Medidas de campos magnéticos
|
|
|
- Gabriela de Mendonça Santarém
- 9 Há anos
- Visualizações:
Transcrição
1 INSTITUTO DE FISICA- UFBa Fev. 22 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 11) Roteiro elaborado por Newton Oliveira e Iuri Pepe (Modificado em março de 23 por Ossamu Nakamura) Medidas de campos magnéticos Objetivo do experimento: A finalidade do experimento é investigar o campo magnético entre as peças polares de um eletroimã, como função da corrente magnetizante e também função da distância ao eixo. Material: 1. Eletroimã (I max 1.5 A), com peças polares cilíndricas. 2. Fonte de alimentação CENCO 5 V DC, 5 A. 3. Multiteste Minipa ET-28, - 2 A, DC (medida da corrente do imã). 4. Multiteste Minipa ET-28, - 4mA, DC (medida da corrente da indutância mútua padrão). 5. Fonte de tensão ajustável SME. 6. Chave inversora (Relê acionado por togle flip-flop ). 7. Indutância mútua padrão. 8. Galvanômetro balístico WPA EDSPOT. 9. Bobina de prova, com N espiras. 1. Resistência de proteção TEORIA DA MEDIDA A medida da indução magnética B, que abordaremos a seguir, está baseada na lei de Faraday e nas propriedades de integração de carga de um galvanômetro do tipo balístico. Consideremos uma bobina com um número de espiras N, conhecidas e cuja área de uma espira é S. O fluxo Φ, do vetor indução magnética, através desta bobina é
2 2 dado por: Φ = B N S cos ϕ, onde B é a indução magnética ( em Wb/m 2 ), ϕ é o ângulo entre as linhas de indução e o eixo da bobina. Ver Fig1. ϕ B Fig. 1 Suponhamos que a bobina esteja imersa num campo de indução magnética. Quando desligamos esse campo de indução magnética num tempo finito ou retiramos a bobina desse campo, o fluxo decresce do valor inicial Φ até zero. A medida em que o d Φ( t) fluxo varia no tempo, aparece uma força eletromotriz induzida na bobina ε =. dt Se os terminais da bobina estão ligados a um circuito fechado com resistência total R (incluindo a própria resistência da bobina) uma corrente flui durante o processo de desaparecimento do fluxo magnético. 1 dφ( t) I = ε = R R dt A carga total que passa através do circuito fechado é obtida por integração t= Q= I dt. Contando o tempo a partir do instante t = quando o fluxo magnético Φ t= 1 dφ 1 Φ começa a cair, chegamos a: Q = dt = dφ = R dt R R Φo. É importante observar que a carga total não depende da forma de Φ(t), mas tão somente dos valores inicial e final do fluxo. Podemos medir a carga total Q inserindo um galvanômetro balístico em série com a bobina. Esse galvanômetro possui uma bobina móvel com um momento de inércia muito elevado. Ao contrário dos galvanômetros convencionais, o período de oscilação da bobina é muito longo, da ordem de dezenas de segundos. Esse galvanômetro tem a propriedade de integrar uma corrente impulsiva dando como resultado um deslocamento angular α da bobina móvel proporcional à carga total. A condição necessária para que isso ocorra é que o tempo de duração da corrente seja muito menor que o período de oscilação da bobina móvel. Normalmente, um pequeno
3 3 espelho acoplado à bobina móvel reflete uma imagem luminosa de um retículo sobre uma escala graduada onde podemos fazer a leitura do deslocamento. Ao ligarmos um galvanômetro balístico em série com a bobina, a deflexão causada pela passagem da carga é proporcional ao fluxo magnético inicial e portanto à indução magnética B. Se desejarmos determinar o valor absoluto de B, devemos calibrar o galvanômetro. É conveniente realizar a calibração fazendo uso de uma indutância mútua padrão (ver a figura 2). Uma fonte DC de tensão ajustável é conectada a uma chave inversora de polaridade e alimenta o primário de um transformador com núcleo de ar (indutância mútua padrão). Essa fonte estabelece uma corrente no primário cujo valor final é definido pelo valor da tensão e pela resistência do circuito primário. A chave inversora permite fazer uma inversão rápida no sentido da corrente primária. A corrente no primário do transformador estabelece um fluxo de indução magnética que se acopla ao secundário do transformador pois as bobinas primária e secundária são enroladas com espiras muito próximas umas das outras, sobre a mesma fôrma (com núcleo de ar). De acordo as leis do eletromagnetismo, o fluxo no secundário é produzido pela