Experimento 6 Laço de histerese
|
|
|
- Ester Beppler
- 6 Há anos
- Visualizações:
Transcrição
1 Experimento 6 aço de histerese. OBJETIVO Obter a curva BH do materiaagnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole, intermediário, duro), perdas no ferro e permeabilidade.. PARTE TEÓRICA a. aço de histerese Considere uma bobina enrolada em torno de um núcleo magnético. Se na bobina circular uma corrente alternada, a relação entre a densidade de fluxo magnético B e o campo H, ambos confinados ao núcleo, é descrita pela característica da Fig.. Na ilustração, H é o campo produzido pela corrente da bobina. Essa característica é denominada laço de histerese. Figura aço de histerese Na ilustração da Fig. aparecem sete laços de histerese obtidos do ensaio experimental de uma amostra de aço elétrico de grãos orientados. Figura aços obtidos experimentalmente O circuito da Fig. 3 possibilita investigar o ciclo de histerese de um núcleo magnético utiliza um núcleo magnético fechado de um pequeno transformador de teste. /9
2 Figura 3 Circuito para investigar o laço de histerese. O campo magnético é gerado pela passagem da corrente na bobina primária ligada ao transformador variável. O campo H é diretamente proporcional à corrente que circula na bobina primária e pode ser obtido a partir da lei de Ampere. A corrente pode ser obtida indiretamente pela leitura da queda de tensão no resistor. Por fim, a queda de tensão sobre o resistor também é proporcional ao campo H. - comprimento médio do núcleo; - número de espiras do primário; De acordo com a lei de Faraday, a tensão do fluxo total em relação ao tempo. na bobina secundária é diretamente proporcional à derivada O circuito RC conectado no secundário é utilizado para integrar o sinal da tensão. Admitindo-se que a queda de tensão ocorre no resistor, pode-se escrever a relação da tensão com a corrente no secundário: /9
3 embrando que a corrente no capacitor é dada por: Juntando as expressões, tem-se: Isolando a derivada do fluxo, tem-se: Integrando ambos os lados em relação ao tempo, tem-se: Supondo que o fluxo é constante na seção magnética, tem-se que o fluxo é dado por: magnético No circuito a tensão será a tensão medida no canal, ou seja,, logo a densidade de fluxo, é dada por: : área transversal do núcleo; : número de espiras do secundário; 3/9
4 Em resumo a tensão é proporcional a e é proporcional a. Essas duas tensões são lidas pelos canais e do osciloscópio. A operação no modo x-y (canal eixo x) exibe a característica de histerese B(t)=f(H(t)) do núcleo magnético. Pontos notórios da curva Fig. ( ) O efeito de histerese é gerado pela resistência à movimentação de paredes de domínio. Materiais ferromagnéticos que possuem uma coercividade alta são denominados Duros (coercividade maior que 0 4 A/m); aqueles que possuem coercividade baixa são denominados Moles ou Doces (coercividade menor que 500 A/m). O material Duro geralmente tem aplicações na fabricação de imã, os Moles em projetos de eletrônica de potência, por sua estreita curva existe pouca dissipação de potência. 4/9
5 Indução [T] Curva de magnetização BH Inferior Sup BH Intensidade de campo H[A/m] b. Perdas no ferro As perdas no ferro podem ser estimadas a partir do laço de histerese. Para cada laço de histerese, tem-se diferentes informações sobre as perdas no ferro, conforme figura abaixo: Ciclos de perdas do ferro a) Somente perdas por histerese (frequência muito baixa a 3Hz) b) Perdas por histerese e correntes de Foucault c) Perdas por histerese, correntes Foucault e excedentes 5/9
6 As perdas magnéticas totais que ocorrem num material ferromagnético quando sujeito à ação de um campo de indução B variável no tempo são dadas por: Onde : Ph: Representa as perdas por histerese Pf: São as chamadas perdas por correntes de Foucault clássicas Pexc: São as perdas por correntes de Foucault excedentes ou, anômalas. Por vezes pode também ser adotada a divisão em perdas estáticas e dinâmicas em que, as primeiras correspondem às perdas por histerese, e as segundas às perdas por correntes de Foucault clássicas e excedentes. As perdas por histerese,, numa amostra de material ferromagnético são proporcionais à área do ciclo de histerese, obtido em regime quase-estático, multiplicada pelo volume da amostra, Vol e pela frequência de operação f, isto é, c. Relações para o cálculo das indutâncias Da lei de Faraday d di V n di dt V => pode ser rescrita como: n An l ( i) m dii dt De forma análoga para o circuito secundário: V n d di di dt A tensão induzida no secundário pode ser escrita como: An V n ( i l m ) di dt A tensão induzida no bobinado secundário produto da variação na corrente do primário 6/9
