Prof. Michel Sadalla Filho
|
|
|
- Diana Imperial Azambuja
- 9 Há anos
- Visualizações:
Transcrição
1 Referências MECÂNICA APLICADA Prof. Michel Sadalla Filho Centros de Gravidade, Centro de Massa, Centróides de uma figura plana DOC Fev 2013 Ver. 01 HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson Education do Brasil, 2005, 540p. ELIAS, Moisés; CHAVES, Wanrley Coleção Abril FÍSICA Volumes 29/ , São Paulo. GASPAR, Ricardo: Mecânica dos Materiais. material/resistência%20dos%20materiais.pdf BEER, Ferdinand P; JOHNSTON Jr, E. Russel; EISENBERG, Elliot Berg: Mecânica Vetorial para Engenheiros Mc Graw Hill, 7ª Edição,2006
2 INTRODUÇÃO Os conceitos de CENTRO DE GRAVIDADE, CENTRO DE MASSA e CENTRÓIDE, muitas vezes são utilizados como se fossem a mesma coisa, pois, na prática são originários de um mesmo princípio, o desenvolvimento do primeiro, leva aos outros dois, com algumas particularidades. Antes, porém, vamos retomar o TEOREMA DE VARIGON, utilizado para desenvolver o conceito de centro de gravidade. TEOREMA DE VARIGNON O momento da resultante de um sistema de forças coplanares, em relação a um ponto qualquer de seu plano, é igual a soma algébrica dos momentos parciais das forças constituintes do sistema em relação ao mesmo ponto. 2
3 TEOREMA DE VARIGNON EXEMPLO O sistema abaixo, compõem-se de uma viga com as três forças indicadas (F1, F2, F3), tendo como resultantes: F R = - 14 N e M RO = - 33 N.m (sentido horário) + ΣM 0 = (3x1) (12x3) ΣM 0 = 3 36 M Ro = - 33 N.m Determinação do ponto (X G ) onde se pode colocar a F R que terá o mesmo efeito de translação e rotação. M R0 = F R. X G -33 = -14N. X G X G = -33/-14 = 2,4m 3
4 CARACTERÍSTICAS GEOMÉTRICAS DE UMA FIGURA PLANA BARRA PRISMÁTICA Secção longitudinal Secção transversal 4
5 1. Área CARACTERÍSTICAS GEOMÉTRICAS DE UMA FIGURA PLANA 2. Momento Estático de Área 3. Centro de Gravidade; Centro de Massa, Centróide 4. Momento de Inércia 5. Raio de Giração 5
6 1 - ÁREA de uma figura plana é a superfície limitada pelo seu contorno. Unidade de área: [L 2 ] unidade de comprimento ao quadrado Sistema Internacional [m 2 ] unidades: in 2 ; cm 2 ; mm 2 outras A área é utilizada para a determinação das tensões normais de tração e compressão (σ) e das tensões de cisalhamento ou corte (τ) a a A = a 2 h A = b.h A = (b+b)/2. h A = π R 2 b A = π (R 2 r 2 ) A = b.h/2 6
7 3.1 CENTRO DE GRAVIDADE Seja sistema três partículas de pesos P1, P2 e P3, conforme mostrado na figura ao lado. Aplicando o Teorema de Varignon ponto O: - P. X G = - P 1.x 1 - P 2.x 2 - P 3.x 3 P. X G = P 1.x 1 +P 2.x 2 + P 3.x 3 X G = P 1.x 1 + P 2.x 2 + P 3.x 3 P ( 05 ) X G = m 1.x 1 + m 2.x 2 + m 3.x 3 X G = m 1.g.x 1 + m 2.g.x 2 + m 3. g.x 3 m.g Como m = m 1 + m 2 + m 3 ( 06 ) m 1 + m 2.+ m 3 Também denominada de centro de massa 7
8 3.1 CENTRO DE GRAVIDADE / CENTRO DE MASSA Girando-se o sistema de partículas de 90º e no sentido horário, mantêm-se a mesma relação das forças-pesos destas partículas. Analogamente, a ordenada YG da linha de ação da resultante será dada por: ( 07 ) CENTRO DE GRAVIDADE: quando se utiliza as forças-pesos CENTRO DE MASSA: quando se utiliza as massas Mas ambos são conceitos semelhantes, na prática se diz Centro de Gravidade, ou ainda o termo CG 8