corrente no primário I 1 e pela corrente no secundário I 2. A resistência do circuito do secundário é suficientemente grande para que possamos desprezar I 2 com relação a I 1 (I 2 <<I 1 ) de modo que o fluxo no secundário pode ser escrito como Φ 2 = M 12 I 1 onde M 12 é a indutância mútua entre as bobinas primária e secundária. Esse é um parâmetro conhecido que depende apenas da geometria de construção das bobinas. Lado II Lado I R Bobina de prova Φ 2 Φ 1 Fonte de tensão I 2 G M 12 A I 1 Indutância mútua Chave inversora Fig. 2. Circuito de calibração do galvanômetro Iniciando com uma corrente I 1 e em seguida invertendo-se o sentido da corrente de I 1 para -I 1 por meio da chave de inversão, a variação total do fluxo magnético no
4 4 secundário será 2 M 12 I 1. Pelas razões anteriormente discutidas, circulará então uma carga Q = (1/R. 2 M 12 I 1 ) através do secundário. Pelo fato da deflexão no galvanômetro balístico ser proporcional à carga total que passa através dele, teremos α = C b Q, onde α é o ângulo de deflexão e C b é a constante balística do galvanômetro. O ângulo de deflexão α 1 ao invertermos a corrente será então: α 1 = 2C b M 12 I 1 / R, sendo R a resistência total do circuito secundário. A constante balística não é conhecida mas seu valor também aparece quando retiramos rapidamente a bobina de prova da região entre os pólos do eletroimã onde havia um campo de indução magnética B e um fluxo Φ. Sendo α o ângulo de deflexão obtido ao retirar a bobina da região de fluxo Φ, teremos: α = C b Φ / R, onde Φ = B N S. Portanto, α = C b B N S / R Dividindo α por α 1 a constante e a resistência podem ser eliminadas e podemos determinar B a partir dos dois ângulos de deflexão: α = α M12 I N S 2 1 B 1 MEDIDAS 1. Ligue os terminais das bobinas do eletroímã na fonte de alimentação CENCO (figura 3). Esta fonte consiste de um autotransformador variável e um retificador de onda completa. Para maior exatidão na leitura da corrente de magnetização I mag que circulará pelas bobinas do eletroímã utilize um amperímetro digital ligado em série no circuito. Certifique-se sempre que o knob (botão) da fonte está na posição zero, no começo da operação. Nunca ligue ou desligue as bobinas do eletroímã a menos que a tensão da fonte seja zero volt indicado no voltímetro. Eletroímã Fonte DC ajustável - 5 A Figura 3 A
5 5 2. Monte o circuito indicado na figura 2. Nesta parte do experimento usaremos apenas o lado II do circuito, permanecendo o lado I inativo. A bobina de prova deve ser colocada no centro do espaço entre as peças polares do eletroímã, com o ângulo ϕ (da figura 1) nulo. Fazemos as medidas da indução magnética, retirando a bobina de prova do campo magnético do eletroimã tão rápido quanto possível, pois condição de uma medida balística é que a carga total medida passe através do galvanômetro num tempo bem mais curto que o seu período. Anotamos sempre a primeira deflexão máxima, α, bem como a corrente de magnetização I mag. Faça essas medidas variando a corrente de magnetização desde zero até 1,5 A, em passos de,1 A, em ambas as direções de corrente. Não desligue as bobinas do eletroímã enquanto a corrente estiver fluindo! Para inverter a polaridade, primeiro reduza a corrente a zero continuamente por meio do knob de comando da fonte. 3. Depois de terminada essa série de medidas do campo, fazemos a calibração. Usamos agora apenas a parte I da figura 2,permanecendo outra parte inativa. Ajustamos a corrente I 1 no primário para um determinado valor. Faça uma comutação na chave inversora e observe uma deflexão α 1 no galvanômetro. Anote este valor, bem como o da corrente I 1. Repita este procedimento para mais 1 valores de corrente, até atingir o seu valor máximo. O knob (botão) de sensibilidade do galvanômetro deve estar na mesma posição durante toda a operação de calibração e medida. O Shunt calibrado que pode existir no galvanômetro não é aplicável em medidas balísticas, portanto não o selecione. 4. A determinação de B pode ser feita, através da expressão α = α M12 I N S 2 1 B 1 Anote os valores de N e S da bobina de prova, bem como o valor M 12 da indutância mútua padrão. Trace o gráfico da indução magnética B em função da corrente de magnetização I mag correspondente às medidas realizadas nos itens precedentes.