7 A di V n n ( i) [V] lm dt A tensão induzida no bobinado secundário e proporcional a variação da corrente primária V M di [V] dt O fator que multiplica a derivada da corrente depende de questões construtivas é a variação da permeabilidade em função da corrente é definido como indutância mútua. M n n A ( i) [H] De forma análoga a tensão induzida no primário por efeito da corrente secundária. A di V n n ( i) [V] lm dt A indutância que aparece no bobinado primário produto da variação da corrente secundária M Assim A n n [H] ( i) M = M = M = ( i) An ( i) An ( i) A n n, da mesma forma para as indutâncias próprias: 7/9
8 Como nos três casos a derivada é a mesma. O comprimento médio, e a área são os mesmos, podemos relacionar as indutâncias pela expressão: n n M n n A relação de transformação é definida como ser expressa em função da indutância própria primária ou secundária. M / n => = Ma => M= n n n a De forma análoga: M / n => M=a* n nn n n a, utilizando a relação de transformação, a indutância mútua pode Isto é, a indutância mútua pode ser calculada em função da indutância primária ou secundária desde que a relação de transformação seja conhecida. 3. Ensaio Material Osciloscópio de dois canais transformador com tap ajustável (Variac) transformador de teste capacitor de.5 F resistores de Ω e 300kΩ. Montagem a) Monte o circuito da Figura, com R = Ω, R = 300kΩ e C =.5 F. b) Obtenha curva da corrente de excitação em regime permanente e a curva BH. c) Obtenha o ciclo de histerese na tela do osciloscópio. Procure obter uma curva com amplitude de V r (t) suficientemente alta para que seja atingida a saturação magnética do material. 8/9
9 4. Questões a) Determine os interceptos Hc e Bc. b) Determine se o material é duro ou doce c) Obtenha curva BH d) Obter a permeabilidade máxima do material. e) Obtenha a densidade volumétrica da energia(wh) no ciclo [J/M 3 ] e a energia total w h = e W=w h *V f) A potencia perdida no ferro por ciclo Pfe=W*f g) Coenergia acumulada no bloco h) Fluxo de enlace maximo λ max ϕ max = B max *A i) Indutância própria primária j) Indutancia secundaria k) Indutancia mútua 5. AVAIAÇÃO a) (,0) Presença b) (4,0) Experimento c) (4,0) Questões d) (,0) Relatório 9/9
Experimento 6 Laço de histerese
Experimento 6 Laço de histerese 1. OBJETIVO Obter a curva BH do material magnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole,
ANÁLISE DE HISTERESE MAGNÉTICA EM TRANSFORMADORES MONOFÁSICOS
ANÁLISE DE HISTERESE MAGNÉTICA EM TRANSFORMADORES MONOFÁSICOS Jordana Alves Barbosa 1 Marcelo Henrique Ribeiro Bernardo 2 Rodrigo Barbosa de Oliveira 3 Rodrigo de Sousa e Silva 4 Ítalo Arthur João Wilson
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 05
SEL 39 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 05 Revisão da Aula 04 Excitação em corrente alternada: E E πfn max rms φmax 4,44 fnφmax 4,44 fna n max e φ E t Φ Revisão da Aula 04 Indutância: L N l µ A
Transformadores e circuitos magneticamente acoplados. Prof. Luis S. B. Marques
Transformadores e circuitos magneticamente acoplados Prof. Luis S. B. Marques Transformadores Um transformador consiste de duas ou mais bobinas acopladas através de um campo magnético mútuo. O Transformador
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA. Excitação CA
Os circuitos magnéticos dos transformadores e das máquinas CA são excitados por fontes CA. Com excitação CA, a indutância influi no comportamento do regime permanente. Joaquim Eloir Rocha 1 Com excitação
SEL 404 ELETRICIDADE II. Aula 05
SL 404 LTRICIDAD II Aula 05 Revisão xcitação em corrente alternada: rms max fn max 4,44 fn max 4,44 fna n B max e f t Revisão Indutância: L N l A N Indutância na presença de entreferro: L 0N g A N g A
Materiais Magnéticos Utilizaveis: Ferromagnéticos e Ferrimagnéticos
Materiais Magnéticos Utilizaveis: Ferromagnéticos e Ferrimagnéticos INFLUÊNCIA DA TEMPERATURA NO COMPORTAMENTO MAGNÉTICO Campo Molecular Dominante Estado ferromagnético M S magnetização de saturação T
Figura 1: Forma de onda da tensão quadrada.
