Indutância L Capacidade de armazenar energia magnética por meio do campo criado pela corrente.
Circuitos com excitação Senoidal
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO
Circuitos Elétricos I E - Aula 00 Introdução a Circuitos Elétricos. Prof. Iury Bessa. Universidade Federal do amazonas Departamento de Eletricidade
Circuitos Elétricos I E - Aula 00 Introdução a Circuitos Elétricos Prof. Iury Bessa Universidade Federal do amazonas Departamento de Eletricidade Teoria de Redes Elétricas Teoria Eletromagnética Teoria
Reatância e Impedância
Reatância e Impedância Evandro Bastos dos Santos 21 de Maio de 2017 1 Intodução Nessa aula veremos como é o comportamento dos principais dispositivos de um circuito em corrente alternada: Resistores, Indutores
Circuitos Elétricos I
Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides
Agrupamento de Escolas da Senhora da Hora
Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Gestão de Equipamentos Informáticos Informação Prova da Disciplina de Física e Química - Módulo: 5 Circuitos eléctricos de corrente
Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente
Experimento 0 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de alimentação
Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada
Experimento 7 ircuitos R e RL em corrente alternada Parte A: ircuito R em corrente alternada 1 OBJETIO O objetivo desta aula é estudar o comportamento de circuitos R em presença de uma fonte de alimentação
Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Dr. Eduardo Giometti Bertogna
Circuitos Elétricos Dispositivos Básicos e os Fasores Prof. Dr. Eduardo Giometti Bertogna Fasores Método válido porém longo é somar algebricamente as ordenadas em cada ponto ao longo da abscissa. Fasores
Circuitos Elétricos 1. Exercícios Resolvidos
Circuitos Elétricos 1 Exercícios Resolvidos ER1) Dado o circuito abaixo, determinar: a) A tensão em relação ao terminal de referência. b) As correntes fasoriais. c) As potências ativas P1, P2, P3 e P4.
Experimento 10 Circuitos RLC em corrente alternada: ressonância
Experimento 10 Circuitos RLC em corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC em presença de uma fonte de alimentação de corrente alternada.
Experimento 9 Circuitos RLC em série e em paralelo em corrente alternada: ressonância e filtros passa-banda e rejeita-banda
Experimento 9 Circuitos C em série e em paralelo em corrente alternada: ressonância e filtros passa-banda e reeita-banda. OBJETIO Parte A:Circuitos C em série Circuitos contendo indutores e capacitores
Fundamentos de Eletrônica
6872 - Fundamentos de Eletrônica Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação 2014 Última Aula Lei de Ohm Associação de Resistores
Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Circuitos Elétricos Dispositivos Básicos e os Fasores Prof. Me. Luciane Agnoletti dos Santos Pedotti Fasores Método válido porém longo é somar algebricamente as ordenadas em cada ponto ao longo da abscissa.
Teorema da superposição
Teorema da superposição Esse teorema é mais uma ferramenta para encontrar solução de problemas que envolvam mais de uma fonte que não estejam em paralelo ou em série. A maior vantagem desse método é a
UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE
UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)
Eletricidade Aula 09. Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada
Eletricidade Aula 09 Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada Tensão e corrente nos circuitos resistivos Em circuitos de corrente alternada em que só há resistores, como
Eletrotécnica. Potência aparente, fator de potência Potência complexa. Joinville, 21 de Março de 2013
Eletrotécnica Potência aparente, fator de potência Potência complexa Joinville, 21 de Março de 2013 Escopo dos Tópicos Abordados Potência aparente e fator de potência; Potência Complexa 2 Potência Aparente
Aula 12: Oscilações Eletromagnéticas. Curso de Física Geral III F o semestre, 2014
Aula : Oscilações Eletromagnéticas urso de Física Geral III F-38 o semestre, 4 Oscilações eletromagnéticas () Vimos: ircuitos R e R: q(t), i(t) e V(t): têm comportamento exponencial Veremos: ircuito :
ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 04 Correção de Fator de Potência
ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 04 Correção de Fator de Potência NOME TURMA DATA 1. OBJETIVOS Compreender na prática os conceitos de potência aparente (S), potência ativa (P) e potência reativa
Capítulo 5: Casamento de impedância e transistor em Rf
Casamento de e transistor em Rf Introdução Cir. Eletrônica Aplica. Aplicação: Prover a máxima transferência possível de potência entre fonte e carga Teorema em DC: máxima potência será transferida da fonte
5 a Aula de Exercícios
5 a Aula de Exercícios PSI3213: Circuitos Elétricos II Monitores: Daniela B. Silva ([email protected]) Rodrigo M. Rodrigues ([email protected]) Aula proposta por Flávio R. M. Pavan 09
Oscilações Eletromagnéticas e Corrente Alternada
Cap. 31 Oscilações Eletromagnéticas e Corrente Alternada Copyright 31-1 Oscilações Eletromagnéticas Oito estágios em um ciclo de oscilação de um circuito LC sem resistência. Os histogramas mostram a energia
2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?
Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial
Análise de Circuitos 2. de Fator de Potência
Análise de Circuitos 2 Potência elétrica, Fator de Potência e Correção de Fator de Potência Prof. César M. Vargas Benítez Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná
Ficha Técnica 4 Introdução à Eletrónica
Ficha Técnica 4 Introdução à Eletrónica 7. Análise de circuitos em Corrente Alternada 7. Grandezas variáveis no tempo Nas fichas técnicas anteriores, os circuitos foram analisados considerando que a fonte
Fundamentos de Eletrônica
6872 - Fundamentos de Eletrônica Lei de Ohm Última Aula Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação Associação de Resistores Análise
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA CONCURSO PÚBLICO PARA DOCENTES DO MAGISTÉRIO SUPERIOR Edital nº 88, de
Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente
Experimento 10 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de
Eletrotécnica Geral. Lista de Exercícios 1
ESCOL POLITÉCNIC D UNIVERSIDDE DE SÃO PULO PE - Departamento de Engenharia de Energia e utomação Elétricas Eletrotécnica Geral Lista de Exercícios 1 1. Circuitos em corrente contínua 2. Circuitos monofásicos
Experimento 9 Circuitos RL em corrente alternada
1. OBJETIO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO
CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16
CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16 - Introdução - Método de avaliação - Data das provas: P1: 04/10/16 P2: 08/11/16 P3: 22/11/16 (somente para faltosos) - Suspensão de aulas: 09/08/16, 16/08/16, 15/11/16
PSI3213 CIRCUITOS ELÉTRICOS II Exercícios Complementares correspondentes à Matéria da 3 a Prova V 1 I 2 R 2
PSI2 CIRCUITOS ELÉTRICOS II Exercícios Complementares correspondentes à Matéria da a Prova Considere uma instalação elétrica operando em regime permanente senoidal, representada pelo circuito da Figura.
ASSOCIAÇÃO DE ENSINO E CULTURA PIODÉCIMO FACULDADE PIO DÉCIMO, CAMPUS III ARACAJU, SERGIPE QUESTÕES PARA AULA DO ENAD ÁREA ESPECÍFICA
ASSOCIAÇÃO DE ENSINO E CULTURA PIODÉCIMO FACULDADE PIO DÉCIMO, CAMPUS III ARACAJU, SERGIPE QUESTÕES PARA AULA DO ENAD ÁREA ESPECÍFICA CIRCUITO ELÉTRICOS (Revisão 00) ENGENHARIA ELÉTRICA Prof. Jether Fernandes
UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório
Aula 05 Primeira parte UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 05 PRIMEIRA PARTE OSCILOSCÓPIO 1 INTRODUÇÃO Nas aulas