6 6 5. Para um dado valor fixo de corrente (ex. 1A) meça a homogeneidade do campo, colocando a bobina de prova a distâncias diferentes (gradualmente) do eixo das peças polares, tanto no interior quanto no exterior do eletroimã. Não é necessário se afastar mais que 2 cm com relação à borda no exterior. Para tanto utilize a régua graduada fixada numa das peças polares. Faça medidas para pelo menos 1 valores, concentrando-as próximo à borda das peças polares. Trace o gráfico da indução magnética B em função da posição medida com relação ao eixo do eletroímã.!! Cuidado para não danificar os relógios de pulso no campo magnético!! BIBLIOGRAFIA: Física, Halliday D. e Resnick R. vol 3, 4 a ed.
TRANSFORMADORES. Introdução
TRANSFORMADORES Introdução Por volta do século XIX, o físico britânico Michael Faraday estabeleceu o fenômeno da indução magnética. Uma das experiências de Faraday consistiu em induzir uma corrente numa
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia
EXPERIÊNCIA - TORÓIDE FLUXÔMETRO A FLUXÔMETRO Instrumento por meio do qual pode ser executada a exploração de um campo magnético, podendo ser determinada a intensidade dos fluxos locais de indução magnética.
Análise de Circuitos Acoplados Com a finalidade de mostrar os sentidos dos enrolamentos e seus efeitos sobre as tensões de inductância mútua: L M
Análise de Circuitos Acoplados Com a finalidade de mostrar os sentidos dos enrolamentos e seus efeitos sobre as tensões de inductância mútua: a) L M = L ( + ) e e L M d = L + L d = L + L = L = L M M d
Física Experimental III - Experiência E9
Física Experimental III - Experiência E9 Indução magnética e transformadores OBJETIVOS Estudo das leis de Faraday e Lenz em diversas situações experimentais. Montagem de transformadores. Obtenção da relação
Fís. Fís. Monitor: Leonardo Veras
Professor: Leonardo Gomes Monitor: Leonardo Veras Exercícios sobre Eletromagnetismo 04/06 set EXERCÍCIOS DE AULA 1. Um condutor, suportando uma corrente elétrica I, está localizado entre os pólos de um
Retificadores (ENG ) Lista de Exercícios de Eletromagnetismo
Retificadores (ENG - 20301) Lista de Exercícios de Eletromagnetismo 01) Para o eletroimã da figura abaixo, determine: a) Calcule a densidade de fluxo no núcleo; b) Faça um esboço das linhas de campo e
FORÇA ELECTROMOTRIZ INDUZIDA
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Electromagnetismo A 2009/2010 FORÇA ELECTROMOTRIZ INDUZIDA Neste trabalho é induzida uma força electromotriz num circuito condutor
Indução Eletromagnética
Indução Eletromagnética Φ ΔΦ ξ IND p/ circuito fechado i IND Fluxo magnético Variação de fluxo magnético Força eletromotriz induzida Corrente elétrica induzida Fluxo do campo magnético Φ = B A cosθ A superfície
INDUÇÃO MAGNÉTICA (2)
INDUÇÃO MAGNÉTICA Material Utilizado: - uma bobina de campo (l = 750 mm, n = 485 espiras / mm) (PHYWE 11006.00) - um conjunto de bobinas de indução com número de espiras N e diâmetro D diversos (N = 300
UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETROTÉCNICA
UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETROTÉCNICA Experiência 03: Polaridade de transformadores monofásicos Objetivos: Obtenção
Experimento 6 Laço de histerese
Experimento 6 aço de histerese. OBJETIVO Obter a curva BH do materiaagnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole,
Experiência Número 03 Instrumentos para Medidas Elétricas
OBJETIVOS Compreender o funcionamento do voltímetro e do amperímetro. Utilizar o voltímetro e o amperímetro para medições em circuitos simples de corrente contínua. MÉTODO EXPERIMENTAL INTRODUÇÃO: Quase
EXPERIMENTO 1: MEDIDAS ELÉTRICAS