9 3.2 CENTRÓIDE DE UMA SUPERFÍCIE Quando consideramos uma superfície (figura no plano XY) ao invés de um corpo sólido (volume), a expressão centro de gravidade é denominada por alguns autores de CENTRÓIDE, ou ainda de BARICENTRO de uma superfície. Utilizando o conceito de densidade (d) d = m / V m = d. V = d. A. h Para casos de densidade homogênea (mesmo material) e superfícies de mesma espessura (h), as expressões ( 06) e (07) desenvolvidas para o centro de gravidade: X CG = d h (X 1 A1 + X 2 A 2 + X 3 A 3 ) d. h. (A 1 + A 2 + A 3 ) X CG = X 1. A 1 + X 2 A 2 + X 3 A 3 A 1 + A 2 + A n ( 08 ) ANALOGAMENTE, Y CG = Y 1. A 1 + Y 2 A 2 +.Y 3 A 3 A 1 + A 2 + A 3 ( 09 ) 9
10 3.2 CENTRO DE GRAVIDADE / CENTRÓIDE DE UMA SUPERFÍCIE Se ao invés de três elementos em que a área é dividida, aumentarmos para n elementos, as equações (8) e (9) ficam: X CG = X 1. A 1 + X 2 A X n A n Y CG = Y 1. A 1 + Y 2 A Y n A n A 1 + A A n A 1 + A A n ( 10 ) ( 11) Considerando a totalidade das partículas, temos: X CG = x da A ( 12 ) Y CG = Y da ( 13) A Na prática usamos as equações (10) e (11) que também são expressas por ( 14 ) ( 15 ) 10
11 CENTRO GRAVIDADE composição de figuras No exemplo abaixo, desmembramos a figura (a) em duas formas: Fig (a) X CG = X 1 A 1 + X 2 A 2 + X 3 A 3 A 1 + A 2 + A 3 5 Analogamente para Y CG Fig (a) 1 4 X CG = X 1 A 1 + X 4 A 4 - X 5 A 5 A 1 + A 4 - A 5 11
12 CENTRO DE GRAVIDADE / CENTRÓIDES Algumas observações 1. Para este curso, utilizaremos a expressão centro de gravidade com mesmo significado de centróide de uma superfície plana, ou ainda baricentro. 2. trabalharemos no plano XY 3. existem diversas notações para expressar o centro de gravidade: X G ; X CG e analogamente Y G ; Y CG e 12
13 CENTROS DE GRAVIDADE (CENTRÓIDES) DE SUPERFÍCIES PLANAS Retângulo Quadrado Triângulo 13
14 CENTROS DE GRAVIDADE (CENTRÓIDES) DE SUPERFÍCIES PLANAS Círculo ¼ Círculo Semicírculo 14
15 EXEMPLO 1: Localize o CG da figura abaixo 15
16 EXEMPLO 1 - Solução 16
17 EXEMPLO 2: Localizar e calcular o centróide da peça abaixo. 17
18 EXEMPLO 2 Solução 18
19 EXEMPLO 3 Localizar o centróide da figura abaixo
20 EXEMPLO 3 Solução 20
21 EXEMPLO 4 Determinar o centro de gravidade da figura, utilizando o Momento Estático de Área SOLUÇÃO 1 Cálculo das Áreas: 3- Cálculo do CG Na direção x há simetria... Y CG Y CG = 7,36 cm 21
22 EXEMPLO 5 Determinar o Centro de Gravidade utilizando Momento Estático de Área RESPOSTAS CENTRO DE GRAVIDADE 1- ÁREA SOLUÇÃO A Figura hachurada pode ser o resultado de um retângulo (12 6) cm 2 do qual foram retirados um triângulo e um semicírculo. 22
23 EXERCÍCIOS Calcular o CG das figuras abaixo: Ex. 01 Ex. 02 Ex. 03 A 1 = a 2 ; x 1 = a/2; y 1 = a/2 A 2 = a 2 /2 ; x 2 =4a/3; y 2 =a/3 X G = 0,777a; Y G = 0,444a 23
24 EXERCÍCIOS CENTRO DE GRAVIDADE Ex. 04 Ex
25 EXERCÍCIOS CENTRO GRAVIDADE EX. 06 Calcule o centro de gravidade da figura abaixo (repare que a figura pode ser expressa pela composição de duas outras) = - 25
Prof. Michel Sadalla Filho
MECÂNICA APLICADA Prof. Michel Sadalla Filho MOMENTO DE UMA FORÇA + EQUILÍBRIO DE UMA BARRA (No Plano XY) Referência HIBBELER, R. C. Mecânica Estática. 10 ed. São Paulo: Pearson Education do Brasil, 2005,
di x = y 2.da di y = x 2.da I x = (A) y 2.da I y = (A) x 2.da
Momento De Inércia De Uma Figura Plana da, e somando-os temos: Definição: (Murat, S.D.) Seja uma figura plana qualquer, posicionada em relação a um par de eixos de referência. Definese: di x = y 2.da di
CAPÍTULO I GEOMETRIA DAS MASSAS
CPÍTULO I GEOMETRI DS MSSS I. SPECTOS GERIS pesar de não estar incluida dentro dos nossos objetivos principais, vamos estudar algumas grandezas características da geometria das massas com a finalidade
Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força
Aula 04 Carregamento, Vínculo e Momento de uma força 1 - INTRODUÇÃO A Mecânica é uma ciência física aplicada que trata dos estudos das forças e dos movimentos. A Mecânica descreve e prediz as condições
Torção - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI RESISTÊNCIA DOS MATERIAIS Torção Definições: Torção se refere ao giro de
Transformação de Tensão ou Análise de Tensão
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Transformação de Tensão
ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08
ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma
Equilíbrio de um corpo rígido
Equilíbrio de um corpo rígido Objetivos da aula: Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito do diagrama de corpo livre para um corpo rígido. Mostrar como resolver
Disciplina: Mecânica Geral - Estática
Disciplina: Mecânica Geral - Estática IV. Propriedades Mecânicas de Figuras Planas Parte 1: Momento de Primeira Ordem ou Estático Prof. Dr. Eng. Fernando Porto Momentos de Primeira Ordem O momento de primeira
Como calcular sua área?
TRAPÉZIO Vamos tentar preencher o trapézio com os quadradinhos. Somente 40 pequenos quadrados de 1 u.a. estão na superfície interna. Os outros estão parte dentro e parte fora. Como calcular sua área? TRAPÉZIO
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
DESENHO TÉCNICO ( AULA 03)
Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos
Descobrindo medidas desconhecidas (I)
Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos
Resistência dos Materiais
Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação
Óptica Geométrica 9º EF
Óptica Geométrica 9º EF Fonte de luz Estrelas Lâmpada acesa Lua Lâmpada apagada Fonte Primária Fonte Secundária Classificação de fontes de luz Quanto a emissão a) Fonte Primária (luminoso): produz a luz
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a. Se AB tiver diâmetro de 10 mm
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se
6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO
APLICAÇÕES DE INTEGRAÇÃO 6.2 Volumes Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. SÓLIDOS IRREGULARES Começamos interceptando S com um plano e obtemos uma região plana
Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre
Aula 2 - Revisão I Parte Revisão de Conceitos Básicos da Matemática aplicada à Resistência dos Materiais I: Relações Trigonométricas, Áreas, Volumes, Limite, Derivada, Integral, Vetores. II Parte Revisão
Capítulo 4 Cisalhamento
Capítulo 4 Cisalhamento 4.1 Revisão V dm dx 4.2 A fórmula do cisalhamento A fórmula do cisalhamento é usada para encontrar a tensão de cisalhamento na seção transversal. VQ It onde Q yda y' A' A' Q= momento
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO Provas 2º Bimestre 2012 MATEMÁTICA DESCRITORES DESCRITORES DO 2º BIMESTRE DE 2012
Geometria Espacial. Revisão geral
Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14
Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro
Introdução aos Sistemas Estruturais
Introdução aos Sistemas Estruturais Noções de Mecânica Estrutural Estuda o comportamento das estruturas frente aos esforços externos. Por definição estrutura é qualquer corpo sólido capaz de oferecer resistência
Professor: José Junio Lopes
Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.
