TESTE DE MANN-WHITNEY
|
|
|
- João Guilherme Domingues Philippi
- 9 Há anos
- Visualizações:
Transcrição
1 TESTE DE MANN-WHITNEY A importâcia deste teste é ser a alterativa ão paramétrica ao teste t para a difereça de médias. Sejam (X 1,X,...,X ) e (Y 1,Y,...,Y m ) duas amostras idepedetes, de tamahos e m respectivamete, com m. Supohamos que X = E(X) e Y = E(Y) Pretede-se testar H 0 : X = Y H 1 : X Y ou X > Y ou X < Y 1 Procedimetos: 1. Tome-se a amostra cojuta, isto é, sem fazer difereciação etre os dois grupos, e ordeem-se os valores de 1 até +m, mas sem perder o grupo de origem de cada observação.. Caso ão haja empates a observação de valor mais baixo recebe o posto 1, a seguda mais baixa recebe o posto e assim sucessivamete. 3. Caso haja empates às observações com o mesmo valor (empatadas) atribui-se o posto médio dos postos que lhe correspoderiam casos tais empates ão existissem.
2 Estatística de teste Supodo (X 1, X,..., X i,..., X ) a amostra de meor tamaho. Seja R(X i ) o posto da observação X i. A estatística de teste é dada por: T R(X i ) i1 3 Testes bilaterais (H 1 : X Y ) A região crítica será determiada com base a observação, a tabela de Ma- Whitey, de dois potos críticos: T / directo da tabela T 1-/ = m - T / Regra de Decisão Rejeitar H 0 se T obs < T / ou T obs > T 1-/ Não rejeitar H 0 se T / T obs T 1-/ 4
3 Testes uilaterais (H 1 : X < Y ou X > Y ) A região crítica será determiada com base a observação, a tabela de Ma- Whitey, de um poto crítico: T directo da tabela Regra de decisão, para um teste uilateral à esquerda ( X < Y ) Rejeitar H 0 se T obs < T Regra de decisão, teste uilateral à direita ( X > Y ) Rejeitar H 0 se T obs > T 1-5 Quado os valores de m e são elevados, a variável aleatória T tem uma distribuição aproximadamete Normal com média T e desvio padrão T. (m 1) T e T m(m 1) 1 Isto é, a correspodete variável com valor médio ulo e variâcia uitária, é Z T T T T ~ N(0,1) 6
4 TESTE DE KRUSKALL-WALLIS O teste de Kruskall-Wallis é uma geeralização para k > amostras, do teste de Ma- Whitey. A estatística de teste baseia-se os postos das observações e como tal, a variável em estudo (os diferetes grupos) é uma variável ordial. 7 Supoha-se etão a existêcia de k populações X 1, X,..., X k das quais foram retiradas k amostras aleatórias X 11, X 1,..., X 1 da população X 1 1 X 1, X,..., X 1 da população X X k1, X k,..., X 1 da população X k k e que existe idepedêcia, ão só etre os elemetos de cada amostra mas também etre os elemetos de amostras distitas. H 0 : 1 = =... = k H 1 : i, j: i j, sedo i = E(X i ), i = 1,,...,k 8
5 A estatística de teste baseia-se os postos das observações: 1. Ordeem-se as k amostras cojutamete. A observação de mais baixo valor tomará o posto 1, a seguda o posto e assim sucessivamete.. Caso existam empates, será atribuído o mesmo posto às observações empatadas. Este é a média aritmética dos postos que lhe correspoderiam se tais empates ão existissem. 9 Seja R(X ij ) o posto atribuído a X ij e R i R(X ) i ij j1 a soma dos potos das observações da i-ésima amostra (i=1,,...,k). Seja o úmero total de observações. N k i i1 No caso de ão haver empates a estatística de teste de Kruskall-Wallis é: T 1 N(N 1) k i1 R i i 3(N 1) 10
6 No caso de haver empates a estatística de teste é dada por: ode S 1 T S 1 N 1 R N(N 1) k i i1 i 4 k i i1 j1 R N(N 1) X ij 4 No caso de apeas três grupos, em que o tamaho dos grupos ão exceda 5 e ão existam empates, os valores críticos da estatística do teste ecotram-se tabelados. Nas outras situações, utiliza-se como distribuição aproximada o de liberdade, ode k é o úmero de amostras. com (k-1) graus 11 TESTES DE AJUSTAMENTO (TESTES DA BONDADE DO AJUSTAMENTO) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição especificada. Seja X 1, X,..., X uma amostra aleatória de uma população X com fução (desidade) de probabilidade f descohecida e f 0 a fução (desidade) de probabilidade proposta. Hipóteses a testar: H 0 : f(x) = f 0 (x) H 1 : f(x) f 0 (x) 1
7 Exemplo 1: A procura diária de um certo produto foi, em 40 dias escolhidos ao acaso, a seguite: Número de Número de uidades dias Tabela I: Procura diária de um produto registada em 40 dias. Será que tais observações foram extraídas de uma população com distribuição de Poisso, isto é, será de admitir que tal procura segue uma distribuição de Poisso? 13 Exemplo : Pretede-se costruir um modelo de simulação das operações de um determiado termial de um porto situado a Europa. Uma das variáveis a cosiderar o modelo é a difereça etre a data de chegada dos avios proveietes dos EU e a respectiva data plaeada. Dado que tal difereça é iflueciada por muitos factores, pode tomar-se como uma variável aleatória. Há razões para supor que tem distribuição Normal de média 0.1 e desvio padrão
