1 Um pouco de história
|
|
|
- Mateus Franco Pacheco
- 9 Há anos
- Visualizações:
Transcrição
1 1 Um pouco de história Início da Probabilidade: 1654 com a troca de cartas entre Pascal e Fermat sobre o Problema dos Pontos colocado para Pascal por Chevalier de Méré. A e B jogam dados, vamos supor que A ganha 1 ponto quando o resultado pertence ao conjunto {1, 2} enquanto B ganha 1 ponto quando o resultado pertence ao conjunto {3, 4, 5, 6}. Se A precisa de n pontos para ganhar e B necessita m pontos para ganhar. Qual a probabilidade que A ganhe o jogo? O primeiro estudo sistemático de como calcular probabilidades apareceu no livro Liber de Ludo Aleae, publicado em 1663, pelo médico italiano ( e também matemático, físico e astrólogo ) Girolamo Cardano ( ). Devido a sua fama na época, Cardano foi convidado para fazer o horóscopo de Eduardo VI. Prognosticou-lhe longa vida. O rei morreu no ano seguinte. Por outro lado Cardano previu o dia exato de sua morte e acertou. Muitos dizem que cometeu suicídio para tornar realidade esta previsão. O conhecimento de como calcular probabilidades circulou entre matemáticos tais como Galileu ( ) e depois passou da Itália para a França com Fermat e Pascal. Em 1654 Fermat e Pascal trocam correspondências sobre o problema dos pontos: Dois jogadores, aos quais faltam a e b pontos, respectivamente, decidem interromper o jogo. Como as apostas devem ser divididas? A solução de Pascal pode ser exemplificada da seguinte maneira: Suponha que o primeiro jogador a obter 3 pontos vence a aposta em que cada um colocou 32 moedas de ouro. Suponhamos que o primeiro já tenha vencido duas partidas e o segundo apenas uma. Como na partida seguinte o jogador A pode vir a vencer ( ganhando todas as 64 moedas ) ou perder ( ficando ambos empatados ), A dirá: Estou seguro de receber 32 moedas caso seja derrotado na próxima, mas posso vir a ganhar e como as nossas chances são as mesmas, vamos dividir as 32 restantes. Portanto parando agora, levo 48 ( = ) moedas e você 16. Na situação em que o primeiro tenha ganho duas partidas e o outro nenhuma, o raciocínio acima levaria à seguinte conclusão: Caso o jogador A vença a próxima partida leva 64 moedas, e na hipótese de perder, temos a situação anterior, levando portanto 48 moedas. Desta forma A dirá: 48 estão 1
2 asseguradas e portanto dividimos as restantes 16 moedas, isto é, levo 56 ( = ) moedas... Na situação em que o jogador A venceu uma partida e o jogador B nenhuma, este raciocínio levaria o oponente A a ficar com 44 moedas! ( se perder faz juz a 32, mas se ganhar faz juz a 56. Portanto, 32 asseguradas e divide 24 ( = ) ao meio, isto é = 44 ). Pascal prossegue neste raciocínio e o estende para situações mais complicadas, bem como para o caso de jogadores com habilidades distintas, e portanto com chances desiguais. Sua solução faz uso do famoso triângulo de Pascal. Fermat procedeu de outra maneira. Numa carta a Pascal desenvolve seu método, que repousa em considerações sobre a análise combinatória. Vamos exemplificar: Suponha que o jogador A venceu uma partida e o jogador B nenhuma. Após quatro partidas o jogo estará fatalmente encerrado, pois um dos dois oponentes terá os três pontos necessários. Indicando por a uma partida vencida por A e por b a partida vencida por B, teríamos as seguinte possíveis situações: 1- a aaaa 9- a baaa 2- a aaab 10-a baab 3- a aaba 11-a baba 4- a aabb 12-a babb 5- a abaa 13-a bbaa 6- a abab 14-a bbab 7- a abba 15-a bbba 8- a abbb 16-a bbbb Neste caso existem 11 favoráveis para o jogador A e 5 para o jogador B do total de 16 possíveis. ( Note que = 0,6875, e que 0,6875 X 64 = 44 moedas ). ( Ou que = 5 11 ). Portanto as duas soluções ( Pascal e Fermat ) são as mesmas. Este problema interessou a Huygens ( ) que iniciou o estudo propriamente dito da Teoria das Probabilidades