Geometria Espacial. Exercícios Objetivos
|
|
|
- Ayrton Alcaide Palmeira
- 9 Há anos
- Visualizações:
Transcrição
1 Exercícios Objetivos 1. (2009) A cisterna é um recipiente utilizado para armazenar água da chuva. Os principais critérios a serem observados para captação e armazenagem de água da chuva são: a demanda diária de água na propriedade; o índice médio de precipitação (chuva), por região, em cada período do ano; o tempo necessário para armazenagem; e a área de telhado necessária ou disponível para captação. Para fazer o cálculo do volume de uma cisterna, deve-se acrescentar um adicional relativo ao coeficiente de evaporação. Na dificuldade em se estabelecer um coeficiente confiável, a Empresa Brasileira de Pesquisa Agropecuária (EM- BRAPA) sugere que sejam adicionados 10% ao volume calculado de água. Desse modo, o volume, em m 3, de uma cisterna é calculado por V c = V d N dia, em que V d = volume de demanda da água diária (m 3 ), Ndia = número de dias de armazenagem, e este resultado deve ser acrescido de 10%. Para melhorar a qualidade da água, recomendase que a captação seja feita somente nos telhados das edificações. Considerando que a precipitação de chuva de 1 mm sobre uma área de 1m 2 produz 1 litro de água, pode-se calcular a área de um telhado a fim de atender a necessidade de armazenagem da seguinte maneira: área do telhado (em m 2 ) = volume da cisterna (em litros)/precipitação. Disponível em: Acesso em: 8 jun (adaptado). Para atender a uma demanda diária de litros de água, com período de armazenagem de 15 dias e precipitação média de 110 mm, o telhado, retangular, deverá ter as dimensões mínimas de (a) 6 metros por 5 metros, pois assim teria uma área de 30m 2. (b) 15 metros por 20 metros, pois assim teria uma área de 300m 2. (c) 50 metros por 60 metros, pois assim teria uma área de 3.000m 2. (d) 91 metros por 30 metros, pois assim teria uma área de 2.730m 2. (e) 110 metros por 30 metros, pois assim teria uma área de 3.300m (2009) Um artesão construiu peças de artesanato interceptando uma pirâmide de base quadrada com um plano. Após fazer um estudo das diferentes peças que poderia obter, ele concluiu que uma delas poderia ter uma das faces pentagonal. Qual dos argumentos a seguir justifica a conclusão do artesão? (a) Uma pirâmide de base quadrada tem 4 arestas laterais e a interseção de um plano com a pirâmide intercepta suas arestas laterais. Assim, esses pontos formam um polígono de 4 lados. (b) Uma pirâmide de base quadrada tem 4 faces triangulares e, quando um plano intercepta essa pirâmide, divide cada face em um triângulo e um trapézio. Logo, um dos polígonos tem 4 lados. (c) Uma pirâmide de base quadrada tem 5 faces e a interseção de uma face com um plano é um segmento de reta. Assim, se o plano interceptar todas as faces, o polígono obtido nessa interseção tem 5 lados. (d) O número de lados de qualquer polígono obtido como interseção de uma pirâmide com um plano é igual ao número de faces da pirâmide. Como a pirâmide tem 5 faces, o polígono tem 5 lados. (e) O número de lados de qualquer polígono obtido interceptando-se uma pirâmide por um plano é igual ao número de arestas laterais da pirâmide. Como a pirâmide tem 4 arestas laterais, o polígono tem 4 lados. 3. (2009) Uma fábrica produz velas de parafina em forma de pirâmide quadrangular regular com 19 cm de altura e 6 cm de aresta da base. Essas velas são formadas por 4 blocos de mesma altura - 3 troncos de pirâmide de bases paralelas e 1 pirâmide na parte superior -, espaçados de 1 cm entre eles, sendo que a base superior de cada bloco é igual à base inferior do bloco sobreposto, com uma haste de ferro passando pelo centro de cada bloco, unindo-os, conforme a figura.
2 Se o dono da fábrica resolver diversificar o modelo, retirando a pirâmide da parte superior, que tem 1,5 cm de aresta na base, mas mantendo o mesmo molde, quanto ele passará a gastar com parafina para fabricar uma vela? (a) 156cm 3. (b) 189cm 3. (c) 192cm 3. (d) 216cm 3. (e) 540cm (2009) Uma empresa que fabrica esferas de aço, de 6 cm de raio, utiliza caixas de madeira, na forma de um cubo, para transportá-las. Sabendo que a capacidade da caixa é de cm 3, então o número máximo de esferas que podem ser transportadas em uma caixa é igual a (a) 4. (b) 8. (c) 16. (d) 24. (e) (2009) Suponha que, na escultura do artista Emanoel Araújo, mostrada na figura a seguir, todos os prismas numerados em algarismos romanos são retos, com bases triangulares, e que as faces laterais do poliedro II são perpendiculares à sua própria face superior, que, por sua vez, é um triângulo congruente ao triângulo base dos prismas. Além disso, considere que os prismas I e III são perpendiculares ao prisma IV e ao poliedro II. Imagine um plano paralelo à face α do prisma I, mas que passe pelo ponto P pertencente à aresta do poliedro II, indicado na figura. A interseção desse plano imaginário com a escultura contém (a) dois triângulos congruentes com lados correspondentes paralelos. (b) dois retângulos congruentes e com lados correspondentes paralelos. (c) dois trapézios congruentes com lados correspondentes perpendiculares. (d) dois paralelogramos congruentes com lados correspondentes paralelos. (e) dois quadriláteros congruentes com lados correspondentes perpendiculares. 6. (2010) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior mede 12 cm e a do cubo menor, que é interno, mede 8 cm. O volume de madeira utilizado na confecção desse objeto foi de (a) 12cm 3. (b) 64cm 3. (c) 96cm 3. (d) 1216cm 3. (e) 1728cm 3.