8 Uma amostra de 30 avios revelou os resultados que se apresetam a tabela seguite Tabela II: Difereça etre a data de chegada e a data plaeada para 30 avios. Será mesmo de admitir que tais dados foram extraídos de uma população N(0.1, 7. )? 15 Tato o primeiro como o segudo exemplo, estamos perate um problema de ajustameto de dados a uma determiada distribuição. Existem vários testes de ajustameto que os permitem fazer uma aálise de problemas deste tipo, etre os quais: o teste de ajustameto do Qui-quadrado sugerido por Karl Pearso o teste de Kolmogorov ou Kolmogorov-Smirov o teste de ormalidade de Lilliefors 16
9 TESTE DO QUI-QUADRADO Cosidere-se uma amostra aleatória de elemetos, extraída de uma população com distribuição descohecida, sobre os quais se observa uma característica (qualitativa ou quatitativa). Os valores possíveis da característica em estudo são, um primeiro passo, repartidas por m classes mutuamete exclusivas, A 1, A,..., A m (serão itervalos da recta real se a característica é quatitativa e cotíua). 17 Deote-se por: - O i o º de observações ou frequêcia absoluta observada da classe A i ; - p i a probabilidade descohecida de obter uma observação a classe A i ; - p 0i a probabilidade de obter uma observação a classe A i assumido que a observação foi extraída de uma população com a distribuição especificada em H 0, i.e., p 0i = P(A i / H 0 ). Hipóteses a testar: H 0 : p i = p 0i, i=1,...,m H 1 : p i p 0i para algum i 18
10 Assim, a frequêcia esperada da classe A i, quado H 0 é verdadeira, é dada por e i = p 0i A estatística de teste, do teste de ajustameto do Qui-quadrado, é dada por Q m i1 que, sedo verdadeira a hipótese ula, tem distribuição assimptótica do Qui-quadrado com m-k-1 graus de liberdade ( m-k-1), ode k é o úmero de parâmetros descohecidos da distribuição proposta em H 0, estimados a partir da amostra. O i e e i i 19 Se a hipótese ula for verdadeira, a difereça etre cada valor observado e o respectivo valor esperado, O i e i, ão deve ser muito grade, e cosequetemete a estatística de teste terá um valor observado, Q obs, também ão muito grade. De modo ituitivo, quato maior for o valor observado de Q, meos plausível é a hipótese ula, isto é, mais os ecamihamos de cocluir que as frequêcias observadas ão foram proveietes da população em que se baseou a hipótese ula, levado à rejeição desta. Trata-se portato de um teste uilateral à direita. 0
11 Na aplicação deste teste deve-se ter particular ateção às frequêcias esperadas, e i s, pois se estas forem muito pequeas a aproximação ao Qui-quadrado ão é a mais apropriada. São referidas a literatura várias regras práticas de aplicação do teste, das quais avaçamos a seguite. Se tivermos: ou, - mais de 0% das classes com e i iferior a 5 - mais de uma classe com e i iferior a 1 devemos proceder à agregação de algumas classes cotíguas, e iiciar ovamete o teste, agora com meos classes. 1 Exemplo 1: Número de Número de uidades dias Tabela I: Procura diária de um produto registada em 40 dias.
12 Represetado por X a procura diária do produto e por f a fução de probabilidade de X, as hipóteses a testar são H 0 : X ~ P(µ) (f(x) = f 0 (x) = H 1 : X ~ P(µ) e x x!, x = 0,1,,... e >0) É ecessário estimar o parâmetro, média da Poisso: x= ( ) / 40 = Classes Frequêcias p 0i = P(A i / H 0 ) Frequêcias esperadas observadas e i = 40 p 0i O i A 1 ={0} A ={1} A 3 ={} A 4 ={3} A 5 ={4} A 6 ={5} A 7 ={6,7,...}
13 Probabilidades associadas a cada uma das classes supodo H 0 verdadeira: p 01 = P(A 1 / H 0 ) = P(X{0} / H 0 ) = P(X=0) = f 0 (0) = p 0 = P(A / H 0 ) = P(X{1} / H 0 ) = P(X=1) = f 0 (1) = p 03 = e ! = 0.639; e e ! 1.7 1! 0 1 = 0.187; = ; A estatística teste Q, sob a hipótese H 0, tem aproximadamete distribuição Qui-quadrado com m-k-1 = = 3 graus de liberdade. 5 Ao ível de sigificâcia de 0.05, o quatil de probabilidade da distribuição 7.81, e logo a região crítica é [7.81, +[. 3 é Valor observado da estatística de teste: Q obs = ( ) ( ) ( ) ( ) (3 3.78) 3.78 = = Etão, a hipótese H 0 ão é rejeitada ao ível de sigificâcia de 0.05, isto é, ão podemos rejeitar a hipótese de aquelas observações provirem de uma população com distribuição Poisso. 6
14 Exemplo : Deotado por X a difereça etre a data de chegada dos avios e a data plaeada, as hipóteses a testar são H 0 : X ~ N(0.1, 7. ) H 1 : X ~ N(0.1, 7. ) Neste caso a distribuição proposta em H 0 é cotíua e, deste modo, as classes A i, i=1,...m, são itervalos da forma A 1 =]-, a 1 [, A =[ a 1, a [ A 3 =[ a, a 3 [... A m =[ a m-1, +[. 7 Para a determiação das classes é sugerida a regra de Ma e Wald: Número de classes = m, com m tal que /m > 5. Os limites dos itervalos são tais que as probabilidades decorretes da hipótese ula sejam iguais a 1/m para todas as classes. Assim, as frequêcias esperadas são todas iguais a /m > 5. Para o exemplo escolheu-se m = 4 classes (e i = 301/4 = 7.5 > 5), dode p 0i = P(A i / H 0 ) = P(XA i / X~N(0.1, 7. )) = 1/4, para i = 1,,3,4 8