e incentivou Jacques Bernoulli ( ) a publicar o Teorema Central do Limite ( Teorema de Ouro ). Não é muito freqüênte o fato de um filho herdar do pai um talento fora do comum, mas mais estranho é o aparecimento de uma dinastia de sábios, que ocuparam um lugar de destaque na história da ciência. Este é o caso da família dos Bernoulli. Um grande matemático ( Leibnitz ) em uma carta a João I Bernoulli chegou a criar um verbo para se referir a ocupação matemática dos membros desta estirpe : Alegra-me saber que teu filho bernoulliza, mantendo assim a tradição da família. Neste período, Montmort ( ) e De Moivre ( ) deram fortes contribuições, mas é com Pierre Simon, Marquês de Laplace ( ), que um grande número de idéias e 2
3 resultados são introduzidos. Suas idéias dominaram durante todo o século 19. Rapidamente as idéias foram sendo aplicadas em áreas tais como finanças públicas, seguros e diversas áreas sociais. A partir da metade do século 19, gradualmente se tornaram parte da teoria física, primeiramente nos estudos da teoria de transferência de calor e depois com Maxwell que utilizou o cálculo de probabilidade em 1860 para deduzir a lei dos gases a partir da posição e das velocidades das moléculas. Boltzmann em 1877 utilizou a idéia de distribuição de probabilidade de energias das moléculas para interpretar a questão de irreversibilidade na Termodinâmica. O surgimento da mecânica quântica apoiada pela teoria da radiação colocada sobre bases probabilísticas por Max Plack em 1900 permitiu que a probabilidade invadisse a teoria atômica e seus conceitos se tornassem fundamentais para a ciência moderna. Neste período, início do século 20, principalmente as contribuições de matemáticos russos, permitiram a formalização assim como o avanço no estudo da Teoria da Probabilidade, em particular do problema central do limite e das cadeias de Markov. Considerações sobre os fundamentos, aplicações à economia e sociologia foram feitos por Bertrand Russel, Keynes e Pareto, respectivamente. A conexão estreita entre matemática e a probabilidade foi iniciada por Emile Borel, sua ligação com teoria dos jogos sedimentada por Von Neumann em 1928 e assim por diante... 2 Análise Combinatória Exemplo Sistema de comunicação n antenas alinhadas Funcional: a menos que duas antenas consecutivas estejam com defeito Se m antenas são defeituosas e as antenas são arrumadas ao acaso, qual a probabilidade do sistema ser funcional? E.g.: n = 4, m = 2 temos 6 arranjos dos quais 3 são funcionais. p = 1/2. 3
4 2.1 Princípio básico da contagem: 2 experimentos: 1. Experimento 1: m resultados 2. Experimento 2: n resultados Total: m.n formas de realizar experimento 1 seguido de experimento 2 Proof. E 1 = {1, 2,..., m}, E 2 = {1, 2,..., n}, E 1 E 2 = {(1, 1), (1, 2),..., (m, n)} Exemplo 2 Depto Estatística: 18 docentes Depto Mat. Aplicada: 43 docentes Depto Matemática: 64 docentes Comissão com 3 docentes, um de cada departamento: Exemplo = Placas antigas: 2 letras e 4 números Placas atuais: 3 letras e 4 números = = E se a repetição de letras e números não fosse permitida? =
5 Exemplo 4 Seja A um conjunto com n pontos. Quantas funções f : A {0, 1} podem ser definidas? = 2 n Seja P(A) = conjunto de todos os subconjuntos de A. Daí, P(A) = 2 n. Por que? 2.2 Permutações A = {1, 2,..., n} π : A A; tal que π(i) π(j), i j quantas permutações são possíveis? n! Exemplo 5: Temos 11 livros 4 matemática 3 química 2 história 2 inglês Todos os livros do mesmo assunto juntos: 4! (4!.3!.2!.2!) = Exemplo 6: Anagramas PIMENTA: 7! = 5040 ESTATISTICA: 11! 2!3!2!3! =
6 2.3 Combinações Conjunto: n objetos Subconjunto: k objetos n k E.g.: n = 5, k = 3 Mas {1, 2, 3} = {3, 2, 1} No. permutações = 3! ! = 5! 2!3! = 5 3 exemplo 7: Comite com 7 professores MAP 43 7 exemplo 8: Comite com 4 professores MAP e 3 Estatistica E se Ronaldo e Nancy não querem participar juntos? nem Ronaldo e nem Nancy Ronaldo, mas não Nancy ou Nancy e não Ronaldo 1) Exemplo Antenas funcionais: n antenas sendo m defeituosas ( = 0) e n m não defeituosas (= n m + 1 locações 6