3 7. (2010) Em um casamento, os donos da festa serviam champanhe aos seus convidados em taças com formato de um hemisfério (Figura 1), porém um acidente na cozinha culminou na quebra de grande parte desses recipientes. Para substituir as taças quebradas, utilizou-se um outro tipo com formato de cone (Figura 2). No entanto, os noivos solicitaram que o volume de champanhe nos dois tipos de taças fosse igual. (d) y = 2πR (e) y = 4πR 9. (2010) Uma metalúrgica recebeu uma encomenda para fabricar, em grande quantidade, uma peça com o formato de um prisma reto com base triangular, cujas dimensões da base são 6 cm, 8 cm e 10 cm e cuja altura é 10 cm. Tal peça deve ser vazada de tal maneira que a perfuração na forma de um cilindro circular reto seja tangente às suas faces laterais, conforme mostra a figura. Considere: V esfera = 4 3 πr3 e V cone = 1 3 πr2 h Sabendo que a taça com o formato de hemisfério é servida completamente cheia, a altura do volume de champanhe que deve ser colocado na outra taça, em centímetros, é de (a) 1,33. (b) 6,00. (c) 12,00. (d) 56,52. (e) 113, (2010) A ideia de usar rolos circulares para deslocar objetos pesados provavelmente surgiu com os antigos egípcios ao construírem as pirâmides. Representando por R o raio da base dos rolos cilíndricos, em metros, a expressão do deslocamento horizontal y do bloco de pedra em função de R, após o rolo ter dado uma volta completa sem deslizar, é (a) y = R (b) y = 2R (c) y = πr O raio da perfuração da peça é igual a (a) 1 cm. (b) 2 cm. (c) 3 cm. (d) 4 cm. (e) 5 cm. 10. (2010) Para construir uma manilha de esgoto, um cilindro com 2 m de diâmetro e 4 m de altura (de espessura desprezível), foi envolvido homogeneamente por uma camada de concreto, contendo 20 cm de espessura. Supondo que cada metro cúbico de concreto custe R$ 10,00 e tomando 3,1 como valor aproximado de π, então o preço dessa manilha é igual a (a) R$ 230,40. (b) R$ 124,00. (c) R$ 104,16. (d) R$ 54,56. (e) R$ 49, (2010) No manejo sustentável de florestas, é preciso muitas vezes obter o volume da tora que pode ser obtida a partir de uma árvore. Para isso, existe um método prático, em que se mede a circunferência da árvore à altura do peito de um homem (1,30 m), conforme indicado na figura. A essa medida denomina-se
4 rodo da árvore. O quadro a seguir indica a fórmula para se cubar, ou seja, obter o volume da tora em m 3 a partir da medida do rodo e da altura da árvore. Um técnico em manejo florestal recebeu a missão de cubar, abater e transportar cinco toras de madeira, de duas espécies diferentes, sendo 3 toras da espécie I, com 3 m de rodo, 12 m de comprimento e densidade 0,77 toneladas/m 3 ; 2 toras da espécie II, com 4 m de rodo, 10 m de comprimento e densidade 0,78 toneladas/m 3. Após realizar seus cálculos, o técnico solicitou que enviassem caminhões para transportar uma carga de, aproximadamente, (a) 29,9 toneladas. (b) 31,1 toneladas. (c) 32,4 toneladas. (d) 35,3 toneladas. (e) 41,8 toneladas. 12. (2010) Dona Maria, diarista na casa da família Teixeira, precisa fazer café para servir as vinte pessoas que se encontram numa reunião na sala. Para fazer o café, Dona Maria dispõe de uma leiteira cilíndrica e copinhos plásticos, também cilíndricos. Com o objetivo de não desperdiçar café, a diarista deseja colocar a quantidade mínima de água na leiteira para encher os vinte copinhos pela metade. Para que isso ocorra, Dona Maria deverá (a) encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. (b) encher a leiteira toda de água, pois ela tem um volume 20 vezes maior que o volume do copo. (c) encher a leiteira toda de água, pois ela tem um volume 10 vezes maior que o volume do copo. (d) encher duas leiteiras de água, pois ela tem um volume 10 vezes maior que o volume do copo. (e) encher cinco leiteiras de água, pois ela tem um volume 10 vezes maior que o volume do copo. 13. (2010) A siderúrgica Metal Nobre produz diversos objetos maciços utilizando o ferro. Um tipo especial de peça feita nessa companhia tem o formato de um paralelepípedo retangular, de acordo com as dimensões indicadas na figura que segue. O produto das três dimensões indicadas na peça resultaria na medida da grandeza (a) massa. (b) volume. (c) superfície. (d) capacidade. (e) comprimento. 14. (2010) Uma fábrica produz barras de chocolates no formato de paralelepípedos e de cubos, com o mesmo volume. As arestas da barra de chocolate no formato de paralelepípedo medem 3 cm de largura, 18 cm de comprimento e 4 cm de espessura. Analisando as características das figuras geométricas descritas, a medida das arestas dos chocolates que têm o formato de cubo é igual a (a) 5 cm. (b) 6 cm. (c) 12 cm.
5 (d) 24 cm. (e) 25 cm. 15. (2010) Alguns testes de preferência por bebedouros de água foram realizados com bovinos, envolvendo três tipos de bebedouros, de formatos e tamanhos diferentes. Os bebedouros 1 e 2 têm a forma de um tronco de cone circular reto, de altura igual a 60 cm, e diâmetro da base superior igual a 120 cm e 60 cm, respectivamente. O bebedouro 3 é um semicilindro, com 30 cm de altura, 100 cm de comprimento e 60 cm de largura. Os três recipientes estão ilustrados na figura. Considerando-se S como a resistência, a representação algébrica que exprime essa relação é (a) S = k.b.d (b) S = b.d 2 (c) S = k.b.d 2 (d) S = k.b d 2 (e) S = k.d2 b Considerando que nenhum dos recipientes tenha tampa, qual das figuras a seguir representa uma planificação para o bebedouro 3? 16. (2011) A resistência das vigas de dado comprimento é diretamente proporcional à largura (b) e ao quadrado da altura (d), conforme a figura. A constante de proporcionalidade k varia de acordo com o material utilizado na sua construção. 17. (2011) É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo, para atrair beija-flores. Mas é importante saber que, na hora de fazer a mistura, você deve sempre usar uma parte de açúcar para cinco partes de água. Além disso, em dias quentes, precisa trocar a água de duas a três vezes, pois com o calor ela pode fermentar e, se for ingerida pela ave, pode deixá-la doente. O excesso de açúcar, ao cristalizar, também pode manter o bico da ave fechado, impedindo-a de se alimentar. Isso pode até matá-la. Pretende-se encher completamente um copo com a mistura para atrair beija-flores. O copo tem formato cilíndrico, e suas medidas são 10 cm de altura e 4 cm de diâmetro. A quantidade de água que deve ser utilizada na mistura é cerca de (utilize π = 3) (a) 20 ml. (b) 24 ml. (c) 100 ml. (d) 120 ml. (e) 600 ml. 18. (2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.