Problema 1.21 a) O esboço da forma de onda da tensão quadrada com frequência de 60 Hz e amplitude E é exposto na Figura 1. Figura 1: Forma de onda da tensão quadrada. E T = 1/60 s -E Para determinar a
No caso do circuito magnético visto na figura ao lado. Se NI = 40 NA el=o,2m.
No caso do circuito magnético visto na figura ao lado. Se NI = 40 NA el=o,2m. N espiras Comprimento médio l= 0,2 m Variação de µ com a força magnetizante A densidade de fluxo e a força magnetizante estão
Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Magnéticos Os circuitos magnéticos são empregados com o intuito de concentrar o efeito magnético em uma dada região do espaço.
Conversão de Energia I. Capitulo 2 Circuito Magnético
Conversão de Energia I Capitulo 2 Circuito Magnético 2 1. Introdução Nos dispositivos eletromecânicos geradores, motores, contactores, relés, etc. a utilização de enrolamentos e núcleos objetiva o estabelecimento
Transformadores monofásicos
Transformadores Transformadores Transformadores são utilizados para transferir energia elétrica entre diferentes circuitos elétricos por meio de um campo magnético, usualmente com diferentes níveis de
TRANSFORMADORES. Introdução
TRANSFORMADORES Introdução Por volta do século XIX, o físico britânico Michael Faraday estabeleceu o fenômeno da indução magnética. Uma das experiências de Faraday consistiu em induzir uma corrente numa
Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti INDUTORES: CONCEITOS E DEFINIÇÕES CAMPO MAGNÉTICO Campo Magnético Nem só os imãs possuem campo magnético, mas a corrente
Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( )
Eletrotecnia Aplicada Transformadores (parte ) Engenharia Eletrotécnica e de Computadores (3-0-03) Conceito de transformador Os transformadores elétricos são dispositivos eletromagnéticos acoplados indutivamente
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia
EXPERIÊNCIA - TORÓIDE FLUXÔMETRO A FLUXÔMETRO Instrumento por meio do qual pode ser executada a exploração de um campo magnético, podendo ser determinada a intensidade dos fluxos locais de indução magnética.