EXPERIMENTO 1: MEDIDAS ELÉTRICAS 1.1 OBJETIVOS Familiarização com instrumentos de medidas e circuitos elétricos. Utilização do voltímetro, amperímetro e do multímetro na função ohmímetro. Avaliação dos
EXPERIMENTO 10: MEDIDAS DA COMPONENTE HORIZONTAL DO CAMPO MAGNÉTICO TERRESTRE
EXPERIMENTO 10: MEDIDAS DA COMPONENTE HORIZONTAL DO CAMPO MAGNÉTICO TERRESTRE 10.1 OBJETIVOS Determinar o valor da componente horizontal da indução magnética terrestre local. 10.2 INTRODUÇÃO Num dado lugar
Física Experimental III - Experiência E8
Física Experimental III - Experiência E8 Experiência de Oersted e Medidas de campo magnético OBJETIVOS Reproduzir a experiência de Oersted. Estimar o campo magnético da Terra. Avaliar os campos magnéticos
SOLUÇÃO PRATIQUE EM CASA
SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [D] Primeiramente é necessário encontrar o sentido da força magnética. Para tal, é direto verificar, utilizando a regra da mão esquerda, que o sentido desta força
FÍSICA EXPERIMENTAL 3001
FÍSICA EXPERIMENTAL 3 EXPERIÊNCIA 9 BOBINAS DE HELMHOLTZ. OBJETIVOS.. Objetivo Geral Familiarizar os acadêmicos com o dispositivo conhecido como sonda Hall (sensor de campo magnético que funciona baseado
DISCIPLINA DE MEDIDAS E MATERIAIS ELÉTRICOS
DISCIPLINA DE MEDIDAS E MATERIAIS ELÉTRICOS Prof. Patrícia Lins Prática 1 13/09/2018 Salvador/BA UNIME Departamento de Engenharia 1 Roteiro de Práticas Roteiro de Aulas Práticas: Medições com voltímetro
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO. Grupo:... (nomes completos) Prof(a).:... Diurno ( ) Noturno ( ) Experiência 7
INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) Grupo:......... (nomes completos) Prof(a).:... Diurno Noturno Data : / / Experiência 7 MAPEAMENTO DE CAMPO MAGNÉTICO
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel
Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 [email protected] http://www.fap.if.usp.br/~hbarbosa Tarefas da Semana (1) Medir a impedância do capacitor fornecido em função da
Circuitos Magneticamente Acoplados. Prof. André E. Lazzaretti
Circuitos Magneticamente Acoplados Prof. André E. Lazzaretti [email protected] Ementa Função de excitação senoidal Conceitos de fasor Análise de circuitos em CA Potência em circuitos CA Circuitos
Sensores de Velocidade
Sensores de Velocidade 1. Dínamo taquimétrico Tacogerador Baseado no princípio do motor de corrente contínua com escovas que funcionam como gerador DC que gera uma tensão proporcional à velocidade angular
I N S T I T U T O F E D E R A L D E E D U C A Ç Ã O, C I Ê N C I A E T E C N O L O G I A D E S A N T A C A T A R I N A C A M P U S L A G E S
INDUÇÃO E INDUTÂNCIA I N S T I T U T O F E D E R A L D E E D U C A Ç Ã O, C I Ê N C I A E T E C N O L O G I A D E S A N T A C A T A R I N A C A M P U S L A G E S G R A D U A Ç Ã O E M E N G E N H A R I
NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS:
NESSE CADERNO, VOCÊ ENCONTRARÁ OS SEGUINTES ASSUNTOS: CAPÍTULO 5 INDUÇÃO ELETROMAGNÉTICA... 8 Fluxo Magnético de um Carro... 8 Interpretação Física... 8 Lei de Lenz... 8 Lei de Faraday Neumann... 9 CAPÍTULO
Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda
Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***
15.2 Determinação experimental do momento de dipolo
CAPÍTULO 15 Medida do Momento Magnético 15.1 Objetivos Neste experimento faremos a medida experimental do momento de dipolo magnético de espiras de corrente de diversos diâmetros, comparando o resultados
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO
27 Experimento 3: Lei de Faraday, transformadores e campo magnético da Terra 1.3.1 Objetivos Realizar experimentos que verifiquem a lei de indução de Faraday. Estudar o processo de transformação de tensão
No caso do circuito magnético visto na figura ao lado. Se NI = 40 NA el=o,2m.