15 Cálculo dos limites dos itervalos de classe: a 3 : p 03 = P(XA 3 / X~N(0.1, 7. )) = 0.5 P(X<a 3 / X~N(0.1, 7. )) = 0.75 a P(Z< ) = 0.75 a 3 = 4.94; 7. Da simetria da distribuição ormal: a 1 a =0.1 a 3 a = 0.1 e a 1 = 0.1-( ) = Tabela II: Difereça etre a data de chegada e a data plaeada para 30 avios. Classes Frequêcias p 0i Frequêcias observadas esperadas A 1 =]-, -4.74[ A =[-4.74,0.1[ A 3 =[0.1, 4.94[ A 4 =[4.94, + [
16 O valor observado da estatística de teste é Q obs = (8 7.5) (8 7.5) (7 7.5) (7 7.5) 7.5 = 0.1 A estatística teste, sob o pressuposto de H 0 ser verdadeira, tem aproximadamete distribuição Qui-quadrado com m-1 = 4-1 = 3 graus de liberdade. Para =0.05: R.C. = [7.81, +[ Como Q obs R.C., somos levados a ão rejeitar a hipótese de que a difereça etre os tempos de chegada e os tempos plaeados tem distribuição N(0.1, 7. ). 31 TESTE DE KOLMOGOROV-SMIRNOV O teste de Kolmogorov-Smirov (K-S) ao cotrário do teste do Qui-quadrado, ão se aplica a dados qualitativos em a variáveis discretas, pois a tabela dispoível para este teste só é exacta caso a distribuição em teste seja cotíua. No etato, tem a vatagem de ão estar depedete de classificações dos dados, que além de serem sempre algo arbitrárias evolvem perdas de iformação. De facto, o ajustameto de uma distribuição cotíua a uma amostra usado o teste do Qui-quadrado, temos de proceder à agregação dos dados em classes, sedo por isso mais adequado utilizar o teste K-S. 3
17 Por outro lado, o teste K-S só pode ser aplicado quado a distribuição idicada a hipótese ula está completamete especificada (o que ão sucede com o teste do Quiquadrado). No caso de se preteder, por exemplo, efectuar um ajustameto de uma distribuição ormal, sem especificar e, deve-se recorrer a outro teste, este caso o teste desevolvido por Lilliefors (teste de ormalidade de Lilliefors). Além disso, o teste do Qui-Quadrado está orietado essecialmete para grades amostras, equato que o teste K-S é aplicável a pequeas amostras. 33 FUNÇÃO DE DISTRIBUIÇÃO EMPÍRICA E FUNÇÃO DE DISTRIBUIÇÃO DA AMOSTRA Seja (X 1, X,...,X ) uma amostra aleatória de uma certa população X e (x 1, x,...,x ) uma sua realização. A fução de distribuição empírica é defiida por 1 Fˆ (x) {x i : x i x}, -< x <+, ode {x i : x i x} é o úmero de valores x i que são iferiores ou iguais a x. 34
18 A fução de distribuição da amostra é defiida, para as variáveis aleatórias (X 1, X,...,X ), por 1 F (x) {X i : X i x}, - < x < +. Note-se que Fˆ (x) é uma fução de distribuição do tipo discreto associado a uma particular amostra, equato que F (x) é, para cada - < x < + fixo, uma variável aleatória, fução de (X 1, X,...,X ), ou seja, é uma estatística. 35 Exemplo Cosideremos a amostra costituída pelas observações: 5, 7, 8, 8, 10 e 11 A fução de distribuição empírica Fˆ 6, associada a esta amostra, é dada por Fˆ 6(x) = 0 1/ 6 / 6 4 / 6 5 / 6 1 se se se se se se x 5 5 x 7 7 x 8 8 x x 11 x 11 36
19 A represetação gráfica de Fˆ 6, em forma de escada, é apresetada a seguir: Fˆ6 x Gráfico I: Represetação gráfica da f.d. empírica. 37 Seja F a fução de distribuição da população e F 0 a fução de distribuição proposta, cotíua e completamete especificada. Hipóteses a testar H 0 : F(x) = F 0 (x), - < x < + H 1 : F(x) F 0 (x) No teste de Kolmogorov-Smirov cosidera-se a estatística D sup F (x) F0 (x) x como uma medida da discrepâcia etre a fução de distribuição da amostra F e a fução de distribuição proposta F 0. 38
20 Ao substituir em D a fução de distribuição da amostra F pela fução de distribuição empírica Fˆ, obtém-se o valor observado da estatística teste: d sup Fˆ (x) F0 (x) x Uma vez que F 0 é uma fução (cotíua) crescete e Fˆ é uma fução em escada, o supremo d ocorre um poto ode se verifica um salto de Fˆ (uma observação x i ) ou imediatamete ates desse poto. Isto é, d max i1,..., F (x ) Fˆ 0 i (x i ), F (x ) Fˆ 0 i (x i ) 39 sup Fˆ (x) F 0(x) x F 0 (x) Fˆ (x) Gráfico II: Ajustameto de uma f.d hipotética F 0 à f.d. empírica Fˆ 40