7 : possíveis locações para as m defeituosas. n m + 1 m Identidade: n r = n 1 r 1 + n 1 r (Fixe um dos objetos, no lado direito da equação temos o número de subconjuntos de tamanho r que contém o objeto fixado mais o número de subconjuntos de tamanho r que não contém o objeto fixado. Teorema binomial: (x + y) n = n n k x k y n k k=0 Prova: Por indução. 2.4 Coeficientes multinomiais Conjunto: n objetos Subconjuntos: k 1 objetos, k 2 objetos,..., k r objetos n n k 1 n k 1 k 2... n k 1... k r 1 = k 1 k 2 k 3 k r n! k 1!k 2!... k r! Notação : n k 1,..., k r Exemplo: O time de basktball do IMECC tem 10 jogadores, entretanto precisamos dividi-los em dois times A e B pois time A vai jogar em SP e time B vai jogar em Limeira. Quantas divisões são possíveis? 10! 5!5! Exemplo: O time de basktball do IMECC tem 10 jogadores, entretanto precisamos dividi-los em dois times A e B para jogarem entre si. Quantas divisões são possíveis? 10! 5!5!2! 7
8 Teorema multinomial: (x 1 + x x r ) n = (k 1,...,k r);k k r=n 2.5 Distribuição de bolas em urnas n k 1,..., k r x k 1 1 x k x kr r Proposição: O número de soluções inteiras positivas para a equação x 1 + x x r = n: n 1 r Temos n objetos simbolizados por 0 e temos que escolher r 1 dos espaços. Suponha n = 8 e r = 3, temos que escolher dois divisores como abaixo: Proposição: O número de soluções inteiras não negativas para a equação x 1 + x x r = n: n + r 1 r 1 Seja y i = x i + 1, i = 1,..., r. Exemplo: Um investidor tem 20 mil reais para distribuir entre 4 possíveis investimentos. Cada investimento deve ser feito em cotas de mil reais. Quantas estratégias posíveis? 23 = 1771 se ele investir todo o dinheiro 3 24 = se ele puder manter algum dinheiro para reserva 4 Exemplo: Quantos coeficientes há na expansão multinomail de (x x r ) n? 8
9 (= 1) Exemplo: Antenas funcionais: n antenas sendo m defeituosas ( = 0) e n m não defeituosas n m + 1 locações : possíveis locações para as m defeituosas. n m + 1 m Objetivo: Determinar quantos destes arranjos lineares não contém antenas defeituosas consecutivas. Imagine primeiramente que as antenas defeituosas foram alinhadas sequencialmente e que depois disso as antenas funcionais vão ser alocadas. x 1 : no. de antenas não defeituosas antes da primeira defeituosa, etc. Seja y 1 = x 1 + 1, etc... x x m = n m, x 1 0, x m+1 0, x i > 0 y y m+1 = n m + 2 n m + 1 m 9
1 Um pouco de história. 2 Análise Combinatória. 2.1 Princípio básico da contagem:
1 Um pouco de história Início da Probabilidade: 1654 com a troca de cartas entre Pascal e Fermat sobre o Problema dos Pontos colocado para Pascal por Chevalier de Méré. A e B jogam dados, vamos supor que
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
Teoria das Probabilidades
Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário
Probabilidade - aula I
e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar
O conceito de probabilidade
A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São
MD Sequências e Indução Matemática 1
Sequências Indução Matemática Renato Martins Assunção [email protected] Antonio Alfredo Ferreira Loureiro [email protected] MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes
Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial
Probabilidade Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Distribuição Uniforme Usada comumente nas situações em que não há razão para atribuir probabilidades diferentes a um conjunto
Avaliação e Desempenho Aula 4
Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios
Distribuição Binomial
Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?