No caso do circuito magnético visto na figura ao lado. Se NI = 40 NA el=o,2m. N espiras Comprimento médio l= 0,2 m Variação de µ com a força magnetizante A densidade de fluxo e a força magnetizante estão
Experimento 6 Laço de histerese
Experimento 6 Laço de histerese 1. OBJETIVO Obter a curva BH do material magnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole,
Circuitos Elétricos II
Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Indutância Mútua 1 Introdução Introdução - transformador Indutância Própria Indutância
EXERCÍCIOS FÍSICA 3ª SÉRIE
3ª SÉRIE PROF. HILTON EXERCÍCIOS COMPLEMENTARES ELETROMAGNETISMO INDUÇÃO ELETROMAGNÉTICA QUESTÕES OBJETIVAS Indução eletromagnética. Fluxo de indução magnética 1) (UFMG) A figura mostra um circuito composto
= 2πf é a freqüência angular (medida em rad/s) e f é a freqüência (medida
44 2. Roteiros da Segunda Sequência Experimento 1: Circuito RLC e Ressonância 2.1.1 Objetivos Fundamentar o conceito de impedância; Obter a frequência de ressonância em um circuito RLC; Obter a indutância
MULTÍMETRO. 1- Aprender a utilizar o multímetro 2- Fazer algumas medições com o multímetro.
MULTÍMETRO OBJETIVOS 1- Aprender a utilizar o multímetro 2- Fazer algumas medições com o multímetro. INTRODUÇÃO O multímetro (figura 1) é um dispositivo eletrônico normalmente utilizado para medir tensão
MEEE1 Medidas Elétricas 2015 Luís Catarino. 1-Tensão (também chamada de diferença de potencial) Unidade:volt (V)
Grandezas elétricas mais comuns 1-Tensão (também chamada de diferença de potencial) Unidade:volt (V) 2-Corrente Fluxo de cargas elétricas que percorrem uma seção transversal por unidade de tempo Unidade:
SEL 404 ELETRICIDADE II. Aula 08 Circuitos Magnéticos Parte III
SEL 404 ELETRICIDADE II Aula 08 Circuitos Magnéticos Parte III Exemplo (E1. P. C. Sen) Para o relé mostrado na figura, determine a densidade de fluxo magnético para um corrente de 4 A. No exemplo prévio,
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 03 Circuitos Magnéticos
SEL 39 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 03 Circuitos Magnéticos Exemplo (E1. P. C. Sen) Para o relé mostrado na figura, determine a densidade de fluxo magnético para um corrente de 4 A. No exemplo
Eletromagnetismo. Motor Eletroimã Eletroimã. Fechadura eletromagnética Motor elétrico Ressonância Magnética
Eletromagnetismo Motor Eletroimã Eletroimã Fechadura eletromagnética Motor elétrico Ressonância Magnética Representação de um vetor perpendicular a um plano 1 Campo Eletromagnético Regra da mão direita:
Roteiro de Atividades Experimentais para o Laboratório de Eletricidade Aplicada
Roteiro de Atividades Experimentais para o Laboratório de Eletricidade Aplicada Erick Santana 2016 1 EXPERIÊNCIA 1 TÍTULO: Campo e força magnética. OBJETIVO: (a) Analisar a força magnética sobre um condutor
Sétima Lista - Lei de Faraday
Sétima Lista - Lei de Faraday FGE211 - Física III Sumário O fluxo magnético através de uma superfície S é definido como Φ B = B da A Lei da Indução de Faraday afirma que a força eletromotriz (fem) induzida
Universidade Paulista Unip
As máquinas de corrente contínua podem ser utilizadas tanto como motor quanto como gerador. 1 Uma vez que as fontes retificadoras de potência podem gerar tensão contínua de maneira controlada a partir
2. INSTRUMENTOS DE MEDIDAS ELÉTRICAS
2. INSTRUMENTOS DE MEDIDAS ELÉTRICAS 2.1 Introdução Durante todo o curso de Laboratório de Física B, o aluno manuseará instrumentos de medidas elétricas e fontes de tensão elétrica. O instrumento de medida
2013, Relatório fis 3 exp 6 EXPERIMENTO 6: DETERMINAÇÃO DA CAPACITÂNCIA. Copyright B T