Características Básicas dos Transformadores
Características Básicas dos Transformadores (Roteiro No 2) Universidade Federal de Juiz de Fora Departamento de Energia Elétrica Juiz de Fora, MG 36036-900 Brasil 2018 (UFJF) Lab Maq I 2018 1 / 35 Introdução
Conversão de Energia I Circuitos Magnéticos Aula I.4
Departamento de Engenharia Elétrica Conversão de Energia I Circuitos Magnéticos Aula I.4 Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas:
ENGC25 - ANÁLISE DE CIRCUITOS II
ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo
Física IV. Quarta lista de exercícios. Figura 1
4302212 Física IV Quarta lista de exercícios 1. Considere que uma espira circular, com raio a, auto-indutância L e resistência R, gire em torno do eixo z, conforme ilustra a Figura 1, com uma velocidade
Experimento 4 Projeto de transformador monofásico utilizando a curva de histerese
Experimento 4 Projeto de transformador monofásico utilizando a curva de histerese 1. OBJETIVO Dimensionar um pequeno transformador monofásico utilizando o método de projeto apresentado neste roteiro. Prototipar
Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda
Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***
AULA LAB 03 TRANSFORMADORES E INDUTORES
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA Retificadores (ENG - 20301) AULA LAB 03 TRANSFORMADORES E INDUTORES 1 INTRODUÇÃO Os transformadores e indutores
AULA LAB 02 TRANSFORMADORES E INDUTORES
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Retificadores (ENG - 20301) AULA LAB 02 TRANSFORMADORES E INDUTORES 1 INTRODUÇÃO Os transformadores e indutores são componentes
Conversão de Energia I
Departamento de Engenharia Elétrica Aula 2.3 Transformadores Prof. Clodomiro Unsihuay Vila CARACTERISTICAS ELÉTRICAS Lembrete: https://www.youtube.com/watch?v=culltweexu Potência Nominal: NBR 5356:2006
16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍICOS 6. Um condutor conduz uma corrente contínua constante de 5mA. Considerando-se que a carga de 19 um elétron é 1,6x1 C, então o número de elétrons que passa pela seção reta do condutor
Retificadores (ENG ) Lista de Exercícios de Eletromagnetismo
Retificadores (ENG - 20301) Lista de Exercícios de Eletromagnetismo 01) Para o eletroimã da figura abaixo, determine: a) Calcule a densidade de fluxo no núcleo; b) Faça um esboço das linhas de campo e
Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita
Eletricidade Aplicada Aulas Teóricas Professor: Jorge Andrés Cormane Angarita O Transformador Eletricidade Aplicada Introdução Circuitos acoplados condutivamente são aqueles que afetam a malha vizinha
Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Revisão de Eletromagnetismo Prof. Clóvis Antônio Petry. Florianópolis,
Conversão de Energia I
Departamento de Engenharia Elétrica Conversão de Energia I Aula 2.1 Transformadores Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com
1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo atômico de Bohr?
ATIVIDADE T3 - Capítulo 8. 1. Princípios básicos de eletrônica 8.1 Cargas elétricas. 1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo
Projeto de Elementos Magnéticos Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina! Departamento Acadêmico de Eletrônica! Eletrônica de Potência! Projeto de Elementos Magnéticos Revisão de Eletromagnetismo Prof. Clovis
1ª. Prova. Conversão Eletromecânica de Energia
ª. Proa Conersão Eletromecânica de Energia José Roberto Cardoso GABARITO 08 de Abril de 06 ª. Questão: Descrea o significado físico de cada parâmetro do circuito elétrico equialente do transformador destacando
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 02 Circuitos Magnéticos
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 02 Circuitos Magnéticos Revisão Aula Passada Aplicação da Lei Circuital de Ampère Exemplo 1 l r N núcleo toroidal de material ferromagnético I H.dl NI H
Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina! Departamento Acadêmico de Eletrônica! Pós-Graduação em Desen. de Produtos Eletrônicos! Conversores Estáticos e Fontes Chaveadas Revisão
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia EXPERIÊNCIA: ENSAIOS EM CURTO E VAZIO DE TRANSFORMADORES
AUTO INDUTÂNCIA, INDUTÂNCIA MÚTUA E TRANSFORMADOR IDEAL