1 Axiomas de Probabilidade
1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada
CAPÍTULO 5 - Exercícios
CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1
1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,
Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica
Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma
ANALISE COMBINATORIA Um pouco de probabilidade
ANALISE COMBINATORIA Um pouco de probabilidade Programa Pró-Ciência Fapesp/IME-USP-setembro de 1999 Antônio L. Pereira -IME USP (s. 234A) tel 818 6214 email:[email protected] 1 Um carro e dois bodes
SKAT. Introdução. O Baralho
Introdução SKAT O skat foi inventado por volta de 1810 na cidade de Altenburg, cerca de 40 km ao sul de Leipzig, Alemanha, pelos membros da Brommesche Tarok-Gesellschaft. Eles adaptaram um jogo local (Schafkopf)
Canguru sem fronteiras 2007
Duração: 1h15mn Destinatários: alunos do 12 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada
Exercícios Teóricos Resolvidos
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar
Aula 4 Estatística Conceitos básicos
Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a
I. Experimentos Aleatórios
A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em
HEX CONEXÕES EXTREMAS EM LADRILHOS HEXAGONAIS
HEX CONEXÕES EXTREMAS EM LADRILHOS HEXAGONAIS Izabelly Marya Lucena da Silva Universidade Federal de Pernambuco [email protected] Gésica Peixoto Campos Universidade Federal de Pernambuco [email protected]
Aula 1: Introdução à Probabilidade
Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo
Um jogo de preencher casas
Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos
Introdução à Probabilidade e Estatística
Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes
Cotagem de dimensões básicas
Cotagem de dimensões básicas Introdução Observe as vistas ortográficas a seguir. Com toda certeza, você já sabe interpretar as formas da peça representada neste desenho. E, você já deve ser capaz de imaginar
Laboratório de Física I - EAD- UESC 2011
Laboratório de Física I - EAD- UESC 011 Equipe: 1. Nome:.... Nome:... 3. Nome:... Pólo:... Data:... Experiência três: CONSERVAÇÃO DA ENERGIA Relatório Programado: Guia para tomada e análise de dados Prazo:
Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio
Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz
4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares
38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo
Processos Estocásticos
Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em
I. Princípio Fundamental da Contagem (P.F.C.)
ANÁLISE OMBINATÓRIA A principal finalidade da Análise ombinatória é estabelecer métodos de contagem. I. Princípio Fundamental da ontagem (P.F..) O P.F.., ou princípio multiplicativo, determina o número
Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ
Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento
Estatística II Antonio Roque Aula 9. Testes de Hipóteses
Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7
RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números
Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:
Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira
FINANÇAS EM PROJETOS DE TI
FINANÇAS EM PROJETOS DE TI 2012 Exercícios de Fixação e Trabalho em Grupo - 2 Prof. Luiz Carlos Valeretto Jr. 1 1. O valor de depreciação de um item é seu: a) Valor residual. b) Custo inicial menos despesas
Plano de Aula SOU PAR OU ÍMPAR? TÍTULO: Iniciais. 3º ano. Matemática. Número e Operações/Álgebra e Funções 1 aula (45 min) Educação Presencial
Org.: Claudio André - 1 TÍTULO: SOU PAR OU ÍMPAR? Nível de Ensino: Ensino Fundamental/ Anos Iniciais Ano/Semestre de Estudo: 3º ano Componente Curricular: Tema: Duração da Aula: Modalidade de Ensino: Matemática
PROJETO DE REGULAMENTO N.º ---/SRIJ/2015 REGRAS DO JOGO BLACKJACK/21
PROJETO DE REGULAMENTO N.º ---/SRIJ/2015 REGRAS DO JOGO BLACKJACK/21 O Regime Jurídico dos Jogos e Apostas Online (RJO), aprovado pelo Decreto-Lei n.º 66/2015, de 28 de abril, determina, no n.º 3 do seu
Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis
Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios
A ESTRUTURA DA GESTÃO DE
A ESTRUTURA DA GESTÃO DE PROJETOS Professor: Rômulo César [email protected] www.romulocesar.com.br SUMÁRIO Importância do Gerenciamento de Projetos. Benefícios do Gerenciamento de Projetos Gerenciamento
MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS
MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIS Como vimos no módulo 1, para que nós possamos extrair dos dados estatísticos de que dispomos a correta análise e interpretação, o primeiro passo deverá ser a correta
Além do Modelo de Bohr
Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade
A B C F G H I. Apresente todas as soluções possíveis. Solução
19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura
1 Avalie a demanda para os produtos e serviços da franquia em questão!
10 Dicas para Comprar uma Franquia Comprar uma franquia tem se tornado o negócio do momento e atraído muitos empresários a pensar sobre o assunto e decidir entre abrir um negócio com temática própria ou
Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala
Escalas Introdução Antes de representar objetos, modelos, peças, etc. deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas
COMO GANHAR DINHEIRO COM AS APOSTAS?
COMO GANHAR DINHEIRO COM AS APOSTAS? Para ganhar dinheiro com as apostas temos de apostar com valor esperado Para compreender este conceito temos de entender o conceito de valor esperado nulo (ou justo).
Probabilidade e Estatística I Antonio Roque Aula 11 Probabilidade Elementar: Novos Conceitos
Probabilidade Elementar: Novos Conceitos Vamos começar com algumas definições: Experimento: Qualquer processo ou ação bem definida que tenha um conjunto de resultados possíveis 1) Lançamento de um dado;
CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos
INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade
AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?
Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de
8º Campeonato Nacional de Jogos Matemáticos
8º Campeonato Nacional de Jogos Matemáticos Distribuição dos jogos por ciclo 1º 2º 3º Sec Semáforo x Gatos & Cães x x Ouri x x x Hex x x x Rastros x x Avanço x Semáforo Autor: Alan Parr 8 peças verdes,
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,
Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,
SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT
SOCIEDADE BRASILEIRA DE MATEMÁTICA MESTRADO PROFISSIONAL EM REDE NACIONAL PROFMAT GABARITO da 3 a Avaliação Nacional de Aritmética - MA14-21/12/2013 Questão 1. (pontuação: 2) (1,0) a) Enuncie e demonstre
1) Eficiência e Equilíbrio Walrasiano: Uma Empresa
1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA E SERVIÇO SOCIAL ESTATÍSTICA I Ficha de Exercícios nº 2- Probabilidades
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA E SERVIÇO SOCIAL ESTATÍSTICA I Ficha de Exercícios nº 2- Probabilidades 1. Numa entrevista, um economista afirmou que considerava a melhoria da situação económica
INTRODUÇÃO À ENGENHARIA
INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação
Francisco Ramos. 100 Problemas Resolvidos de Matemática
Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES
Data 23/01/2008. Guia do Professor. Introdução
Guia do Professor Data 23/01/2008 Introdução A inserção de tópicos da Eletricidade nas escolas de nível básico e médio é fundamental para a compreensão de alguns fenômenos da vida moderna. Você já imaginou
O Princípio da Complementaridade e o papel do observador na Mecânica Quântica
O Princípio da Complementaridade e o papel do observador na Mecânica Quântica A U L A 3 Metas da aula Descrever a experiência de interferência por uma fenda dupla com elétrons, na qual a trajetória destes
O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO
O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO João Cesar Guirado Universidade Estadual de Maringá E-mail: [email protected] Márcio Roberto da Rocha Universidade Estadual de Maringá E-mail:
Plano de Aula de Matemática. Competência 3: Aplicar os conhecimentos, adquiridos, adequando-os à sua realidade.
Plano de Aula de Matemática Competência 3: Aplicar os conhecimentos, adquiridos, adequando-os à sua realidade. Habilidade: H27. Resolver situações-problema de adição ou subtração envolvendo medidas ou
Lista de Exercícios 2 Probabilidades e Variáveis aleatórias
1. Quais tabelas abaixo podem ser consideradas distribuições de probabilidade da variável correspondente? a) Apenas as tabelas relativas a X e Z b) Apenas as tabelas relativas a X, Y e Z c) Apenas as tabelas
23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem
Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176
Produto Vendas Custo da matéria-prima
Conceitos básicos de economia A economia pode ser subdividida em dois grandes segmentos: - Macroeconomia: trata da evolução da economia como um todo, analisando a determinação, comportamento e relações
36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase
36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e
LUAS ALIANÇA RUHRUHH. Documento 0003. Publicado em 23/01/2013 (Não revisado)
ALIANÇA RUHRUHH Ministério do Desenvolvimento MD Ministério da Guerra e Defesa Nacional MGDN Departamento de Expansão Galática DEXGAL Departamento de estratégias DEESTRA LUAS Documento 0003 Publicado em
MÓDULO 6 INTRODUÇÃO À PROBABILIDADE
MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para
Exercícios de Matemática para o ENEM (Habilidades 2 e 4)
Exercícios de para o ENEM (Habilidades 2 e 4) H2 Identificar padrões numéricos ou princípios de contagem 1. Doze times se inscreveram em um torneio de futebol amador. O jogo de abertura do torneio foi
Avanço Autor: Dan Troyka, 2000. Rastros Autor: Bill Taylor, 1992. Material Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras.
Avanço Autor: Dan Troyka, 2000 Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras. posição inicial Um jogador ganha se chegar com uma das suas peças à primeira linha do adversário, ou seja,
OFICINA DE JOGOS APOSTILA DO PROFESSOR
OFICINA DE JOGOS APOSTILA DO PROFESSOR APRESENTAÇÃO Olá professor, Essa apostila apresenta jogos matemáticos que foram doados a uma escola de Blumenau como parte de uma ação do Movimento Nós Podemos Blumenau.
Os gráficos estão na vida
Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada
RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1
RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada
Notas de Cálculo Numérico
Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo
Experimentos Aleatórios e Espaços Amostrais
Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios
Álgebra. SeM MiSTéRio
Álgebra SeM MiSTéRio Série SeM MiSTéRio Alemão Sem Mistério Álgebra Sem Mistério Cálculo Sem Mistério Conversação em Alemão Sem Mistério Conversação em Espanhol Sem Mistério Conversação em Francês Sem
Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes
Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.
Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense
Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento
Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem. Professor: Flávio dos Reis Moura Skype; mineironegrogalo75
Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem Professor: Flávio dos Reis Moura Skype; mineironegrogalo75 Este material tem por objetivo ajudar o aluno a aplicar o Princípio Fundamental
Fluxo de Caixa O dia-a-dia das finanças em sua empresa!