6 Esta figura é uma representação de uma superfície de revolução chamada de (a) pirâmide. (b) semiesfera. (c) cilindro. (d) tronco de cone. (e) cone. 19. (2011) Uma indústria fabrica brindes promocionais em forma de pirâmide. A pirâmide é obtida a partir de quatro cortes em um sólido que tem a forma de um cubo. No esquema, estão indicados o sólido original (cubo) e a pirâmide obtida a partir dele. O deslocamento descrito por João foi: mova-se pela pirâmide, sempre em linha reta, do ponto A ao ponto E, a seguir do ponto E ao ponto M, e depois de M a C. O desenho que Bruno deve fazer é Os pontos A, B, C, D e O do cubo e da pirâmide são os mesmos. O ponto O é central na face superior do cubo. Os quatro cortes saem de O em direção às arestas AD, BC, AB, CD, nessa ordem. Após os cortes, são descartados quatro sólidos. Os formatos dos sólidos descartados são (a) todos iguais. (b) todos diferentes. (c) três iguais e um diferente. (d) apenas dois iguais. (e) iguais dois a dois. 20. (2012) João propôs um desafio a Bruno, seu colega de classe: ele iria descrever um deslocamento pela pirâmide a seguir e Bruno deveria desenhar a projeção desse deslocamento no plano da base da pirâmide. 21. (2012) Alguns objetos, durante a sua fabricação, necessitam passar por um processo de resfriamento. Para que isso ocorra, uma fábrica utiliza um tanque de resfriamento, como mostrado na figura
7 O que aconteceria com o nível da água se colocássemos no tanque um objeto cujo volume fosse de 2400cm 3? (a) O nível subiria 0,2 cm, fazendo a água fiar com 20,2 cm de altura. (b) O nível subiria 1 cm, fazendo a água ficar com 21 cm de altura. (c) O nível subiria 2 cm, fazendo a água ficar com 22 cm de altura. (d) O nível subiria 8 cm, fazendo a água transbordar. (e) O nível subiria 20 cm, fazendo a água transbordar. 22. (2012) O globo da morte é uma atração muito usada em circos. Ele consiste em uma espécie de jaula em forma de uma superfície esférica feita de aço, onde motoqueiros andam com suas motos por dentro. A seguir, tem-se, na Figura 1, uma foto de um globo da morte e, na Figura 2, uma esfera que ilustra um globo da morte. 23. (2012) Em exposições de artes plásticas, é usual que estátuas sejam expostas sobre plataformas giratórias. Uma medida de segurança é que a base da escultura esteja integralmente apoiada sobre a plataforma. Para que se providencie o equipamento adequado, no caso de uma base quadrada que será fixada sobre uma plataforma circular, o auxiliar técnico do evento deve estimar a medida R do raio adequado para a plataforma em termos da medida L do lado da base da estátua. Qual relação entre R e L o auxiliar técnico deverá apresentar de modo que a exigência de segurança seja cumprida? (a) R L/ 2 (b) R 2L/π (c) R L/ π (d) R L/2 (e) R L/(2 2) Na Figura 2, o ponto A está no plano do chão onde está colocado o globo da morte e o segmento AB passa pelo centro da esfera e é perpendicular ao plano do chão. Suponha que há um foco de luz direcionado para o chão colocado no ponto B e que um motoqueiro faça um trajeto dentro da esfera, percorrendo uma circunferência que passa pelos pontos A e B. A imagem do trajeto feito pelo motoqueiro no plano do chão é melhor representada por 24. (2012) Maria quer inovar em sua loja de embalagens e decidiu vender caixas com diferentes formatos. Nas imagens apresentadas estão as planificações dessas caixas. Quais serão os sólidos geométricos que Maria obterá a partir dessas planificações?
8 (a) Cilindro, prisma de base pentagonal e pirâmide. (b) Cone, prisma de base pentagonal e pirâmide. (c) Cone, tronco de pirâmide e pirâmide. (d) Cilindro, tronco de pirâmide e prisma. (e) Cilindro, prisma e tronco de cone. 25. (2012) A resistência mecânica S de uma viga de madeira, em forma de um paralelepípedo retângulo, é diretamente proporcional à sua largura (b) e ao quadrado de sua altura (d) e inversamente proporcional ao quadrado da distância entre os suportes da viga, que coincide com o seu comprimento (x), conforme ilustra a figura. A constante de proporcionalidade k é chamada de resistência da viga. Considere que AC = 7 BD e que l é a medida 5 de um dos lados da base da bandeja. l Qual deve ser o menor valor da razão BD para que uma bandeja tenha capacidade de portar exatamente quatro copos de uma só vez? (a) 2 (b) 14 5 (c) 4 (d) 24 5 (e) 28 5 A expressão que traduz a resistência S dessa viga de madeira é 27. (2013) Uma cozinheira, especialista em fazer bolos, utiliza uma forma no formato representado na figura: (a) S = k.b.d2 x 2 (b) S = k.b.d x 2 (c) S = k.b.d2 x (d) S = k.b2.d x (e) S = k.b.2d 2x 26. (2013) Um restaurante utiliza, para servir bebidas, bandejas com bases quadradas. Todos os copos desse restaurante têm o formato representado na figura: Nela identifica-se a representação de duas figuras geométricas tridimensionais. Essas figuras são (a) um tronco de cone e um cilindro. (b) um cone e um cilindro. (c) um tronco de pirâmide e um cilindro. (d) dois troncos de cone. (e) dois cilindros.
9 28. (2013) Num parque aquático existe uma piscina infantil na forma de um cilindro circular reto, de 1 m de profundidade e volume igual a 12m 3, cuja base tem raio R e centro O. Deseja-se construir uma ilha de lazer seca no interior dessa piscina, também na forma de um cilindro circular reto, cuja base estará no fundo da piscina e com centro da base coincidindo com o centro do fundo da piscina, conforme a figura. O raio da ilha de lazer será r. Deseja-se que após a construção dessa ilha, o espaço destinado à água na piscina tenha um volume de, no mínimo, 4m 3. EMBRAPA. Gado de corte. Disponível em: Acesso em: 1 ago (adaptado). Após a silagem, a quantidade máxima de forragem que cabe no silo, em toneladas, é (a) 110. (b) 125. (c) 130. (d) 220. (e) (2014) Um sinalizador de trânsito tem o formato de um cone circular reto. O sinalizador precisa ser revestido externamente com adesivo fluorescente, desde sua base (base do cone) até a metade de sua altura, para sinalização noturna. O responsável pela colocação do adesivo precisa fazer o corte do material de maneira que a forma do adesivo corresponda exatamente à parte da superfície lateral a ser revestida. Qual deverá ser a forma do adesivo? Considere 3 como valor aproximado para p. Para satisfazer as condições dadas, o raio máximo da ilha de lazer r, em metros, estará mais próximo de (a) 1,6. (b) 1,7. (c) 2,0. (d) 3,0. (e) 3, (2014) Na alimentação de gado de corte, o processo de cortar a forragem, colocá-la no solo, compactá-la e protegê-la com uma vedação denomina-se silagem. Os silos mais comuns são os horizontais, cuja forma é a de um prisma reto trapezoidal, conforme mostrado na figura. Considere um silo de 2 m de altura, 6 m de largura de topo e 20 m de comprimento. Para cada metro de altura do silo, a largura do topo tem 0,5 m a mais do que a largura do fundo. Após a silagem, 1 tonelada de forragem ocupa 2 m3 desse tipo de silo. 31. (2014) Conforme regulamento da Agência Nacional de Aviação Civil (Anac), o passageiro que embarcar em voo doméstico poderá transportar bagagem de mão, contudo a soma das dimensões da bagagem (altura + comprimento + largura) não pode ser superior a 115 cm. A figura mostra a planificação de uma caixa que tem a forma de um paralelepípedo retângulo
10 de um paralelepípedo retângulo reto, com dimensões, no projeto, iguais a 3 cm, 1 cm e 2 cm. O volume real do armário, em centímetros cúbicos, será (a) 6. O maior valor possível para x, em centímetros, para que a caixa permaneça dentro dos padrões permitidos pela Anac é (a) 25. (b) 33. (c) 42. (d) 45. (e) (2014) Uma lata de tinta, com a forma de um paralelepípedo retangular reto, tem as dimensões, em centímetros, mostradas na figura. (b) 600. (c) (d) (e) (2014) O acesso entre os dois andares de uma casa é feito através de uma escada circular (escada caracol), representada na figura. Os cinco pontos A, B, C, D, E sobre o corrimão estão igualmente espaçados, e os pontos P, A e E estão em uma mesma reta. Nessa escada, uma pessoa caminha deslizando a mão sobre o corrimão do ponto A até o ponto D. Será produzida uma nova lata, com os mesmos formato e volume, de tal modo que as dimensões de sua base sejam 25% maiores que as da lata atual. Para obter a altura da nova lata, a altura da lata atual deve ser reduzida em (a) 14,4% (b) 20,0% (c) 32,0% (d) 36,0% (e) 64,0% 33. (2014) O condomínio de um edifício permite que cada proprietário de apartamento construa um armário em sua vaga de garagem. O projeto da garagem, na escala 1 : 100, foi disponibilizado aos interessados já com as especificações das dimensões do armário, que deveria ter o formato A figura que melhor representa a projeção ortogonal, sobre o piso da casa (plano), do caminho percorrido pela mão dessa pessoa é:
11 enrolada em torno de um cilindro de madeira de diâmetro d em centímetros, sem folga, dandose 5 voltas completas em torno de tal cilindro. Ao final, amarra-se um cordão no meio do diploma, bem ajustado, para que não ocorra o desenrolando, como ilustrado na figura. Em seguida, retira-se o cilindro de madeira do meio do papel enrolado, finalizando a confecção do diploma. Considere que a espessura da folha de papel original seja desprezível. Qual é a medida, em centímetros, do lado da folha de papel usado na confecção do diploma? 35. (2014) Uma empresa farmacêutica produz medicamentos em pílulas, cada uma na forma de um cilindro com uma semiesfera com o mesmo raio do cilindro em cada uma de suas extremidades. Essas pílulas são moldadas por uma máquina programada para que os cilindros tenham sempre 10 mm de comprimento, adequando o raio de acordo com o volume desejado. Um medicamento é produzido em pílulas com 5 mm de raio. Para facilitar a deglutição, desejase produzir esse medicamento diminuindo o raio para 4 mm, e, por consequência, seu volume. Isso exige a reprogramação da máquina que produz essas pílulas. Use 3 como valor aproximado para π. A redução do volume da pílula, em milímetros cúbicos, após a reprogramação da máquina, será igual a (a) 168. (b) 304. (c) 306. (d) 378. (e) (2014) Uma empresa que organiza eventos de formatura confecciona canudos de diplomas a partir de folhas de papel quadradas. Para que todos os canudos fiquem idênticos, cada folha é (a) πd (b) 2πd (c) 4πd (d) 5πd (e) 10πd 37. (2014) Um fazendeiro tem um depósito para armazenar leite formado por duas partes cúbicas que se comunicam, como indicado na figura. A aresta da parte cúbica de baixo tem medida igual ao dobro da medida da aresta da parte cúbica de cima. A torneira utilizada para encher o depósito tem vazão constante e levou 8 minutos para encher metade da parte de baixo. Quantos minutos essa torneira levará para encher completamente o restante do depósito? (a) 8 (b) 10 (c) 16 (d) 18 (e) 24