EXPERIMENTO 6: DETERMINAÇÃO DA CAPACITÂNCIA Introdução! Suspendendo-se uma agulha magnética de tal modo que ela possa girar livremente, ela se orienta em uma direção perfeitamente determinada. Este comportamento
Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( )
Eletrotecnia Aplicada Transformadores (parte ) Engenharia Eletrotécnica e de Computadores (3-0-03) Conceito de transformador Os transformadores elétricos são dispositivos eletromagnéticos acoplados indutivamente
ANÁLISE DE CIRCUITOS I ( AULA 01)
ANÁLISE DE CIRCUITOS I ( AULA 01) 1.0 Instrumentos e Medições: O MULTITESTE O multiteste é um instrumento de medida elétrica que, geralmente, permite executar medidas de diversas grandezas elétricas: tensão,
Conversão de Energia I
Departamento de Engenharia Elétrica Conversão de Energia I Aula 2.1 Transformadores Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com
Transformadores e circuitos magneticamente acoplados. Prof. Luis S. B. Marques
Transformadores e circuitos magneticamente acoplados Prof. Luis S. B. Marques Transformadores Um transformador consiste de duas ou mais bobinas acopladas através de um campo magnético mútuo. O Transformador
Eletromagnetismo refsant
Eletromagnetismo refsant 1. A figura mostra duas cargas elétricas e as linhas de campo elétrico criadas por essas cargas. 1.1 Indique o sinal de cada uma das cargas. 1.2refira, justificando, em que região,
Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017
Física 3 - EMB5031 Prof. Diego Duarte Indução e Indutância (lista 10) 12 de junho de 2017 1. Na figura 1, uma semicircunferência de fio de raio a = 2,00 cm gira com uma velocidade angular constante de
Transformadores monofásicos
Transformadores Transformadores Transformadores são utilizados para transferir energia elétrica entre diferentes circuitos elétricos por meio de um campo magnético, usualmente com diferentes níveis de
Objetivo: Determinar a eficiência de um transformador didático. 1. Procedimento Experimental e Materiais Utilizados
Eficiência de Transformadores Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi Objetivo: Determinar
MODELOS DE MOTORES DA MODELIX
MODELOS DE MOTORES DA MODELIX O MOTOR DE CC REVISÃO TÉCNICA. Aspectos Construtivos O motor de corrente contínua é composto de duas estruturas magnéticas: 1 / 5 Estator (enrolamento de campo ou ímã permanente);
CONVERSOR CA/CC TRIFÁSICO COMANDADO
Área Científica de Energia Departamento de De Engenharia Electrotécnica e de Computadores CONVERSOR CA/CC TRIFÁSICO COMANDADO (Carácter não ideal) TRABALHO Nº 2 GUIAS DE LABORATÓRIO DE ELECTRÓNICA DE ENERGIA
CF360 - Resumo Experimentos Prova 2
CF360 - Resumo Experimentos Prova 2 Fabio Iareke 19 de dezembro de 2011 1 Força Magnética sobre Condutores de Corrente 1.1 Roteiro de Estudos 1. Qual é a expressão para o campo magnético
Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita
Eletricidade Aplicada Aulas Teóricas Professor: Jorge Andrés Cormane Angarita O Transformador Eletricidade Aplicada Introdução Circuitos acoplados condutivamente são aqueles que afetam a malha vizinha
Relatório: Experimento 1
Relatório: Experimento 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Nome 4: Assinatura 4: Turma: Procedimento I: Lei de Ohm Q1 (0,5 ponto) Monte o circuito indicado na Figura 1.11
Conversão de Energia I. Capitulo 4 Princípios da conversão eletromecânica da energia;
Conversão de Energia I Capitulo 4 Princípios da conversão eletromecânica da energia; 1. Introdução De uma forma bastante simplificada podemos tratar os motores com os conceitos de repulsão/atração entre
I ind. Indução eletromagnética. Lei de Lenz. Fatos (Michael Faraday em 1831): 2 solenóides