Fluxo de Caixa O dia-a-dia das finanças em sua empresa! É muito frequente, no ambiente do SEBRAE-SP, o empresário chegar com muitas dúvidas sobre as finanças da sua empresa. E finanças, como sabemos, é
FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004
QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)
Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio
Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,
O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana
Instituto Nacional de Matemática Pura e Aplicada Resolução de equações A resolução de equações (encontrar o valor de x ) é um dos problemas mais básicos e antigos da Matemática, motivado desde sempre por
6+3=2 8+2=4 12 + 4 = 3. Nesses exemplos, os resultados podem ser facilmente confirmados pela multiplicação, que é a operação inversa da divisão.
Três pequenas associações resolveram organizar uma festa para arrecadar fundos. "Somaremos nossos esforços e dividiremos os lucros", afirmou um dos presidentes. Pois bem, a festa aconteceu e foi um sucesso.
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:
Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?
GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número
UNIÃO EDUCACIONAL DO NORTE UNINORTE AUTOR (ES) AUTOR (ES) TÍTULO DO PROJETO
UNIÃO EDUCACIONAL DO NORTE UNINORTE AUTOR (ES) AUTOR (ES) TÍTULO DO PROJETO RIO BRANCO Ano AUTOR (ES) AUTOR (ES) TÍTULO DO PROJETO Pré-Projeto de Pesquisa apresentado como exigência no processo de seleção
8 O Método de Alocação de Shapley
8 O Método de Alocação de Shapley Este capítulo é dividido em duas partes. A primeira apresenta o método de benefícios incrementais à medida que os agentes vão entrando na coalizão, ou seja, atribui a
Departamento de Informática. Análise de Decisão. Métodos Quantitativos LEI 2006/2007. Susana Nascimento [email protected].
Departamento de Informática Análise de Decisão Métodos Quantitativos LEI 26/27 Susana Nascimento [email protected] Advertência Autores João Moura Pires ([email protected]) Susana Nascimento ([email protected])
Resolução dos Exercícios sobre Derivadas
Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas
1-Será disputado pelo sistema de duplas, permitindo-se a inscrição de 02 atletas por equipe, de ambos os sexos.
REGULAMENTO DE BURACO 1-Será disputado pelo sistema de duplas, permitindo-se a inscrição de 02 atletas por equipe, de ambos os sexos. 2-No horário estabelecido pela Comissão Organizadora para início de
Programadores e Problemas: Instruções. Introdução. Seu Objetivo. Configuração. Instruções do jogo equipe evolução 5/5/2006 v2.0
Programadores e Problemas: Instruções Introdução Problemas e Programadores é um jogo educacional na área de engenharia de software. Ele é dirigido a estudantes que já têm conhecimento entre o básico e
Escola Básica e Secundária de Velas
Escola Básica e Secundária de Velas Planificação Anual do 12º Ano Matemática A Ano letivo 2015 /2016 1º Período 2º Período 3º Período Nº DE BLOCOS PREVISTOS 39 32 24 Apresentação 0,5 1º Período 2º Período
Energia Eólica. Atividade de Aprendizagem 3. Eixo(s) temático(s) Ciência e tecnologia / vida e ambiente
Energia Eólica Eixo(s) temático(s) Ciência e tecnologia / vida e ambiente Tema Eletricidade / usos da energia / uso dos recursos naturais Conteúdos Energia eólica / obtenção de energia e problemas ambientais
Gestão da TI. Os custos escondidos da. Conheça os custos escondidos na gestão amadora da TI e pare de perder dinheiro.
da Gestão da TI Conheça os custos escondidos na gestão amadora da TI e pare de perder dinheiro. Conteúdo Introdução Os custos escondidos - parte 1 Os custos escondidos - parte 2 Os custos escondidos -
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Como o zero é o elemento neutro da multiplicação, o produto dos números saídos
(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).
Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,
muito gás carbônico, gás de enxofre e monóxido de carbono. extremamente perigoso, pois ocupa o lugar do oxigênio no corpo. Conforme a concentração
A UU L AL A Respiração A poluição do ar é um dos problemas ambientais que mais preocupam os governos de vários países e a população em geral. A queima intensiva de combustíveis gasolina, óleo e carvão,