12 38. (2015) Uma fábrica de sorvetes utiliza embalagens plásticas no formato de paralelepípedo retangular reto. Internamente, a embalagem tem 10cm de altura e base de 20cm por 10cm. No processo de confecção do sorvete, uma mistura é colocada na embalagem no estado líquido e, quando levada ao congelador, tem seu volume aumentado em 25%, ficando com consistência cremosa. Inicialmente é colocada na embalagem uma mistura sabor chocolate com volume de 1000cm 3 e, após essa mistura ficar cremosa, será adicionada uma mistura sabor morango, de modo que, ao final do processo de congelamento, a embalagem fique completamente preenchida com sorvete, sem transbordar. O volume máximo, em cm 3, da mistura sabor morango que deverá ser colocado na embalagem é (a) 450. (b) 500. (c) 600. (d) 750. (e) (2015) Para resolver o problema de abastecimento de água foi decidida, numa reunião do condomínio, a construção de uma nova cisterna. A cisterna atual tem formato cilíndrico, com 3m de altura e 2m de diâmetro, e estimou-se que a nova cisterna deverá comportar 81m 3 de água, mantendo o formato cilíndrico e a altura da atual. Após a inauguração da nova cisterna a antiga será desativada. Utilize 3, 0 como aproximação para π. Qual deve ser o aumento, em metros, no raio da cisterna para atingir o volume desejado? (a) 0,5 (b) 1,0 (c) 2,0 (d) 3,5 (e) 8,0 40. (2015) Uma carga de 100 contêineres, idênticos ao modelo apresentado na Figura 1, deverá ser descarregada no porto de uma cidade. Para isso, uma área retangular de 10m por 32m foi cedida para o empilhamento desses contêineres (Figura 2). De acordo com as normas desse porto, os contêineres deverão ser empilhados de forma a não sobrarem espaços nem ultrapassarem a área delimitada. Após o empilhamento total da carga e atendendo à norma do porto, a altura mínima a ser atingida por essa pilha de contêineres é (a) 12,5 m. (b) 17,5 m. (c) 25,0 m. (d) 22,5 m. (e) 32,5 m. 41. (2015) O índice pluviométrico é utilizado para mensurar a precipitação da água da chuva, em milímetros, em determinado período de tempo. Seu cálculo é feito de acordo com o nível de água da chuva acumulada em 1m 2, ou seja, se o índice for de 10 mm, significa que a altura do nível de água acumulada em um tanque aberto, em formato de um cubo com 1m 2 de área de base, é de 10 mm. Em uma região, após um forte temporal, verificou-se que a quantidade de chuva acumulada em uma lata de formato cilíndrico, com raio 300 mm e altura mm,
13 era de um terço da sua capacidade. Utilize 3,0 como aproximação para π. O índice pluviométrico da região, durante o período do temporal, em milímetros, é de (a) 10,8. (b) 12,0. (c) 32,4. (d) 108,0. (e) 324, (2015) A figura representa a vista superior de uma bola de futebol americano, cuja forma é um elipsoide obtido pela rotação de uma elipse em torno do eixo das abscissas. Os valores a e b são, respectivamente, a metade do seu comprimento horizontal e a metade do seu comprimento vertical. Para essa bola, a diferença entre os comprimentos horizontal e vertical é igual à metade do comprimento vertical. Considere que o volume aproximado dessa bola é dado por V = 4ab 2. O volume dessa bola, em função apenas de b, é dado por (a) 8b 3 (b) 6b 3 (c) 5b 3 (d) 4b 3 (e) 2b (2015) Para economizar em suas contas mensais de água, uma família de 10 pessoas deseja construir um reservatório para armazenar a água captada das chuvas, que tenha capacidade suficiente para abastecer a família por 20 dias. Cada pessoa da família consome, diariamente, 0, 08m 3 de água. Para que os objetivos da família sejam atingidos, a capacidade mínima, em litros, do reservatório a ser construído deve ser (a) 16. (b) 800. (c) (d) (e)
14 Gabarito 1. B 9. B 17. C 25. A 33. E 41. D 2. C 10. D 18. E 26. D 34. C 42. B 3. B 11. A 19. E 27. D 35. E 43. E 4. B 12. A 20. C 28. A 36. D 5. A 13. B 21. C 29. A 37. B 6. D 14. B 22. E 30. E 38. C 7. B 15. E 23. A 31. E 39. C 8. E 16. C 24. A 32. D 40. A
PLANO MISERAVI MATEMÁTICA MATERIAL DE APOIO WEEKS 5-10
PLANO MISERAVI MATEMÁTICA MATERIAL DE APOIO WEEKS 5-10 Esse é o material de apoio do plano de estudos de matemática do Vestgeek. Se você ainda não acessou o plano, clique aqui para baixar. Questões sobre:
SÓLIDOS NO ENEM. 2m desse tipo de silo. EMBRAPA. Gado de corte. Disponível em: Acesso em: 1 ago (adaptado).
1. (Enem 2014) Na alimentação de gado de corte, o processo de cortar a forragem, colocá-la no solo, compactá-la e protegê-la com uma vedação denomina-se silagem. Os silos mais comuns são os horizontais,
Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar
lista de exercícios - 3º ano - matemática Aluno: Série: Turma: Data: Questão 1 É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo,
Mat. Alex Amaral Monitor: Roberta Teixeira
1 Mat. Professores: Luanna Ramos Alex Amaral Monitor: Roberta Teixeira 2 Cilindros 25/27 jul RESUMO Cilindro: Elementos e classificação. Cilindro é um solido geométrico caracterizado por tem suas bases
Após a silagem, a quantidade máxima de forragem que cabe no silo, em toneladas, é
Lista de Geometria Sólida ENEM Questão 01 - (ENEM) Na alimentação de gado de corte, o processo de cortar a forragem, colocá- la no solo, compactá- la e protegê- la com uma vedação denomina- se silagem.
Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre
Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Geometria Espacial [2014 - FUVEST] Três das arestas de um cubo, com um vértice em comum, são também arestas de
Após a silagem, a quantidade máxima de forragem que cabe no silo, em toneladas, é
Matemática LISTA: 02 2ª série Ensino Médio Professor: Marcelo Honório Turma: A ( ) / B ( ) Aluno(a): Segmento temático: PRIMAS DIA: MÊS: 08 2017 Questão 01) Na alimentação de gado de corte, o processo
Professor Alexandre Assis. 1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura.
1. O hexágono regular ABCDEF é base da pirâmide VABCDEF, conforme a figura. A aresta VA é perpendicular ao plano da base e tem a mesma medida do segmento AD. O seguimento AB mede 6 cm. Determine o volume
Em relação à área original, a área da base dessa peça, após o cozimento, ficou reduzida em a) 4%. b) 20%. c) 36%. d) 64%. e) 96%.
Geometria no ENEM 1. (Enem) A cerâmica constitui-se em um artefato bastante presente na história da humanidade. Uma de suas várias propriedades é a retração (contração), que consiste na evaporação da água
Prof Alexandre Assis [email protected]
1 1. Um bloco retangular (isto é, um paralelepípedo reto-retângulo) de base quadrada de lado 4 cm e altura 20Ë3 cm, com 2/3 de seu volume cheio de água, está inclinado sobre uma das arestas da base, formando
Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro.
Lista de exercícios de geometria Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. 1. A figura abaixo representa um prisma reto, de altura 10 cm, e cuja base é o pentágono
COLÉGIO APROVAÇÃO LTDA. (21)
COLÉGIO APROVAÇÃO LTDA. (1) 65-1751 ALUNO/A: DATA: PROFESSOR: Victor Daniel Carvalho TURMA: PRÉ-VESTIBULAR DISCIPLINA: Matemática LISTA DE EXERCÍCIOS 5 (Geometria Espacial) 1. (Enem 016) Um petroleiro
7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:
EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2
PROFESSOR: Guilherme Franklin Lauxen Neto
ALUNO TURMA: 2 Ano DATA / /2015 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /2015 1) Dado um cilindro de revolução de altura 12 cm e raio da base 4 cm, determine: a) a área da base do cilindro.
MATEMÁTICA - 3 o ANO MÓDULO 52 CILINDRO
MATEMÁTICA - 3 o ANO MÓDULO 52 CILINDRO base O r geratriz O r h (altura) eixo base e O H H R R O H S L H R 2πR O R O R H eixo R H cm 2 cm 12 cm 8 2 cm 2 cm 12 cm 8 cm 20 cm 20 cm 8 cm 12 cm C O A B 12
Disciplina: Matemática Data da entrega: 13/03/2015.
Lista de Exercícios - 01 Aluno (a): Nº. Professor: Flávio Turma: 3ª série (ensino médio) Disciplina: Matemática Data da entrega: 13/03/2015. Observação: A lista deverá apresentar capa, enunciados e as
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE
Lista de Revisão do Enem 5ª Semana
1 Colégio J. R. Passalacqua Colégio Santo Antonio de Lisboa Colégio São Vicente de Paulo Penha Colégio Francisco Telles Colégio São Vicente de Paulo Jundiaí Lista de Revisão do Enem 5ª Semana GEOMETRIA
Cones com outras figuras geométricas
Cones com outras figuras geométricas 1. (Ufmg 01) Um cone circular reto de raio r um ângulo de 45, como ilustrado a seguir. e altura h é iluminado pelo sol a A sombra projetada pelo cone é delimitada pelos
3. (Uerj 98) a) Calcule o comprimento da corda AB, do círculo original, em função de R e m.
1. (Unicamp 91) Uma esfera de raio 1 é apoiada no plano xy de modo que seu pólo sul toque a origem desse plano. Tomando a reta que liga o pólo norte dessa esfera a qualquer outro ponto da esfera, chamamos
a) Qual o número (aproximado) de azulejos necessários?
1. (Ueg 2005) Uma peça mecânica de ferro tem a forma de um prisma cuja base é um hexágono regular de 10 cm de lado e altura de 3 cm. No centro da peça, existe um furo cilíndrico de 2 cm de raio. Qual é
Sejam VÛ, V½, VÝ os volumes dos sólidos gerados pela rotação do triângulo em torno dos lados A, B e C, respectivamente.
1. (Ufpe 96) O trapézio 0ABC da figura a seguir gira completamente em torno do eixo 0x. Calcule o inteiro mais próximo do volume do sólido obtido. 2. (Fuvest 91) Considere um triângulo retângulo com hipotenusa
Prisma Cubo Paralelepípedo 2016
Prisma Cubo Paralelepípedo 016 1. (Unesp 016) Um paralelepípedo reto-retângulo foi dividido em dois prismas por um plano que contém as diagonais de duas faces opostas, como indica a figura. Comparando-se
Lista 19 GEOMETRIA ESPACIAL (Prismas)
Lista 19 GEOMETRIA ESPACIAL (Prismas) 1) A diagonal da base de um prisma quadrangular regular mede 6 dm e a altura do sólido, volume do sólido, em dm, vale a) c) 6 dm. O ) O volume de um prisma reto, cuja
Cones e cilindros. Matemática 29/10/2015. Exatas para Todos
Cones e cilindros 1. Um recipiente cilíndrico de 60 cm de altura e base com 20 cm de raio está sobre uma superfície plana horizontal e contém água até a altura de 40 cm, conforme indicado na figura. lmergindo-se
Questões Gerais de Geometria Plana
Aula n ọ 0 Questões Gerais de Geometria Plana 01. Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura. Para 1 tampa
Questão 1. Questão 2. (Enem cancelado 2009) Em uma padaria, há dois tipos de forma de bolo, formas 1 e 2, como mostra a figura abaixo.
SE18 - Matemática LMAT6C2 - Cilindro e Cone Questão 1 (Enem cancelado 2009) Em uma praça pública, há uma fonte que é formada por dois cilindros, um de raio r e altura h 1, e o outro de raio R e altura
Resolução de Questões do ENEM
Resolução de Questões do ENEM Aula ao Vivo 1. As torres Puerta de Europa são duas torres inclinadas uma contra a outra, construídas numa avenida de Madri, na Espanha. A inclinação das torres é de 15 com
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) (UFPE) Uma ponte deve ser construída sobre um rio, unindo os pontos e B, como ilustrado na figura abaixo. Para calcular o comprimento B, escolhe-se um ponto C, na mesma margem em que B está, e medem-se
PROFESSOR: EQUIPE DE MATEMÁTICA
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================================= 01- Um reservatório
1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014
Sumário 1 Questões de Vestibular 1 1.1 UFPR 2014.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão
Geometria Espacial ENEM
121,122,12,124 Data:15/0/2016 1 (2009-15)Técnicos concluem mapeamento do aquífero Guarani O aquífero Guarani localiza-se no subterrâneo dos territórios da Argentina, Brasil, Paraguai e Uruguai, com extensão
SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO
SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO FUNDAMENTAL E ENSINO MÉDIO Título do Podcast Área Segmento Duração Geometria do Cotidiano Ciências da Natureza I Matemática Ensino
Calcule o volume do sólido obtido pela rotação da região sombreada em torno de um eixo que passa pelos centros dos semicírculos. Justifique. pag.
1. (Ufrj 2003) Um cubo de aresta 10 cm tem os quatro vértices A, B, C e D de uma de suas faces, F, sobre a superfície de uma esfera S de raio r. Sabendo que a face oposta a F é tangente à esfera S no ponto
II - Teorema da bissetriz
I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos
Geometria Espacial ENEM
1. (2009-153)Técnicos concluem mapeamento do aquífero Guarani O aquífero Guarani localiza-se no subterrâneo dos territórios da Argentina, Brasil, Paraguai e Uruguai, com extensão total de 1.200.000 quilômetros
REVISITANDO A GEOMETRIA PLANA
REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a
1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).
Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na
Eduardo. Matemática Geometria
Matemática Geometria Eduardo Matemática Geometria 3. (ENEM 2010 ) Em canteiros de obras de construção civil é comum perceber trabalhadores realizando medidas de comprimento e de ângulos e fazendo demarcações
Projeto Rumo ao ITA Exercícios estilo IME
PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r
2. (Uerj 2001) Considere a equação abaixo, que representa uma superfície esférica, para responder à questão.
1. (Fgv 2001) a) Um cubo maciço de metal, com 5cm de aresta, é fundido para formar uma esfera também maciça. Qual o raio da esfera? b) Deseja-se construir um reservatório cilíndrico com tampa, para armazenar
Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )
Lista de Geometria espacial Para PO ET Manhã 3C13 1 (ENEM) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior
26 Corpos redondos Banco de questões
UNIDADE V I I I geometria CAPÍTULO 6 Corpos redondos Banco de questões 1 (Cesgranrio RJ) Na figura, os cinco círculos têm o mesmo raio e o quadrado tem seus vértices nos centros de quatro deles. Se o quinto
Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV
Geometria Espacial Parte 2 Cursinho Popular Paulo Freire Jaquicele Ap. da Costa Graduanda em Matemática- UFV E-mail:[email protected] Pirâmide Pirâmide Consideremos um polígono convexo qualquer ABCDE,contido
Aula 01 Introdução à Geometria Espacial Geometria Espacial
Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora
Matemática Fascículo 07 Manoel Benedito Rodrigues
Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou
Geometria Espacial. Revisão geral
Geometria Espacial Revisão geral Considere o poliedro cujos vértices são os pontos médios das arestas de um cubo. O número de faces triangulares e o número de faces quadradas desse poliedro são, respectivamente:
DESENHO TÉCNICO ( AULA 03)
Sólidos Geométricos DESENHO TÉCNICO ( AULA 03) Você já sabe que todos os pontos de uma figura plana localizam-se no mesmo plano. Quando uma figura geométrica tem pontos situados em diferentes planos, temos
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Descobrindo medidas desconhecidas (I)
Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos
Disciplina de Matemática Professora Valéria Espíndola Lessa. Atividades de Revisão 1º ano do EM 1º bimestre de 2011. Nome: Data:
Disciplina de Matemática Professora Valéria Espíndola Lessa tividades de Revisão 1º ano do EM 1º bimestre de 011. Nome: Data: a) I b) I e II c) II d) III e) II e III. Num curso de espanhol, a distribuição
Série: 3º Data: / / LISTA DE MATEMÁTICA II. *Entregar os cálculos escritos de forma organizada
Professor (a): Aluno (a): Questão 01 - (ENEM/2009) Ensino Médio Unidade São Judas Tadeu Oscar Joaquim da Silva Neto Série: 3º Data: / / 2015. LISTA DE MATEMÁTICA II *Entregar os cálculos escritos de forma
Capítulo 6. Geometria Plana
Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior
maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6 π b) 8 π c) 9 π d) 18 π e) 36 π Exercícios
Geometria Plana II Exercícios 1. A figura abaixo é plana e composta por dois trapézios isósceles e um losango. O comprimento da base maior do trapézio ABCD é igual ao da base menor do trapézio EFGH, que
Lista de exercícios do teorema de Tales
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12
SE18 - Matemática. LMAT6C3 - Esfera. Questão 1
SE18 - Matemática LMAT6C3 - Esfera Questão 1 (Enem 2010) Em um casamento, os donos da festa serviam champanhe aos seus convidados em taças com formato de um hemisfério (Figura 1), porém um acidente na
MATEMÁTICA. Comparando as duas modalidades de pagamento quanto ao custo para o cliente, é correto afirmar que
MATEMÁTICA 49 Um estacionamento para automóveis oferece duas modalidades de pagamento pelos seus serviços: a primeira, em que o cliente paga R$ 5, por dia de utilização, e a segunda, em que ele adquire
Professor Diego. A imagem do trajeto feito pelo motoqueiro no plano do chão é melhor representada por
Professor Diego 01. (ENEM/2012) O globo da morte é uma atração muito usada em circos. Ele consiste em uma espécie de jaula em forma de uma superfície esférica feita de aço, onde motoqueiros andam com suas
O número mínimo de usuários para que haja lucro é 27.