21 Assim, se H 0 for verdadeira, a distâcia vertical máxima etre as images das duas distribuições ão deve de ser muito grade, e logo espera-se que D tome um valor pequeo. Etão, rejeita-se H 0, para um ível de sigificâcia, se o valor observado d da estatística teste D for superior ou igual ao poto crítico D, ode D, é tal que, P(D D, / H 0 é verdadeira) = Os valores críticos D, podem ser cosultados uma tabela. 41 Exemplo 3 Um certo Politécico do país efectuou um cotrato com uma determiada empresa que ficou resposável pelo abastecimeto da care que compuha as refeições a catia dessa Escola. O cotrato refere uma média de 90 gramas de care por refeição, por estudate. No etato, algus aluos queixaram-se acerca da comida, em particular acerca da quatidade de care servida por refeição. Os aluos falaram com o coziheiro chefe, que lhes disse que a quatidade de care servida por refeição a cada estudate tiha aproximadamete distribuição ormal de média 90 gr com um desvio padrão de 56 gr. Após esta coversa com o coziheiro, algus aluos cocordaram em recolher as suas refeições ao logo de vários dias, resultado assim uma amostra de 10 refeições, que foram levadas para um laboratório afim de serem pesados os pedaços de care elas cotidos. 4
22 Os dados obtidos são os seguites: Ao ível de sigificâcia de 5%, há evidêcia para rejeitar a hipótese de que o coziheiro seguia as regras que afirmou em relação à quatidade de care servida? Deote-se por X a quatidade, em gramas, de care servida por refeição a cada estudate. As hipóteses a testar são, este caso, H 0 : X N(90, 56 ) H 1 : X ~ N(90, 56 ) A estatística de teste é D 10 = sup F 10 (x)-f 0 (x) x O poto crítico da estatística de teste D 10 é, para = 0.05, D 10,0.05 = Cálculo do valor observado da estatística D 10 x i Fˆ (x ) 10 i 10(xi ) Fˆ x 90 z i = i F 0 (x i ) =P(Z z i ) 56 (Z~N(0,1)) F 0 (x i )- Fˆ 10 (x i ) F 0 (x i )- Fˆ 10(xi ) 198 0,1 0-1,64 0,0505 0,0495 0, , 0,1-0,64 0,611 0,0611 0, ,3 0, -0,5 0,3085 0,0085 0, ,4 0,3-0,3 0,3745 0,055 0, ,5 0,4-0,7 0,3936 0,1064 0, ,6 0,5-0,1 0,4168 0,183 0, ,7 0,6-0,09 0,4641 0,359 0, ,9 0,7-0,05 0,4801 0,4199 0, ,9 0,04 0,516 0,484 0,384 44
23 F 0 (198) = P(X198) = P(Z ) = P(Z-1.64) = = F 0 (54) = P(X54) = P(Z ) = P(Z-0.64) = = Como d 10 = > 0.409, ao ível de sigificâcia de 5%, rejeitamos a hipótese de a quatidade de care servida por refeição a cada estudate seguir distribuição N(90,56 ). 45 TABELAS DE CONTINGÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Supoha que uma amostra aleatória de tamaho de uma dada população são observados dois atributos ou características A e B (qualitativas ou quatitativas), uma com r e outra com s modalidades ou categorias, respectivamete A 1, A,..., A r e B 1, B,..., B s. Cada idivíduo da amostra é classificado uma e uma só categoria (ou classe) de A e uma e uma só categoria (ou classe) de B. 46
24 A classificação dos elemetos da amostra dá origem a uma tabela de dupla etrada, desigada por tabela de cotigêcia rs, com o seguite aspecto: B 1 B... B s A 1 O 11 O 1... O 1s A O 1 O... O s A r O r1 O r... O rs 47 Nesta tabela cada O ij (i=1,...,r e j=1,...,s) é uma variável aleatória que represeta a amostra o úmero de elemetos classificados simultaeamete as categorias A i de A e B j de B. Além disso, temos as variáveis aleatórias: O (i=1,...,r) que represeta o úmero de elemetos a amostra com s i O ij j1 modalidade A i ; O (j=1,...,s) que represeta o úmero de elemetos a amostra com r j O ij i1 modalidade B j. 48
25 Tem-se, r s i1 j1 O ij r i1 O i s j1 O j ode é a dimesão da amostra que se supõe fixa. O objectivo a que os propomos é o de tetar iferir sobre a existêcia ou ão de qualquer relação ou associação etre os atributos (variáveis) A e B, mais cocretamete, iferir se A e B são ou ão idepedetes. Hipóteses a testar: H 0 : A e B são idepedetes H 1 : A e B ão são idepedetes 49 Deote-se por: p ij = P(A i B j ) (i=1,..,r e j=1,...,s) a probabilidade (descohecida) de um idivíduo da população ser classificado simultaeamete as categorias A i de A e B j de B; p P(A ) (i=1,...,r) a probabilidade (descohecida) de um idivíduo da i i população ser classificado a categoria A i de A; p j P(B j) (j=1,...,s) a probabilidade (descohecida) de um idivíduo da população ser classificado a categoria B j de B. 50
26 Tem-se, 1 r i1 s j1 p ij r i1 p i s j1 p j Ora, se os atributos são idepedetes, verifica-se a cohecida relação, P(A i B ) P(A )P(B ) j i j isto é, p ij = pi p j Assim, as hipóteses ateriores podem ser formuladas do seguite modo: H 0 : p ij = H 1 : p ij pi p i p (para todo i e j) j p (para algum ij) j 51 Os verdadeiros valores das probabilidades amostrais, por oi pˆ i e p i e p j são estimadas, a partir dos dados pˆ j o j ode o i e o j são os valores observados das variáveis aleatórias respectivamete, para uma amostra cocreta. O i e O j, e ij = p ij úmero esperado de idivíduos a classe A i de A e B j de B. 5
27 Quado H 0 é verdadeira, i.e, p ij = e ij = p ij = p pi i p j p, temos j estimado por ê ij pˆ i pˆ j A estatística do teste de idepedêcia é r i1 s j1 (O ij ê ) ê ij ij que, sob o pressuposto de H 0 ser verdadeira, tem distribuição assitótica do Quiquadrado com (r-1)(s-1) graus de liberdade. 53 Vimos que quado H 0 é verdadeira e ij pode ser estimado por ê ij pˆ i pˆ j, e logo a difereça etre o ij (frequêcia observada) e ê ij (estimativa da frequêcia esperada supodo a idepedêcia) ão deve ser grade. Assim, a estatística teste, tal como está defiida, mede o afastameto dos dados em relação à hipótese de idepedêcia. Trata-se etão de um teste uilateral à direita. 54