Lei de Lenz Fatos (Michael Faraday em 1831): solenóides A I ind A I ind ao se ligar a chave, aparece corrente induzida na outra espira I di > 0 ao se desligar a chave, também aparece corrente induzida
Transformadores monofásicos
Transformadores monofásicos Motivações. Introdução. Transformador ideal. Transformador real. Circuito equivalente. Determinação dos parâmetros do circuito equivalente. Rendimento. Motivações Por que precisamos
LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA. PRÁTICA #1 - CIRCUITOS MAGNÉTICOS (2 aulas)
LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA PRÁTICA #1 - CIRCUITOS MAGNÉTICOS (2 aulas) Professores: Eduardo Nobuhiro Asada, Elmer Pablo Tito Cari, José Carlos de Melo Vieira Junior, Luís Fernando
Proposta Eletiva Laboratório III Verificação Experimental da Lei de Faraday
UNIVERSIDADE DE SÃO PAULO USP Proposta Eletiva Laboratório III Verificação Experimental da Lei de Faraday Disciplina: 4300114-Física Experimental III Professor: Alexandre Alarcon do Passo Suaide Grupo:
Fluxo Magnético. Onde: B
FÍSICA Fluxo Magnético Φ B.A.cos θ n Onde: θ B A O fluxo magnético é a medida da quantidade de linhas de indução que atravessam uma superfície em função do tempo. É dado pelo produto entre o campo magnético,
INDUÇÃO ELETROMAGNÉTICA 3 1. INTRODUÇÃO 3 2. LEI DE FARADAY LENZ
SUMÁRIO INDUÇÃO ELETROMAGNÉTICA 3 1. INTRODUÇÃO 3 2. LEI DE FARADAY LENZ 5 2.1. FLUXO MAGNÉTICO 5 2.2. A LEI DE FARADAY 6 2.3. A LEI DE LENS 7 2.4. A LEI DE FARADAY-LENZ 9 EXERCÍCIOS DE COMBATE 16 2 INDUÇÃO
EXPERIMENTO 9: OSCILOSCÓPIO DIGITAL AUTO-INDUTÂNCIA E CIRCUITO RL
EXPERIMENTO 9: OSCILOSCÓPIO DIGITAL AUTO-INDUTÂNCIA E CIRCUITO RL Nesse experimento você utilizará o osciloscópio como uma ferramenta para observar os sinais de tensão elétrica em um circuito contendo
Experimento - Estudo de um circuito RC
Experimento - Estudo de um circuito RC. Objetivos Verificar graficamente a validade da equação desenvolvida para carga e descarga de um capacitor. Determinar a constante de tempo de um circuito RC nas
FÍSICA EXPERIMENTAL 3001
FÍSICA EXPERIMENTAL 300 EXPERIÊNCIA 6 TRANSFERÊNCIA DE POTÊNCIA. OBJETIVOS.. Objetivo Geral Familiarizar os acadêmicos com fontes de tensão (baterias) na condição de máxima transferência de potência para
EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA
EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA Em 1819, Oersted ao aproximar uma bússola de um fio percorrido por corrente, observou que a agulha se movia, até se posicionar num plano perpendicular ao fio. Esta
CAPÍTULO 1 - ELETROMAGNETISMO
UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEP. DE ENGENHARIA ELÉTRICA ELE 0941 - ELETROTÉCNICA CAPÍTULO 1 - ELETROMAGNETISMO 1.0 Magnetismo 1.1 Domínio Magnético
6.1 Relatório 1 74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS. Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma:
74 CAPÍTULO 6. PRÉ-RELATÓRIOS E RELATÓRIOS 6.1 Relatório 1 Nome 1: Assinatura 1: Nome 2: Assinatura 2: Nome 3: Assinatura 3: Turma: Procedimento I: Lei de Ohm Q1 (0,5 ponto) Monte o circuito indicado na
f = B. A. cos a Weber
FLUXO MAGNÉTICO (f) Tesla T f = B. A. cos a Weber Wb metros quadrados m onde a ângulo formado entre n e B UEPG 1 PERGUNTA gera Se vimos que i B, será que o contrário é gera verdadeiro? Isto é, B i? EXPERIÊNCIAS
LABORATÓRIO ELETRO II EDIFÍCIOS/PROJETOS/PROC. PRODUÇÃO 1/9 EXPERIÊNCIA 5
LBORTÓRIO ELETRO II EDIFÍCIOS/PROJETOS/PROC PRODUÇÃO /9 I TÍTULO: TRNSFORMDOR MONOFÁSICO II OBJETIO: O objetivo desta experiência consiste na verificação prática das relações fundamentais de um transformador