Se a força de tração de cálculo for 110 kn, a área do tirante, em cm 2 é A) 5,0. B) 4,5. C) 3,0. D) 2,5. E) 7,5.
25.(TRT-18/FCC/2013) Uma barra de aço especial, de seção circular com extremidades rosqueadas é utilizada como tirante em uma estrutura metálica. O aço apresenta f y = 242 MPa e f u = 396 MPa. Dados: Coeficientes
RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 05 TRAÇÃO, COMPRESSÃO E CISALHAMENTO
CONTROLE DE QUALIDADE INDUSTRIAL TRAÇÃO, COMPRESSÃO E CISALHAMENTO. No Sistema Internacional, a força é expressa em Newtons (N), a área em metros quadrados (m 2 ). A tensão (σ) será expressa, então, em
Física Experimental - Mecânica - Conjunto para mecânica com painel multiuso - EQ032G.
Índice Remissivo... 4 Abertura... 6 Guarantee / Garantia... 7 Certificado de Garantia Internacional... 7 As instruções identificadas no canto superior direito da página pelos números que se iniciam pelos
F602 Eletromagnetismo II
1 F602 Eletromagnetismo II Turma C 2 ọ Semestre - 2010 Márcio José Menon Capítulo II LEIS DE CONSERVAÇÃO ÍNDICE 1. Introdução: Leis de Conservação Locais 2. Conservação da Carga Elétrica - Revisão 3. Conservação
Assunto: Características Geométricas das Figuras Planas Prof. Ederaldo Azevedo Aula 6 e-mail: [email protected] O dimensionamento e a verificação da capacidade resistente de barras, como de
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 8.º ANO PLANIFICAÇÃO GLOBAL 1. Representação, comparação e ordenação. Representar números racionais
RESISTÊNCIA DOS MATERIAIS - Notas de Aulas
RESISTÊNCIA DOS MATERIAIS - Notas de Aulas Prof. José Junio 1 - INTRODUÇÃO A Mecânica é uma ciência física aplicada que trata dos estudos das forças e dos movimentos. A Mecânica descreve e prediz as condições
A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma:
As atividades propostas nas aulas a seguir visam proporcionar ao aluno condições de compreender de forma prática o teorema de Pitágoras em sua estrutura geométrica, através do uso de quadrados proporcionais
Tópico 2. Funções elementares
Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano
Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8
ESCOLA TÉCNICA ESTADUAL ZONA SUL CURSO TÉCNICO EM ELETRÔNICA II. CIRCUITOS ELÉTRICOS Aula 0 TEOREMAS DA ANÁLISE DE CIRCUITOS Prof. Marcio Leite Página de 8 0 TEOREMA DA ANÁLISE DE CIRCUITOS.0 Introdução
Física Professor Fernando 2ª série / 1º trimestre
Física Professor Fernando 2ª série / 1º trimestre Questão 01) Em um parque de diversão, Carlos e Isabela brincam em uma gangorra que dispõe de dois lugares possíveis de se sentar nas suas extremidades.
PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1
PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 Exercício 1 Apesar da existência do Sistema Internacional (SI) de Unidades, ainda existe a divergência
CAPÍTULO I V FLEXÃO PURA
CAPÍTULO I V FLEXÃO PURA I INTRODUÇÂO Seja um elemento linear que apresenta a característica de possuir uma das dimensões (comprimento) muito maior do que as outras duas (dimensões da seção transversal).
Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:
Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema
Aula 6 Propagação de erros
Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se
1 Exercícios de Aplicações da Integral
Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área
TÍTULO: MODELAGEM E RESOLUÇÃO DE UM PROBLEMA PRÁTICO DE ENGENHARIA CIVIL ATRAVÉS DA OTIMIZAÇÃO
TÍTULO: MODELAGEM E RESOLUÇÃO DE UM PROBLEMA PRÁTICO DE ENGENHARIA CIVIL ATRAVÉS DA OTIMIZAÇÃO CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: CENTRO UNIVERSITÁRIO
Campo Magnético. Prof a. Michelle Mendes Santos [email protected]
Campo Magnético Prof a. Michelle Mendes Santos [email protected] O Magnetismo O magnetismo é um efeito observado e estudado há mais de 2000 anos. O magnetismo descreve o comportamento de objetos
ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas:
6ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA POLINÔMIOS E OPERAÇÕES COM POLINÔMIOS ORIENTAÇÕES: Ensino Fundamental 8 Ano Realize os exercícios em folhas de fichário com a identificação completa,
Matemática Fascículo 07 Manoel Benedito Rodrigues
Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou
MEMORIAL DE CÁLCULO 062611 / 1-0 TRAVA QUEDAS
MEMORIAL DE CÁLCULO 062611 / 1-0 TRAVA QUEDAS FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210 Porto alegre - RS TELEFONE: ( 51 ) 3371-2988 CNPJ:
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
RESISTÊNCIA DOS MATERIAIS
RESISTÊNCIA DOS MATERIAIS Introdução e Conceitos Básicos 1. Mecânica Mecânica dos corpos rígidos: È subdividida em Estática, Cinemática e Dinâmica. A Estática se refere aos corpos em repouso e estuda as
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)
P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a
1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações
1º ano Unidade 1: Conjuntos Numéricos Expressão Numérica Unidade 2: Expressões Algébricas Classificação Valor numérico Monômios e polinômios Produtos notáveis Fatoração Equação do 1º grau (inteiras e fracionadas)
FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS
FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS 1 O CONCEITO DE CAMPO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q1, e a seguir coloquemos em suas proximidades uma segunda
18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel
18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz
f (x) = a n x n + a n - 1 x n - 1 +... + a 0 = 0 (a n > 0)
Lista de Exercícios Resolução de Equações Não Lineares 1) Para a delimitação das raízes reais de uma equação polinomial, além do teorema de Lagrange, existem vários outros como, por exemplo, o apresentado
Mecânica Geral. Aula 05 - Equilíbrio e Reação de Apoio
Aula 05 - Equilíbrio e Reação de Apoio 1 - Equilíbrio de um Ponto Material (Revisão) Condição de equilíbrio de um Ponto Material Y F 0 F X 0 e F 0 Exemplo 01 - Determine a tensão nos cabos AB e AD para
Apêndice II SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento
ttp://www.medeirosjf.net/fisica Física I Apêndice II: Sistema métrico decimal e S.I. pág. VII Apêndice II SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento No sistema métrico decimal, a unidade fundamental
1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E
Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior
Projeto Rumo ao ITA Exercícios estilo IME
PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r
AGRUPAMENTO DE ESCOLAS RAINHA D. LEONOR ESCOLA BÁSICA 2/3 EUGÉNIO DOS SANTOS Matemática Conteúdos 8ºAno de Escolaridade Ano Letivo 2013/14
AGRUPAMENTO DE ESCOLAS RAINHA D. LEONOR ESCOLA BÁSICA 2/3 EUGÉNIO DOS SANTOS Matemática Conteúdos 8ºAno de Escolaridade Ano Letivo 2013/14 DOMÍNIO: NÚMEROS E OPERAÇÕES SUB-DOMÍNIO: NÚMEROS REAIS Números
Momentos de Inércia de Superfícies
PUC Goiás Curso: Engenharia Civil Disciplina: Mecânica dos Sólidos Corpo Docente: Geisa Pires Turma:----------- Plano de Aula Data: ------/--------/---------- Leitura obrigatória Mecânica Vetorial para
A Área do Círculo: Atividades Experimentais
A Área do Círculo: Atividades Experimentais Resumo Rita de Cássia Pavani Lamas 1 Durante o ano de 2008 foi desenvolvido o Projeto do Núcleo de Ensino da UNESP, Material Concreto para o Ensino de Geometria,
a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B.