28 Exemplo 4 Um supermercado quer testar ao ível de sigificâcia de 5% a hipótese de que o modo de pagameto dos clietes esse estabelecimeto é idepedete do período do dia em que fazem as compras. Existem três modos de efectuar os pagametos: por cheque, diheiro e cartão de crédito. A seguite tabela de cotigêcia 33 apreseta os resultados obtidos uma amostra de 4000 clietes: PERÍODO DO DIA MODO DE PAGAMENTO Mahã Tarde Noite Cheque Diheiro Cartão de Crédito Deotado por A o atributo Modo de pagameto e por B o atributo Período do dia em que faz as compras, as hipóteses as testar são H 0 : A e B são idepedetes H 1 : A e B ão são idepedetes Uma vez que A e B assumem cada uma 3 modalidades, sob H 0, a estatística teste tem distribuição assitótica do Qui-quadrado com (r-1)(s-1) = (3-1)(3-1) = 4 graus de liberdade. Ao ível de sigificâcia de 0.05, a região crítica é etão [9.49, +[ 56
29 Como vimos, para obtermos o valor observado da estatística teste, temos de calcular as frequêcias esperadas: ê o ij pˆ ipˆ j = i o j = o i. o. j Assim, por exemplo, ê 11 = ( )/4000 = 750 ê 1 = ( )/4000 = 1500 ê 13 = ( )/4000 = Frequêcias esperadas PERÍODO DO DIA MODO DE PAGAMENTO Mahã Tarde Noite Totais Cheque Diheiro Cartão de Crédito Totais Valor observado da estatística teste: obs = ( ) ( ) (00 50) 50 + (175 15) 15 = 60 Uma vez que 60 excede o valor crítico 9.49, ao ível de sigificâcia de 0.05, rejeitamos a hipótese de que o modo de pagameto é idepedete do período do dia em que as compras são feitas. 58
30 MEDIDAS DE ASSOCIAÇÃO No teste do Qui-Quadrado apresetado, se for rejeitada a hipótese de idepedêcia etre os atributos, pode iteressar medir a itesidade da associação etre os mesmos, através de uma medida adequada. Uma vez que a estatística do teste mede o afastameto em relação à hipótese de idepedêcia, o seu valor observado também poderá servir para avaliar a força da relação etre os atributos. No etato, houve ecessidade de itroduzir algumas modificações, devido a diversas razões, por exemplo o facto do ão tomar valores apeas o itervalo [0,1], o que é salutar uma medida de associação. 59 COEFICIENTE DE CONTINGÊNCIA DE PEARSON: C Este coeficiete varia etre 0 e ( q 1) q ode q = mi{r,s} e portato uca assume o valor 1. Valores pequeos de C idicam fraca associação etre os atributos, equato que valores grades de C idicam forte associação. O facto deste coeficiete ão assumir o valor 1 o caso de associação completa é uma sua limitação. Para obviar este problema, Tshuprow propôs o seguite coeficiete. 60
31 COEFICIENTE DE TSHUPROW: T (r 1) (s 1) Este coeficiete varia etre 0 e 1, tomado o valor 0 o caso de existir idepedêcia e o valor 1 quado r = s e houver associação completa. Por último, referimos o coeficiete proposto por Cramer que atige o valor 1 quado há associação completa. COEFICIENTE V DE CRAMER: V, com q = mi{r,s} 0 V 1 (q 1) 61 Exemplo 4 Neste exemplo, rejeitamos a hipótese de idepedêcia etre o modo de pagameto e o período do dia em que as compras eram efectuadas. Para ter uma ideia da itesidade de associação etre estes dois atributos, calcula-se, por exemplo, o coeficiete V de Cramer. Assim, tem-se V= = Verificamos, segudo o coeficiete V que, apesar de haver associação etre os atributos, esta pode cosiderar-se fraca. 6
32 TESTE DE HOMOGENEIDADE Supoha que são recolhidas amostras aleatórias de s populações (subpopulações ou estratos) B 1, B,..., B s, as quais se observa um atributo A com r categorias A 1, A,..., A r. Neste cotexto, surge também uma tabela de cotigêcia rs da forma apresetada a tabela I, mas com leitura diferete. Assim, cada O ij (i=1,...,r e j=1,...,s) é uma variável aleatória que represeta o úmero de elemetos classificados a categorias A i de A, a amostra da população B j. 63 O (i=1,...,r) é uma variável aleatória que represeta o úmero de elemetos s i O ij j1 a categoria A i de A em todas as amostras. O (j=1,...,s) é uma costate prefixada (e ão uma variável aleatória como r j O ij i1 acotece o teste de idepedêcia), pois é o tamaho da amostra recolhida a população B j. Neste caso, cada B j rotula uma subpopulação cujos elemetos se distribuem pelas r modalidades do atributo A, e o que se pretede saber é se existe homogeeidade, isto é, se ão há difereça etre as populações o modo como os seus elemetos se distribuem pelas modalidades do atributo A. 64