179 19 AUTO INDUTÂNCIA, INDUTÂNCIA MÚTUA E TRANSFORMADOR IDEAL 19.1 Indutância No capítulo 1 apresentamos a definição de indutância como sendo a relação entre fluxo magnético concatenado e corrente, não
Análise de Circuitos Acoplados Com a finalidade de mostrar os sentidos dos enrolamentos e seus efeitos sobre as tensões de inductância mútua: L M
Análise de Circuitos Acoplados Com a finalidade de mostrar os sentidos dos enrolamentos e seus efeitos sobre as tensões de inductância mútua: a) L M = L ( + ) e e L M d = L + L d = L + L = L = L M M d
LABORATÓRIO INTEGRADO III
FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO III Experiência 03: Ensaio de Vazio e Curto em Transformadores Trifásicos Prof. Norberto Augusto Júnior USJT
1.7 RESUMO 1.8 PROBLEMAS 56 MÁQUINAS ELÉTRICAS
56 MÁQUINAS ELÉTRICAS Freqüentemente, é conveniente supor que a curva de magnetização CC desses materiais é linear, dentro do seu intervalo útil de operação, com uma inclinação igual à permeabilidade de
SOLUÇÃO PRATIQUE EM CASA
SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [D] Primeiramente é necessário encontrar o sentido da força magnética. Para tal, é direto verificar, utilizando a regra da mão esquerda, que o sentido desta força
ELETROTÉCNICA CAT124 O INDUTOR E OS CIRCUITOS MAGNÉTICOS Adrielle C. Santana
ELETROTÉCNICA CAT124 O INDUTOR E OS CIRCUITOS MAGNÉTICOS Adrielle C. Santana Força Magnetizante A força magnetomotriz por unidade de comprimento é chamada de força magnetizante (H). = F (Ae/m) ou = Força
TRANSFORMADORES. Fonte: itu.olx.com.br
Fonte: itu.olx.com.br OBJETIVO Ao final deste capitulo o aluno estará apto a entender, aplicar e realizar cálculos referentes Transformadores. Transformador é uma máquina elétrica estática, sem partes
UNIDADE 18 Propriedades Magnéticas dos Materiais
UNIDADE 18 Propriedades Magnéticas dos Materiais 1. O que são domínios magnéticos? 2. Defina os seguintes termos: Magnetização de saturação Permeabilidade magnética inicial Remanência Coercividade 3. Preencha
Experiência 01 Levantamento da Curva de Magnetização de Indutores
Verificar conclusão Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Laboratório de Materiais Elétricos EEL 7051 Professor Clóvis Antônio Petry Experiência 01 Levantamento da
LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA. PRÁTICA #1 - CIRCUITOS MAGNÉTICOS (2 aulas)
LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA PRÁTICA #1 - CIRCUITOS MAGNÉTICOS (2 aulas) Professores: Eduardo Nobuhiro Asada, Elmer Pablo Tito Cari, José Carlos de Melo Vieira Junior, Luís Fernando
Projeto Transformadores
Parte 0 Equipamentos e membros Projeto Transformadores Para esse experimento, precisaremos da seguinte lista de equipamentos: 1 gerador de sinais digital 1 transformador didático (desmontável) 2 galvanômetros
Lista de Exercícios 4
Lista de Exercícios 4 Leis da Indução Exercícios Sugeridos A numeração corresponde ao Livros Textos A e B. A23.1 Uma espira plana com 8,00 cm 2 de área consistindo de uma única volta de fio é perpendicular
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 1.2 Circuitos Magnéticos Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
O que é um indutor? Constituição. Tipos de indutores
O que é um indutor? A indução eletromagnética é um fenômeno causado por um campo magnético e gera corrente elétrica. Uma área delimitada por um determinado condutor sofre variação no de fluxo de indução
4) Quais são os elementos químicos que apresentam efeito ferromagnético? 5) Explique detalhadamente o processo de magnetização.
1) Como são chamados os pequenos volumes magnéticos formados em materiais ferromagnéticos? 2) Em um átomo de elemento ferromagnético de onde provém o campo magnético? Represente um modelo simplificado
Indutores. Prof. Fábio de Oliveira Borges
Indutores Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php Indutância
1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA
1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA Prof. José Roberto Cardoso Circuitos Magnéticos 1. Um núcleo toroidal de seção transversal 1 cm 2 e comprimento médio 15 cm é envolvido
F-328 Física Geral III
F-328 Física Geral III Aula exploratória- 10B UNICAMP IFGW [email protected] F328 1S2014 1 A ei de enz O sentido da corrente induzida é tal que ela se opõe à variação do fluxo magnético que a produziu.