PEA EPUSP DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO PEA-2211 INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO. TRANSFORMADORES - Prática
PEA EPUSP DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO PEA-2211 INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO TRANSFORMADORES - Prática 2014 PEA2211-2014 Transformadores Parte Prática 1 Data / / 2014
Curso Técnico em Eletrotécnica Lei de Faraday e Lenz Auto-indutância e Indutores. Vitória-ES
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Lei-de-Faraday-e-Lenz-Auto-indutância-e-Indutores -1-26. 20 Curso Técnico em Eletrotécnica Lei de Faraday e Lenz Auto-indutância
Física 3. Fórmulas e Exercícios P3
Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que
Aula 19. Acoplamento Magnético
Aula 19 Acoplamento Magnético Acoplamento Magnético Os circuitos considerados até o momento são descritos pelo acoplamento condutivo, uma vez que a interação entre dois laços é realizada por meio da corrente
Física IV. Quarta lista de exercícios. Figura 1
4302212 Física IV Quarta lista de exercícios 1. Considere que uma espira circular, com raio a, auto-indutância L e resistência R, gire em torno do eixo z, conforme ilustra a Figura 1, com uma velocidade
FÍSICA EXPERIMENTAL III
FÍSICA EXPERIMENTAL III EXPERIÊNCIA 2 CURVAS CARACTERÍSTICAS DE RESISTORES 1. OBJETIVOS 1.1. Objetivo Geral Familiarizar os acadêmicos com o uso de resistores ôhmicos e não ôhmicos. 1.2. Objetivos Específicos
Indução e Indutância.
Cap. 30 Indução e Indutância. Prof. Oscar Rodrigues dos Santos [email protected] Indução e Indutância 1 Experiência de Indução Indução bobina de material condutor ligada a um amperímetro e ímã permanente.
UNIVERSIDADE FEDERAL DE SANTA CATARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório
UNIVERSIDADE FEDERAL DE SANA CAARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório Aula 07 POÊNCIA MONOFÁSICA E FAOR DE POÊNCIA 1.0 INRODUÇÃO 1.1 Instrumento Eletrodinâmico
ENGC25 - ANÁLISE DE CIRCUITOS II
ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo
Curso Técnico em Mecatrônica. Exemplos de Máquinas Elétricas. Introdução à Máquinas Elétricas. Magnetismo. Máquinas Elétricas Plano de Ensino
Curso Técnico em Mecatrônica Máquinas Elétricas Plano de Ensino 4º Módulo 2017/2 Professor: Thiago Mombach [email protected] Introdução à Máquinas Elétricas Máquinas Elétricas são equipamentos
3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE
25 3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE 31 INTRODUÇÃO Um estudo mais completo da teoria do transformador deve levar em conta os efeitos das resistências dos enrolamentos,
Oscilações Eletromagnéticas e Corrente Alternada
Cap. 31 Oscilações Eletromagnéticas e Corrente Alternada Copyright 31-1 Oscilações Eletromagnéticas Oito estágios em um ciclo de oscilação de um circuito LC sem resistência. Os histogramas mostram a energia
Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta
Aula Prática: Determinação da resistência interna de uma bateria e uso de regressão linear para determinação da equação de uma reta Introdução Observe o circuito representado na figura ao lado em que uma
Laboratório de Conversão Eletromecânica de Energia B
Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Característica de Magnetização da Máquina de Corrente Contínua 1.1 Introdução Máquinas de corrente contínua (MCC) devem
FÍSICA MÓDULO 11 INDUÇÃO ELETROMAGNÉTICA. Professor Sérgio Gouveia
FÍSICA Professor Sérgio Gouveia MÓDULO 11 INDUÇÃO ELETROMAGNÉTICA 1. INTRODUÇÃO Faraday e Lenz desenvolveram, a partir de 1831, o estudo do fenômeno da indução eletromagnética. Vamos descrever o fenômeno