33 Exemplo 5 Supohamos que dispomos dos resultados de vaciação cotra a cólera um cojuto de 79 idivíduos escolhidos aleatoriamete etre os vaciados, e um cojuto de 539 idivíduos escolhidos aleatoriamete etre os ão vaciados: Vaciados Não Vaciados Atacados 3 66 Não Atacados Totais Isto correspode a ter duas amostras, uma em cada colua da tabela, obtidas de modo idepedete e de dimesões, respectivamete o 1=79 e o =539. Hipóteses a testar: H 0 : os atacados e ão atacados distribuem-se de forma idêtica (homogéea) os vaciados e ão vaciados H 1 : os atacados e ão atacados distribuem-se de modo diferete os vaciados e ão vaciados As proporções de atacados e ão atacados são dadas, respectivamete, por o o = = e. 749 = =
34 Assim, sob o pressuposto de H 0 ser verdadeira, em cada um dos grupos dos vaciados e ão vaciados, deviam ser atacados (ão atacados) uma proporção de idivíduos igual a (0.916), isto é: os vaciados espera-se que sejam: o1. atacados ê 11 o.1 = =3.44 idivíduos o. e ão atacados ê 1 o.1 = =55.56 os ão vaciados espera-se que sejam o1. atacados ê 1 o. = =45.76 idivíduos o. e ão atacados ê o. = = O quadro seguite apreseta as frequêcias esperadas sob o pressuposto de homogeeidade: Vaciados Não Vaciados Atacados Não Atacados Totais À semelhaça do teste de idepedêcia, a estatística do teste é r s i1 j1 (O ij ê ê ij ij ) que, sob o pressuposto de H 0 ser verdadeira, tem distribuição assitótica do Qui- Quadrado com (r-1)(s-1) graus de liberdade. 68
35 As frequêcias observadas O ij e as estimativas das frequêcias esperadas ê ij calculadas sob o pressuposto de H 0 ser verdadeira, devem diferir pouco se H 0 for de facto verdadeira. Assim, valores muito grades da estatística teste traduzem um grade afastameto dos dados em relação à hipótese ula, coduzido à rejeição desta. Mais uma vez, a estatística teste mede o afastameto dos dados em relação à hipótese de homogeeidade. 69 Cálculo do valor observado da estatística teste: obs = O quatil de probabilidade da distribuição 1 é 7.88 Como o valor observado da estatística teste é 9.8 > 7.88 etão, para um ível de sigificâcia 0.005, rejeita-se a hipótese de homogeeidade etre as duas amostras, isto é, a população dos vaciados difere da dos ão vaciados o que se refere ao facto de terem ou ão sido atacados. 70
Testes de Ajustamento (testes da bondade do ajustamento)
Testes de Ajustameto (testes da bodade do ajustameto) Os testes de ajustameto servem para testar a hipótese de que uma determiada amostra aleatória teha sido extraída de uma população com distribuição
TESTES DE AJUSTAMENTO (TESTES DA BONDADE DO AJUSTAMENTO)
TESTES DE AJUSTAMENTO (TESTES DA BONDADE DO AJUSTAMENTO) Os testes de ajustamento servem para testar a hipótese de que uma determinada amostra aleatória tenha sido extraída de uma população com distribuição
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA
TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma
Cap. 5. Testes de Hipóteses
Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,
Testes Não Paramétricos
Testes Não Paramétricos Nos testes abordados até agora, ditos testes paramétricos, as hipóteses envolvem apenas parâmetros populacionais, como a média, a variância, uma proporção, etc. Além disso, em geral,
Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5
Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área
Intervalo de Confiança para uma Média Populacional
Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra
Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.
Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas
Métodos Quantitativos Aplicados
Métodos Quatitativos Aplicados Aula 3 http://www.iseg.ulisboa.pt/~vescaria/mqa/ Tópicos apresetação Itrodução aos packages estatísticos: SPSS Aálise Uivariada: Redução de dados e caracterização de distribuições
Estatística II Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística II Aula 3 Prof.: Patricia Maria Bortolo, D. Sc. Estimação por Itervalo Objetivos Nesta semaa, veremos: Como costruir e iterpretar estimativas por itervalos de cofiaça para a média e a proporção
MEDIDAS E INCERTEZAS
9//0 MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a desigação de úmeros a propriedades de objetos ou a evetos do mudo real de forma a descrevêlos quatitativamete. Outra forma
Vamos estudar o conceito de variabilidade absoluta considerando o conjunto de notas obtidas por cinco alunos:
Medidas de Disperção Itrodução: - Observamos ateriormete que as medidas de tedêcia cetral são usadas para resumir, em um úico úmero, aquele parâmetro que será o represetate do cojuto de dados. Estas medidas
Estimação por Intervalo (Intervalos de Confiança):
Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população
Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas
. ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia
Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...
Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para
O que é Estatística?
O que é Estatística? É um método de observação de feômeos coletivos. Ocupa-se da coleta, orgaização, resumo, apresetação e aálise de dados. Objetivo - Obter iformações que permitam uma descrição dos feômeos
Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir
Objetivo Estimar uma roorção (descohecida) de elemetos em uma oulação, aresetado certa característica de iteresse, a artir da iformação forecida or uma amostra. Exemlos: : roorção de aluos da USP que foram
Testes Qui-Quadrado - Teste de Aderência
Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades
Análise de Projectos ESAPL / IPVC. Casos Particulares de VLA e TIR. Efeitos de Impostos, Inflação e Risco.
Aálise de Projectos ESAPL / IPVC Casos Particulares de VLA e TIR. Efeitos de Impostos, Iflação e Risco. O Caso dos Fluxos de Caixa Costates uado um ivestimeto apreseta fluxos de caixa costates ao logo
Métodos Quantitativos Aplicados
Métodos Quantitativos Aplicados Aula 5 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: cruzamentos e medidas de associação variáveis nominais e ordinais e variáveis
AULA 11 Experimentos Multinomiais e Tabelas de Contingência
1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)
UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p
ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.
Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)
Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser
Cap. 4 - Estimação por Intervalo
Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:
s =, sendo n= n Uma amostra de 60 indivíduos onde a massa corpórea, em kg, tiver média 42kg e um desvio padrão de 3,5 o Erro Padrão da Média será:
statística Aplicada Prof. Atoio Sales/ 013 DSVIO PADRÃO RRO PADRÃO DA MÉDIA As iferêcias sobre uma população podem ser baseadas em observações a partir de amostras de populações. Como a amostra, a maior
10 - Medidas de Variabilidade ou de Dispersão
10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.
Distribuição Amostral da Média: Exemplos
Distribuição Amostral da Média: Eemplos Talvez a aplicação mais simples da distribuição amostral da média seja o cálculo da probabilidade de uma amostra ter média detro de certa faia de valores. Vamos
Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.
5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )
Coeficiente de Rendimento. Universidade Iguaçu
Coeficiete de Redimeto Uiversidade Iguaçu 1. INTRODUÇÃO Para efocar o seu desempeho escolar, o Coeficiete de Redimeto CR ou Coeficiete de Redimeto Acumulado CRA devem ser expressos por uma média poderada,
9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros
INE 7 - Iferêcia Estatística Estimação de Parâmetros 1 9 - INFERÊNCIA ESTATÍSTICA Estimação de Parâmetros 9.1 - Itrodução Estatística é a ciêcia que se ocupa de orgaizar, descrever, aalisar e iterpretar
5n 3. 1 nsen(n + 327) e)
Exercícios 1 Mostre, utilizado a defiição, que as seguites sucessões são limitadas: 2 4 50 a) b) 3 +16 1 5 3 2 c) 1 4( 1) 8 5 d) 100 5 3 2 + 2( 1) 1 4( 1) 8 1 se( + 327) e) f) 5 3 2 4 4 2 2 Mostre, utilizado
Modelos de Probabilidade e Inferência Estatística
Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14
Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.
Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha [email protected] Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:
Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma
Aula 8. Teste Binomial a uma proporção p
Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma
TESTE DE HIPÓTESES PARA PROPORÇÕES
TESTE DE HIPÓTESES PARA PROPORÇÕES Este resumo visa auxiliar aos cadidatos que farão a prova para Fiscal ISS-SP, cujo programa, o Edital, cotempla Teste de Hipóteses para Médias e Proporções. Vem, assim,
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva [email protected]
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva [email protected] Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição
Distribuições de Estatísticas Amostrais e Teorema Central do Limite
Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia
DURAÇÃO 1:30. (o teste consta de 3 páginas com questões, um formulário e uma tabela - 5 folhas no total)
DURAÇÃO 1:30 (o teste costa de 3 págias com questões, um formulário e uma tabela - 5 folhas o total) Leia atetamete o euciado ates de respoder a cada questão. as questões de escolha múltipla seleccioe
Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira
Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.
4. Inferência Estatística Estimadores Pontuais
4. Iferêcia Estatística Estimadores Potuais 4.1. Itrodução Em lihas gerais, a Iferêcia Estatística objetiva estudar a população através de evidêcias forecidas pela amostra. É a amostra que cotém os elemetos
Critérios de correção e orientações de resposta p-fólio
Miistério da Ciêcia, Tecologia e Esio Superior U.C. 037 Elemetos de Probabilidade e Estatística de Juho de 0 Critérios de correção e orietações de resposta p-fólio Neste relatório apresetam-se os critérios
Teste de Hipótese e Intervalo de Confiança. Parte 2
Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos
Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?
Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por
AMOSTRAGEM. CENSO: Quando é investigada todas (sem exceção) as unidades de uma população.