CAPÍTULO 1 - ELETROMAGNETISMO
UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEP. DE ENGENHARIA ELÉTRICA ELE 0941 - ELETROTÉCNICA CAPÍTULO 1 - ELETROMAGNETISMO 1.0 Magnetismo 1.1 Domínio Magnético
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 03 Circuitos Magnéticos
SEL 39 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 03 Circuitos Magnéticos Exemplo (E1. P. C. Sen) Para o relé mostrado na figura, determine a densidade de fluxo magnético para um corrente de 4 A. No exemplo
COMPORTAMENTO EM C. A. DOS MATERIAIS FERROMAGNÉTICOS
187 COMPORTAMENTO EM C. A. DOS MATERIAIS FERROMAGNÉTICOS Este capítulo é dedicado a enômenos que ocorrem em materiais erromagnéticos, quando estes são submetidos a campos magnéticos variáveis no tempo.
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS Cespe Cebraspe FUB2015 Aplicação: 2015 Um eletricista, ao analisar o consumo de energia elétrica em uma sala de compressores efetuando diversas medições nos painéis de controle,
Propriedades Magnéticas II
Propriedades Magnéticas II INFLUÊNCIA DA TEMPERATURA NO COMPORTAMENTO MAGNÉTICO Ferromagnéticos e ferrimagnéticos Agitação Térmica: Enfraquece as forças de acoplamento entre dipolos, mesmo na presença
ELETRICIDADE GERAL E APLICADA. Armando Alves Hosken Neto
ELETRICIDADE GERAL E APLICADA Armando Alves Hosken Neto MAGNETISMO IMÃS: ATRAÇÃO DE CERTOS MATERIAIS (FERRO) MAGNETISMO IMÃ: Dispositivo capaz de atrair Fe, Co, Ni, Aço (ferromagnéticos) MAGNETISMO TIPOS
Máquinas Elétricas. Odailson Cavalcante de Oliveira
Máquinas Elétricas Odailson Cavalcante de Oliveira Campo Magnético Fluxo magnético Permeabilidade Magnética Relutância Experiência de Oersted Densidade do Campo Magnético Solenoide Vetor Força Magnetizante
1299 Circuitos elétricos acoplados
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ressonância, fator de qualidade, fator de dissipação, largura de banda, acoplamento
Indução Magnética. E=N d Φ dt
Indução Magnética Se uma bobina de N espiras é colocada em uma região onde o fluxo magnético está variando, existirá uma tensão elétrica induzida na bobina, e que pode ser calculada com o auxílio da Lei
Transformadores monofásicos
Transformadores monofásicos Motivações. Introdução. Transformador ideal. Transformador real. Circuito equivalente. Determinação dos parâmetros do circuito equivalente. Rendimento. Motivações Por que precisamos
Experimento 4 Indutores e circuitos RL com onda quadrada
Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.
Força Magnetizante, Histerese. e Perdas Magnéticas
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Força_Magnetizante_Histerese-e-Perdas-Magnéticas -1-40. 18 Curso Técnico em Eletrotécnica Força Magnetizante, Histerese
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07
SEL 39 COVERSÃO ELETROMECÂICA DE EERGIA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente
SEL 404 ELETRICIDADE II. Aula 08 Circuitos Magnéticos Parte III
SEL 404 ELETRICIDADE II Aula 08 Circuitos Magnéticos Parte III Exemplo (E1. P. C. Sen) Para o relé mostrado na figura, determine a densidade de fluxo magnético para um corrente de 4 A. No exemplo prévio,
Projeto Físico de Indutores e Transformadores em Alta Freqüência
Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Transformadores em Alta Freqüência Eletrônica de Potência II - Laboratório Instituto de Eletrônica de Potência Introdução Projeto
5ª Lista de exercícios Eletromegnetismo 1 Newton Mansur (01/18)
5ª Lista de exercícios Eletromegnetismo 1 Newton Mansur (01/18) 1) Existe no vácuo um vetor campo magnético dado por H = H 0 cos ( πx ) sen (πy ) â a a z. Uma espira quadrada de lado a, inteiramente contida
I N S T I T U T O F E D E R A L D E E D U C A Ç Ã O, C I Ê N C I A E T E C N O L O G I A D E S A N T A C A T A R I N A C A M P U S L A G E S
INDUÇÃO E INDUTÂNCIA I N S T I T U T O F E D E R A L D E E D U C A Ç Ã O, C I Ê N C I A E T E C N O L O G I A D E S A N T A C A T A R I N A C A M P U S L A G E S G R A D U A Ç Ã O E M E N G E N H A R I
Física 3. Fórmulas e Exercícios P3
Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que
Medidas de campos magnéticos
INSTITUTO DE FISICA- UFBa Fev. 22 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 11) Roteiro elaborado por Newton Oliveira e Iuri Pepe (Modificado em março de 23 por Ossamu Nakamura)
Memórias magnéticas A histerese ferromagnética
Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Departamento de Física 4 Electromagnetismo e Física Moderna Memórias magnéticas A histerese ferromagnética Compreender a relação entre campo
Corrente Alternada. Circuitos Monofásicos (Parte 2)
Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO
CONVERSÃO ELETROMECÂNICA DE ENERGIA
CONVERSÃO ELETROMECÂNICA DE ENERGIA Circuitos magnéticos INTRODUÇÃO A eletricidade é a única forma de energia cujo controle, utilização e conversão em outras formas de energia são relativamente fáceis.