MATEMÁTICA d Um reservatório, com 0 litros de capacidade, já contém 0 litros de uma mistura gasolina/álcool com 8% de álcool. Deseja-se completar o tanque com uma nova mistura gasolina/álcool de modo que
Recursos para Estudo / Atividades
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.
Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança
Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança 1. Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes
Mat. Monitor: Roberta Teixeira
Professor: Rafael Jesus Monitor: Roberta Teixeira Exercícios de revisão sobre geometria espacial 22 set EXERCÍCIOS DE AULA 1. Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros
Matriz de Referência de Matemática da 3ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens
Matriz de Referência de Matemática da ª série do Ensino Médio Comentários sobre os Temas e seus Descritores Exemplos de Itens TEMA I ESPAÇO E FORMA Os conceitos geométricos constituem parte importante
P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.
Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:
EXERCÍCIOS COMPLEMENTARES
EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa
Lista de Geometria 1 - Professor Habib
Lista de Geometria 1 - Professor Habib b) Para que valores de x e de y a área ocupada pela casa será máxima? 1. Na figura a seguir, as medidas são dadas em cm. Sabendo que m//n//t, determine o valor de
1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero
18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel
18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz
RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS CORRETAS PARA O CARTÃO-RESPOSTA
CONCURSO DE ADMISSÃO 2014/2015 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Chefe da Subcomissão de Matemática Dir Ens CPOR / CM-BH PÁGINA 1 RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS
é um círculo A tampa A face é um retângulo
No cotidiano, estamos cercados de objetos que têm diferentes formas. Por exemplo, uma caixa de papelão: suas faces são retângulos, e a caixa é um paralelepípedo. Outro exemplo: uma lata de óleo tem a forma
MATEMÁTICA ENSINO FUNDAMENTAL
MATEMÁTICA QUESTÃO 01 QUESTÃO 04 O mosaico é um desenho formado por uma ou mais formas geométricas que se encaixam perfeitamente ao cobrirem uma superfície O mosaico da figura abaixo é formado por octógonos
Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.
1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:
PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm
PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA r (a, b) P R C P R C P R C Como pode cair no enem (UFRRJ) Em um circo, no qual o picadeiro tem no plano cartesiano a forma de um círculo de equação igual a
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal
Com a instalação da nova antena, a medida da área de cobertura, em quilômetros quadrados, foi ampliada em a) 8 π. b) 12 π. c) 16 π. d) 32 π. e) 64 π.
GEOMETRIA PLANA LISTA 08 1. (Enem 01) Uma empresa de telefonia celular possui duas antenas que serão substituídas por uma nova, mais potente. As áreas de cobertura das antenas que serão substituídas são
2. (Uerj 2001) Um triângulo acutângulo ABC tem 4cm de área e seus lados åæ e åè medem, respectivamente, 2cm e 5cm.
1 Projeto Jovem Nota 10 1. (Ufv 2001) Seja AB o diâmetro de uma circunferência de raio r, e seja C um ponto da mesma, distinto de A e B, conforme figura a seguir. a) Sendo o ângulo AïC=, determine a área
LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS -
LISTA DE EXERCÍCIOS FENÔMENOS DE TRANSPORTE - ESTÁTICA DOS FLUIDOS - 1) Um reservatório de água possui formato cilíndrico com altura de 20m e diâmetro de 5m. Qual a pressão efetiva no fundo do reservatório
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.
125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)
Lista extra de exercícios
7º ANO Lista extra de exercícios 1. A proporção 10 30 3 6 é verdadeira?. A proporção 15 6 5 é verdadeira? 3. Apresente a razão entre as grandezas dadas e interprete o significado do resultado. a) Um carro
Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 06 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 26/09/2015. A lista deverá apresentar
Cevianas: Baricentro, Circuncentro, Incentro e Mediana.
Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:
01) 45 02) 46 03) 48 04) 49,5 05) 66
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.
MATEMÁTICA. cos x : cosseno de x log x : logaritmo decimal de x
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: x : módulo do número x i : unidade imaginária sen x : seno de x cos x : cosseno de x log x : logaritmo
Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO
Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência
38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA
38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA Primeira Fase Nível 2 (8 o ou 9 o ano) Sexta-feira, 17 de junho de 2016. Caro(a) aluno(a): A duração da prova é de 3 horas. Você poderá, se necessário, solicitar
Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.
Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 6ª Série / 7º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 Das figuras geométricas abaixo, qual delas não apresenta
Geometria Espacial - Prismas
Geometria Espacial - Prismas ) As três dimensões de um paralelepípedo reto retângulo de volume 05 m, são proporcionais a, e 5. A soma do comprimento de todas as arestas é: a) 08m b) 6m c) 80m d) m 7m )
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das 10 questões de Matemática da prova de Escrevente do Tribunal de Justiça de São Paulo. Em
Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações
Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,
BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome em ASSINATURA DO ESTUDANTE. Data / / MINISTÉRIO DA EDUCAÇÃO EXAME NACIONAL
EXAME NACIONAL DE MATEMÁTICA 2005 9.º ANO DE ESCOLARIDADE / 3.º CICLO DO ENSINO BÁSICO A preencher pelo estudante NOME COMPLETO BILHETE DE IDENTIDADE N.º EMITIDO EM (LOCALIDADE) Não escreva o seu nome
Lista de Estudo P2 Matemática 2 ano
Lista de Estudo P2 Matemática 2 ano 24) Dada a figura a seguir e sabendo-se que os dois quadrados possuem lados iguais a 4cm, sendo O o centro de um deles, quanto vale a área da parte preenchida? a) 100.
D3 Relacionar diferentes poliedros ou corpos redondos com suas planificações ou vistas. ***********************************
Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é *********************************** Ao fazer um molde de um
Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 27.04.2010 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de
Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160
Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três