AMOSTRAGEM CENSO X AMOSTRA População: Qualquer cojuto que possui, pelo meos, uma característica em comum. Exemplo: Produção de peças da Idústria X. A população pode ser fiita ou ifiita. População fiita:
BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados
BIOESTATÍSTICA Parte 1 - Estatística descritiva e análise exploratória dos dados Aulas Teóricas de 17/02/2011 a 03/03/2011 1.1. População, amostra e dados estatísticos. Dados qualitativos e quantitativos
O teste de McNemar. A tabela 2x2. Depois - Antes
Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ [email protected] O teste de McNemar O teste de McNemar para a sigificâcia de mudaças é particularmete aplicável aos experimetos do tipo "ates e depois"
Estatística. Estatística II - Administração. Prof. Dr. Marcelo Tavares. Distribuições de amostragem. Estatística Descritiva X Estatística Inferencial
Estatística II - Admiistração Prof. Dr. Marcelo Tavares Distribuições de amostragem Na iferêcia estatística vamos apresetar os argumetos estatísticos para fazer afirmações sobre as características de uma
Variáveis Aleatórias e Distribuições de Probabilidade
PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória
DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:
48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa
Intervalos de Confiança
Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de
Estimativa de Parâmetros
Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott [email protected] Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade
Mestrado Integrado em Engenharia Civil. Disciplina: TRANSPORTES. Sessão Prática 4: Amostragem
Mestrado Itegrado em Egeharia Civil Disciplia: TRNSPORTES Prof. Resposável: José Mauel Viegas Sessão Prática 4: mostragem Istituto Superior Técico / Mestrado Itegrado Egª Civil Trasportes ulas Práticas
MATEMÁTICA FINANCEIRA. UNIDADE XI RENDAS Capitalização e Amortização Compostas (Séries de Pagamentos ou Rendas)
1 UNIDADE XI RENDAS Capitalização e Amortização Compostas (Séries de Pagametos ou Redas) Elemetos ou Classificação: - Redas: Sucessão de depósitos ou de prestações, em épocas diferetes, destiados a formar
Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.
ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes
( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução.
55 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Itrodução. No processo de resolução de um problema prático é reqüete a ecessidade de se obter a solução de um sistema de equações ão lieares. Dada
INTERVALOS DE CONFIANÇA
INTRVALOS D CONFIANÇA 014 stimação por itervalos 1,..., é uma amostra aleatória de uma variável cuja distribuição depede do parâmetro. Se L( 1,..., ) e U( 1,..., ) são duas fuções tais que L < U e P(L
A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.
Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise
Comparação de testes paramétricos e não paramétricos aplicados em delineamentos experimentais
Comparação de testes paramétricos e ão paramétricos aplicados em delieametos experimetais Gustavo Mello Reis (UFV) [email protected] José Ivo Ribeiro Júior (UFV) [email protected] RESUMO: Para comparar
CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES
CAPÍTULO 6 - ESTIMAÇÃO E TESTES DE HIPÓTESES 6. INTRODUÇÃO INFERÊNCIA ESTATÍSTICA Estimação por poto por itervalo Testes de Hipóteses População X θ =? Amostra θ Iferêcia Estatística X, X,..., X 6. ESTIMAÇÃO
TEORIA ELEMENTAR DA PROBABILIDADE
TEORIA ELEMENTAR DA PROBABILIDADE Da Origem às Aplicações: As origes do cálculo de probabilidade remotam ao século XVI e suas aplicações referiam-se sempre a jogos de azar. Os jogadores ricos aplicavam
ELEMENTOS DE ESTATÍSTICA DESCRITIVA. Amílcar Oliveira Teresa A. Oliveira
ELEMENTOS DE ESTATÍSTICA DESCRITIVA Amílcar Oliveira Teresa A. Oliveira Lisboa Jaeiro de 2011 Coteúdo Resumo. Pretede-se com o presete texto uma abordagem aos pricipais tópicos desevolvidos em Estatística
MATEMÁTICA PARA CONCURSOS II
MATEMÁTICA PARA CONCURSOS II Módulo III Neste Módulo apresetaremos um dos pricipais assutos tratados em cocursos públicos e um dos mais temíveis por parte dos aluos: Progressão Aritmética e Progressão
AMOSTRAGEM EM AUDITORIAS
AMOSTRAGEM EM AUDITORIAS Cytia Matteucci Istituto de Pesquisas Tecológicas do Estado de São Paulo, São Paulo, Brasil, [email protected] RESUMO Este artigo discute e propõe um procedimeto de amostragem que
COMPARATIVO ENTRE REGIMES DE CAPITALIZAÇÃO SIMPLES E COMPOSTA E A VINCULAÇÃO DE AMBOS COM A TABELA PRICE
COMPARATIVO ETRE REGIMES DE CAPITALIZAÇÃO SIMPLES E COMPOSTA E A VICULAÇÃO DE AMBOS COM A TABELA PRICE Etede-se por regime de capitalização o processo de formação dos juros e a maeira pela qual estes são
Testes de Ajustamento (testes da bondade do ajustamento)
Testes de Ajustamento (testes da bondade do ajustamento) Os testes de ajustamento servem para testar a hipótese de que uma determinada amostra aleatória tenha sido extraída de uma população com distribuição
1 Introdução. 1.1 Importância da Utilização da Amostragem
1 Introdução Um dos principais objetivos da maioria dos estudos, análises ou pesquisas estatísticas é fazer generalizações seguras com base em amostras, sobre as populações das quais as amostras foram
DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS
DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS [email protected] O objetivo desse texto é apresetar através de exemplos uméricos como se
Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Regressão Linear. Bernardo Almada-Lobo
MÉTODO ETATÍTICO DE PREVIÃO 8 6 4 98 96 94 9 9 5 5 Regressão Liear Berardo Almada-Lobo Regressão A regressão é uma das técicas estatísticas mais potetes e de utilização mais frequete. É um método matemático
Aula 12 Teste de hipótese sobre proporções amostras grandes
Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.