Prof. Renato SESI Carrão Física 1º. ano 2011 Lista de exercícios 1 (Aulas 13 a 24) *** Formulário *** v = Δx/Δt Δx = x f x i Δt = t f t i a = Δv/Δt Δv = v f v i F R = m.a g = 10 m/s 2 P = m.g F at = μ.n
TRIGONOMETRIA CICLO TRIGONOMÉTRICO
TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades
Lista de Exercícios Campo Elétrico
Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Perímetros e áreas Perímetro de polígonos regulares e irregulares Perímetro do círculo Equivalência de figuras planas Unidades de área Área do triângulo Área do círculo Síntese Perímetro O perímetro
7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:
EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2
Geometria Analítica. Geometria Analítica. Geometria Analítica 15/08/2012. Objetivos gerais da disciplina. Prof. Luiz Antonio do Nascimento
Prof. Luiz Antonio do Nascimento Objetivos gerais da disciplina Desenvolver a capacidade lógica para resolução de problemas, e de tomada de decisões. Fornecer as noções básicas de Geometria Analítica.
Resistência dos Materiais
Aula 3 Tensão Admissível, Fator de Segurança e rojeto de Acoplamentos Simples Tópicos Abordados Nesta Aula Tensão Admissível. Fator de Segurança. rojeto de Acoplamentos Simples. Tensão Admissível O engenheiro
Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.
Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine
ESTRUTURAS DE MADEIRA
UNEMAT Universidade do Estado de Mato Grosso ESTRUTURAS DE MADEIRA Professora: Engª Civil Silvia Romfim AULA 03 1. INTRODUÇÃO: Madeira e suas características. 1.4 - PROPRIEDADES MECÂNICAS: 1.4.1 - Propriedades
Metrologia Professor: Leonardo Leódido
Metrologia Professor: Leonardo Leódido Sumário Definição Conceitos Básicos Classificação de Forma de Orientação de Posição Definição Tolerância pode ser definida como um intervalo limite no qual as imperfeições
Construções Geométricas
Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos
Centro de gravidade de um corpo é o ponto onde podemos supor que seu peso esteja aplicado.
Apostila de Revisão n 4 DISCIPLINA: Física NOME: N O : TURMA: 2M311 PROFESSOR: Glênon Dutra DATA: Mecânica - 4. Corpo Rígido 4.1. Torque análise semiquantitativa, na Primeira Etapa, e quantitativa, na
MECÂNICA DOS SÓLIDOS
MECÂNICA DOS SÓLIDOS Cláudio Messias da Silva O principal objetivo de um curso básico de mecânica deveria se o de desenvolver no estudante de engenharia a habilidade de analisar um dado problema, de maneira
Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações
Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,
Capítulo 1 Carga axial
Capítulo 1 Carga axial 1.1 - Revisão Definição de deformação e de tensão: L Da Lei de Hooke: P A P 1 P E E A E EA Barra homogênea BC, de comprimento L e seção uniforme de área A, submetida a uma força
Estabilidade das Construções para Técnicos
EMENTA DA DISCIPLINA DE ESTABILIDADE TECNICO INTEGRADO 1 ELEMENTOS DE FÍSICA E MATEMÁTICA APLICADOS ÀS ESTRUTURAS Grandezas fundamentais: força, momento e sistema binário; Condições de equilíbrio; φ Centro
A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.
Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua
Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais
Frente ula 0 GEOETRI NLÍTI oordenadas artesianas Ortogonais Sistema cartesiano ortogonal Sabemos que um sistema cartesiano ortogonal é formado por dois eios perpendiculares entre si com uma origem comum.
Solução da prova da 2a fase OBMEP 2014 Nível 2. Questão 1. item a)
Questão 1 Cada nova pilha tem dois cubinhos a mais em sua base. Assim, como a terceira pilha tem 5 cubinhos em sua base, a quarta pilha tem 5 + 2 = 7 cubinhos e a quinta pilha tem 7 + 2 = 9 cubinhos em
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ
INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR 2ª SÉRIE O ENSINO MÉIO PROF. ILYIO PEREIR E SÁ Geometria Espacial: Elementos iniciais de Geometria Espacial Introdução: Geometria espacial (euclidiana) funciona
FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()
FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.
DISPOSIÇÃO DA ARMADURA PARA VENCER OS ESFORÇOS DO MOMENTO FLETOR
DISPOSIÇÃO DA ARMADURA PARA VENCER OS ESFORÇOS DO MOMENTO FLETOR Conhecida a seção de aço que resiste aos Momentos Fletores máximos, ocorre a necessidade de colocar os aços. Como os Momentos Fletores variam
P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.
Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:
Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84
COLÉGIO LA SALLE BRASÍLIA SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série:
Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Acesse: Nossa aula. Figuras geométricas elementares
A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas
XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas
Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste
Transformações geométricas nos espaços bidimensional e tridimensional
Transformações geométricas nos espaços bidimensional e tridimensional Prof. Dr. Carlos A. Nadal CALIBRAÇÃO DA MESA DIGITALIZADORA pontos homólogos Mesa digitalizadora coordenadas x,y mapa coordenadas N,E
ESTADOS DE TENSÃO E DE DEFORMAÇÃO
1 Estado de Tensão Num Ponto Estado Geral ou Triaxial de Tensão Num Ponto y dz τ zy τ zy σ y dx τ xy τ xy dy Nas facetas paralelas escondidas, temos as mesmas componentes, de modo que: F x = F y = F z
GEOMETRIA ANALÍTICA II
Conteúdo 1 O PLANO 3 1.1 Equação Geral do Plano............................ 3 1.2 Determinação de um Plano........................... 7 1.3 Equação Paramétrica do Plano........................ 11 1.4 Ângulo
PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm
PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo
24/03/2014. AULA 02c Elementos, figuras e sólidos primários. Os elementos primários da forma:
1 2 Os elementos primários da forma: Consideramos como elementos primários da forma, na ordem de seu desenvolvimento, o ponto, a reta, o plano e o volume. Conceitualmente, esses elementos não são visíveis.
UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER. Prof. Dr. Guttemberg Silvino
UNIVERSIDADE FEDERAL DA PARAÍBA UFPB CENTRO DE CIÊNCIAS AGRÁRIAS - CCA Departamento de Solos e Engenharia Rural - DSER Prof. Dr. Guttemberg Silvino UNIDADES DE MEDIDAS LINEAR O metro (m) é uma unidade
Aula 01 Introdução à Geometria Espacial Geometria Espacial
Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora
Aula 1 Variáveis aleatórias contínuas
Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição
06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015
Sumário UNIDADE TEMÁTICA 1 Movimentos na Terra e no Espaço. Correção do 1º Teste de Avaliação. Movimentos no espaço. Os satélites geoestacionários. - O Movimentos de satélites. - Características e aplicações
1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014
Sumário 1 Questões de Vestibular 1 1.1 UFPR 2014.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão
Calculando o comprimento de peças dobradas ou curvadas
Calculando o comprimento de peças dobradas ou curvadas A UU L AL A Vamos supor que você seja dono de uma pequena empresa mecânica e alguém lhe encomende 10.000 peças de fixação, que deverão ser fabricadas