Aula 3 Corrente alternada circuitos básicos
Aula 3 Corrente alternada circuitos básicos Objetivos Aprender os princípios básicos de corrente alternada. Aprender a analisar circuitos puros em corrente alternada utilizando as diversas formas de representação
EXPERIMENTO 2 CIRCUITO RC E OSCILAÇÕES LIVRES NO CIRCUITO LC
NOME: EXPERIMENTO 2 CIRCUITO RC E OSCILAÇÕES LIVRES NO CIRCUITO LC N USP: DATA: PERÍODO: Vamos analisar circuitos com capacitores, nos quais as correntes podem variar com o tempo. Circuito RC Se conectarmos
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica.
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica. Ímã: Princípios de Eletromecânica Ímã é um objeto formado por material ferromagnético que apresenta um campo magnético à sua volta.
Experimento 4 Indutores e circuitos RL com onda quadrada
Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.
O magnetismo é um fenômeno pelo qual alguns materiais impõem uma força ou influência de atração ou de repulsão sobre outros materiais.
Materiais magnéticos FUNDAMENTOS O magnetismo é um fenômeno pelo qual alguns materiais impõem uma força ou influência de atração ou de repulsão sobre outros materiais. As aplicações de materiais magnéticos
Projeto de Indutores para Alta Frequência
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Projeto de Indutores para Alta Frequência Prof. Clóvis Antônio Petry. Florianópolis,
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Força Magnetizante, Histerese e Perdas Magnéticas Prof. Clóvis Antônio Petry. Florianópolis, setembro de
I ind. Indução eletromagnética. Lei de Lenz. Fatos (Michael Faraday em 1831): 2 solenóides
Lei de Lenz Fatos (Michael Faraday em 1831): solenóides A I ind A I ind ao se ligar a chave, aparece corrente induzida na outra espira I di > 0 ao se desligar a chave, também aparece corrente induzida
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 7
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno Noturno Data : / / Experiência 7 MAPEAMENTO DE CAMPO MAGNÉTICO
HISTERESE FERROMAGNÉTICA
HISTERESE FERROMAGNÉTICA Introdução Um material magnetizado é descrito pelo seu vetor de magnetização M definido como o momento de dipolo magnético por unidade de volume. M = dm dv (1) De acordo com o
Exercícios: Eletromagnetismo, circuitos CC e aplicações
1 UFOP - Universidade Federal de Ouro Preto - Escola de Minas CAT17 - Eletrotécnica Geral - Prof. Danny Tonidandel. Data: Aluno: Matrícula: Exercícios: Eletromagnetismo, circuitos CC e aplicações Resolva
Aulas de Eletromagnetismo
Centro Federal de Educação Tecnológica de Santa Catarina Gerência Educacional de Eletrônica Fundamentos de Eletricidade Aulas de Clóvis Antônio Petry, professor. Florianópolis, novembro de 2006. Bibliografia
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07
SEL 39 COVERSÃO ELETROMECÂCA DE EERGA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância
