CONVERSÃO ELETROMECÂNICA DE ENERGIA
|
|
|
- Ísis Sacramento de Lacerda
- 8 Há anos
- Visualizações:
Transcrição
1 CONVERSÃO ELETROMECÂNICA DE ENERGIA Circuitos magnéticos
2 INTRODUÇÃO A eletricidade é a única forma de energia cujo controle, utilização e conversão em outras formas de energia são relativamente fáceis. Ela provavelmente continuará a ser a forma principal de energia utilizada pelo homem. A primeira indicação da possibilidade de intercâmbio entre energia elétrica e mecânica foi apresentada por Michael Faraday em Esta descoberta é considerada por alguns como o maior avanço individual no progresso da ciência para atingir o aperfeiçoamento final da humanidade.
3 INTRODUÇÃO A conversão eletromagnética de energia relaciona as forças elétricas e magnéticas do átomo com a força mecânica aplicada à matéria e ao movimento. Como resultado desta relação, a energia mecânica pode ser convertida em energia elétrica, e vice-versa, através das MÁQUINAS ELÉTRICAS. A energia elétrica produzida através desta conversão eletromecânica de energia pode ser reconvertida várias vezes, antes que a energia seja finalmente convertida à forma que realizará o trabalho útil. São as formas de energia: Mecânica (Motores). Térmica (Estufas). Luminosa (Lâmpadas). Química (Processos Eletroquímicos). Outras formas de Energia Elétrica.
4 INTRODUÇÃO
5 FUNDAMENTOS DAS MÁQUINAS Quase todas as pessoas vivem e trabalham no extremo de um circuito elétrico. Diferentes formas de energia podem ser convertidas em eletricidade (energia elétrica) e, do mesmo modo, a eletricidade pode ser convertida em diferentes formas de energia. O gerador elétrico é o dispositivo que transforma energia mecânica em energia elétrica. O motor elétrico, essencialmente um gerador usado de modo diferente, transforma energia elétrica em energia mecânica. Os geradores são usados para fornecer quase toda a energia elétrica usada atualmente. Um dos nossos principais problemas é encontrar fontes de energia para o acionamento desses geradores. Por este motivo, torna-se cada vez maior a necessidade de novas fontes alternativas de energia.
6 FUNDAMENTOS DAS MÁQUINAS Uma fem é induzida em um condutor que se move através de um campo magnético. Todas as usinas geradoras, que proporcionam quase toda a energia elétrica consumida atualmente no mundo, usam este princípio simples para converter uma forma qualquer de energia em energia elétrica. É de grande importância lembrarmos que no Brasil a energia elétrica é quase que totalmente produzida em usinas hidrelétricas, que é uma das formas mais baratas e limpas de se produzir eletricidade. Também devemos lembrar que o potencial hidrelétrico do Brasil já foi praticamente esgotado, o que exige uma busca incessante por fontes alternativas de energia.
7 FUNDAMENTOS DAS MÁQUINAS
8 Pelo fato de serem amplamente utilizados em processos de conversão de energia, os circuitos magnéticos e materiais magnéticos serão estudados. Um circuito magnético consiste em uma estrutura que, em sua maior parte, é composta por materiais magnéticos de permeabilidade elevada. A presença de um material de alta permeabilidade tende a fazer com que o fluxo magnético seja confinado aos caminhos delimitados pela estrutura, do mesmo modo que, em circuitos elétricos, as correntes são confinadas aos condutores.
9 A figura mostra um exemplo de circuito magnético: Assume-se que o núcleo seja composto de material magnético cuja permeabilidade é muito maior que a do ar. O núcleo tem seção reta uniforme e é excitado por um enrolamento de N espiras conduzido por uma corrente de ampères.
10 Esse enrolamento produz um campo magnético no núcleo. O fluxo magnético está confinado quase que inteiramente ao núcleo, devido à sua alta permeabilidade. As linhas de fluxo seguem o caminho definido pelo núcleo. A densidade de fluxo é uniforme em qualquer seção reta, pois a área deste núcleo é uniforme. O campo magnético é visualizado pelas linhas de fluxo, que formam um laço, interligados pelo enrolamento. A fonte do campo magnético do núcleo é o produto [ampère-espira, A.e]. é a força magnetomotriz (FMM) do circuito magnético. [A.e] Corrente [A] Nº de espiras Força magnetomotriz
11 Em máquinas com dois ou mais enrolamentos, é a soma algébrica de todos os Ampères-espiras de todos os enrolamentos. O fluxo que atravessa uma superfície édependente de. O fluxo magnético é conservado, pois em uma superfície fechada não há entrada nem saída líquida de fluxo. Assim o fluxo magnético líquido que entra ou sai de uma superfície é 0. Isso quer dizer que qualquer fluxo que entra em uma superfície que delimita um volume, deverá deixar esse volume passando por outra região dessa superfície, porque as linhas de fluxo magnético formam laços fechados.
12 Isso justifica dizer que a densidade de fluxo magnético é uniforme em uma seção reta do circuito magnético como o núcleo da figura.
13 Assim, reduzimos a equação à: Área de seção reta do núcleo [m 2 ] Densidade de fluxo no núcleo [ ] Fluxo no núcleo [ ]
14 A relação entre a que atua em um circuito magnético e a intensidade de campo magnético naquele circuito é. Sabendo que a origem de é a densidade de corrente...
15 As dimensões do núcleo são tais que o comprimento do caminho de qualquer linha de fluxo é aproximadamente igual ao comprimento médio do núcleo. Como resultado, temos apenas o produto. Logo a relação entre a e a intensidade de campo magnético pode ser descrita por: Comprimento médio do núcleo [m] Módulo médio de no núcleo [A/m]
16 O sentido de no núcleo pode ser encontrado a partir da regra da mão direita, que pode ser enunciado de dois modos equivalentes: 1. Imagine uma corrente sendo transportada em um condutor segurado por uma mão, com o polegar apontando no sentido da corrente. Os demais dedos apontarão no sentido do campo magnético criado por essa corrente. 2. De forma equivalente, se a bobina da figura for segura na mão direita, com os dedos apontando no sentido da corrente, então o polegar apontará o sentido do campo magnético.
17 A relação entre a intensidade de campo magnético e a densidade de fluxo magnético, é uma propriedade do material em que se encontra o campo. A relação fica:. CIRCUITOS MAGNÉTICOS Intensidade de campo magnético [A/m] Permeabilidade do material [.. ] ou [ ] Densidade de fluxo magnético [ ] A permeabilidade do vácuo é 4 10.
18 A permeabilidade dos materiais magnéticos lineares pode ser expressa em termos de, seu valor relativo ao do vácuo, sendo.. Valores de variam de 2000 a para materiais usados em transformadores e máquinas rotativas. No caso de transformadores, as bobinas são enroladas em núcleos fechados.
19 Já em dispositivos com elementos móveis (motores, etc), inclui-se um entreferro de ar em seus circuitos magnéticos. Um circuito magnético com entreferro é mostrado na figura:
20 Quando o comprimento do entreferro for muito menor que as faces adjacentes do núcleo, o fluxo magnético seguirá o caminho definido pelo núcleo e pelo entreferro. Assim, a análise do circuito magnético pode ser utilizada. Quando o entreferro é grande, observa-se a dispersão de fluxo pelos lados do entreferro, logo as técnicas de análise são outras. Sendo o comprimento pequeno, o circuito pode ser analisado como duas componentes em série: 1. Um núcleo magnético com permeabilidade, área de seção reta e comprimento médio e 2. Um entreferro de permeabilidade, área de seção reta e comprimento.
21 A densidade de fluxo pode ser suposta uniforme. Logo: e Assim, Utilizando a relação linear entre e : Aqui a é a aplicada ao circuito magnético. Uma parte da, produz campo magnético no núcleo, e produz campo magnético no entreferro.
22 Com materiais magnéticos da prática, e nem sempre se relacionam entre si de maneira simples através de uma permeabilidade constante conhecida, como descrito em. é na verdade um mapeamento não-linear de. Deve-se usar gráficos de materiais com detalhes da relação. Em muitos casos, os conceitos de permeabilidade constante de materiais dá resultados de exatidão aceitáveis em engenharia.
23 Sabendo que e e temos Os termos que multiplicam o fluxo nessa equação são conhecidos como relutância do núcleo e do entreferro.
24 e Logo O fluxo pode ser dado pela relutância total, onde (ligados em série). A Permeância é dada pelo inverso da relutância
25 A equação é análoga às relações de correntes e tensões em um circuito elétrico.
26 No circuito elétrico a tensão impulsiona uma corrente através dos resistores e. No circuito magnético, a estabelece um fluxo através das relutâncias e. Frequentemente essa analogia pode ser utilizada, para resolução de circuitos magnéticos de grande complexidade.
27 A fração de necessária para impulsionar o fluxo através de cada parte do circuito (queda de ), varia proporcionalmente à sua relutância. Como a alta permeabilidade do núcleo pode resultar em uma baixa relutância, e esta muito inferior à relutância do entreferro, a maior parte da fica no entreferro, pois e. Assim,
28 Nos sistemas reais, as linhas de campo magnético espraiam-se para for a quando cruzam o entreferro.
29 Se o efeito de espraiamento não for excessivo, o conceito de circuitos magnéticos continua aplicável. O efeito desse espraiamento é aumentar a área efetiva de do entreferro. Aqui consideramos. A é a que atua impulsionando o fluxo em um laço fechado de um circuito magnético.
30 Semelhante à lei de Kirchhoff das correntes 0, temos a aplicação para fluxos magnéticos: 0. Exercício 1 O circuito magnético da figura tem dimensões 9, 0,05, 30 e 500. Suponha para o material do núcleo e 1. a. Encontre as relutâncias e ; b. Encontre o fluxo ; c. Encontre a corrente.
31 Exercício 2 Encontre o fluxo eacorrente para o exercício 1 se: a. O número de espiras for duplicado para 1000 mantendo-se as mesmas dimensões de núcleo; b. O número de espiras for 500 e o entreferro for reduzido para 0,04 ;
32 Exercício 3 A estrutura magnética de uma máquina síncrona está mostrada esquematicamente na figura:
33 Suponha que o ferro do rotor e do estator tenham permeabilidade infinita. Encontre o fluxo do entreferro e a densidade de fluxo. Sabendo que: 10, 1000, 1 e 2000.
34 Exercício 4 Para a estrutura magnética da figura e dimensões do exercício 3, observa-se que a densidade de fluxo do entreferro é 0,9. Encontre o fluxo de entreferro e, para uma bobina de 500, a corrente necessária para produzir esse valor de fluxo no entreferro.
35 Quando o fluxo magnético varia no tempo, produz-se um uma força eletromotriz (tensão), de acordo com a lei de Faraday. As linhas de campo magnético concatenam (passam através) dos enrolamentos da bobina. Δ
36 Logo, o fluxo concatenado pode ser escrito por Fluxo magnético [Wb] Número de espiras Fluxo concatenado do enrolamento [Wb] O sentido da corrente elétrica que flui nos enrolamentos, tende a se opor à variação do fluxo concatenado.
37 Em um circuito magnético de material magnético de constante ou entreferro dominante, a relação entre e é linear e podemos definir a indutância: e Assim, e
38 Agora supondo que a relutância do núcleo seja desprezível se comparada com a do entreferro. A indutância do enrolamento é dada por: A indutância é medida em Henrys (H). Esta equação mostra que a indutância se relaciona com as características de construção do circuito magnético.
39 Exercício 5 O circuito magnético da figura é constituído por uma bobina de 1000 espiras enroladas em um núcleo magnético de permeabilidade infinita, com dois entreferros paralelos de comprimento 1 e 0,5 e áreas 800 e Encontre: a) A indutância do enrolamento; b) A densidade de fluxo no entreferro 1 quando o enrolamento está conduzindo uma corrente 5. Desconsidere o efeito de espraiamento.
40 a) A indutância do enrolamento; b) A densidade de fluxo no entreferro 1 quando o enrolamento está conduzindo uma corrente 5. Desconsidere o efeito de espraiamento.
41 Exercício 6 No exercício 2, assume-se que a permeabilidade relativa do núcleo do circuito magnético seja 70000, para 1. Para esse valor de calcule a indutância do enrolamento.
42 Exercício 7 Repita o cálculo de indutância do exercício 6 para uma permeabilidade relativa de 30000, para 1.
43 A figura mostra o circuito magnético com entreferro e dois enrolamentos. A do circuito é o total de Ampère-espira que atua no circuito.
44 Desprezando a relutância no núcleo e assumindo. Na última equação, é o fluxo resultante do núcleo, produzido pela total dos dois enrolamentos. É esse resultante que determina o ponto de operação do material do núcleo.
45 Relacionando individualmente ou onde é a indutância própria da bobina 1 e é o fluxo concatenado da bobina 1 devido à sua corrente. Já é a indutância mútua entre as bobinas 1 e 2, e é o fluxo concatenado da bobina 1 devido à corrente na outra bobina. ou onde que é a indutância mútua, e é a indutância própria da bobina 2.
46 EXCITAÇÃO CA Em sistemas de potência CA, as formas de onda de tensão e de fluxo são bastante próximos de funções senoidais de tempo. Verificamos um circuito magnético fechado, sem entreferro, onde analizamos a excitação CA e as perdas relacionadas à operação CA, em regime permanente, dos materiais magnéticos.
47 O comprimento do caminho magnético é e a área de secção reta é. Ainda supomos uma variação senoidal do fluxo do núcleo. Assim, á sin á sin A tensão induzida á cos á cos, onde á á 2 á e 2. Na operação CA em regime permanente, utiliza-se mais os valores eficazes, das tensões e correntes, do que os valores instantâneos ou máximos.
48 Pode-se mostrar que o valor eficaz de uma onda senoidal é vezes o seu valor de pico. CIRCUITOS MAGNÉTICOS O valor eficaz da tensão induzida é: 2 2 á 2 á Para se produzir fluxo magnético no núcleo, a corrente de excitação deve estar presente no ramo de excitação.
49 As propriedades magnéticas não lineares do núcleo requerem que a forma de onda da corrente de excitação seja diferente da forma de onda senoidal do fluxo. A curva da corrente de excitação em função do tempo é característica magnética do material do núcleo.
50 Como e se relacionam com e por constantes geométricas conhecidas, o laço de histerese CA é desenhado em termos de e. As ondas senoidais da tensão induzida e do fluxo são mostradas na figura (conforme equações vistas anteriormente).
51 Em alguns instantes o valor de corresponde à um fluxo dado diretamente pelo laço de histerese.
52 CIRCUITOS MAGNÉTICOS
53 O laço de histerese é achatado devido aos efeitos de saturação. A forma de onda da corrente de excitação apresenta picos acentuados. Seu valor eficaz é. As características de excitação CA dos materiais usados em núcleos são descritos frequentemente em volts-ampère-eficaz, ao invés de das curvas. 2 á 2 á FIM
MÁQUINAS ELÉTRICAS I
MÁQUINAS ELÉTRICAS I [CIRCUITOS MAGNÉTICOS E TRANSFORMADORES] Joaquim Eloir Rocha 1 Bibliografia FITZGERALD, A. E.; KINGSLEY, Charles; UMANS, Stephen D. Máquinas elétricas: com introdução à eletrônica
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 03 Circuitos Magnéticos
SEL 39 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 03 Circuitos Magnéticos Exemplo (E1. P. C. Sen) Para o relé mostrado na figura, determine a densidade de fluxo magnético para um corrente de 4 A. No exemplo
Circuitos magnéticos e materiais magnéticos
CAPÍTULO 1 Circuitos magnéticos e materiais magnéticos O objetivo deste livro é o estudo dos dispositivos usados na interconversão de energias elétrica e mecânica. É dada ênfase às máquinas rotativas eletromagnéticas,
Conversão de Energia I. Capitulo 2 Circuito Magnético
Conversão de Energia I Capitulo 2 Circuito Magnético 2 1. Introdução Nos dispositivos eletromecânicos geradores, motores, contactores, relés, etc. a utilização de enrolamentos e núcleos objetiva o estabelecimento
ENGC25 - ANÁLISE DE CIRCUITOS II
ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo
Máquinas Elétricas. Máquinas CC Parte III
Máquinas Elétricas Máquinas CC Parte III Máquina CC Máquina CC Máquina CC Comutação Operação como gerador Máquina CC considerações fem induzida Conforme já mencionado, a tensão em um único condutor debaixo
Conversão de Energia I (TE-046) - Lista I
Conversão de Energia I (TE-046) - Lista I Prof.: MATEUS Duarte Teixeira Monitor: Wesley THIAGO Egea Tiem 2017/1 1 Circuitos Magnéticos - Exercícios 1. Defina, se possível incluindo simbologia e unidade
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 1.2 Circuitos Magnéticos Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
CONVERSÃO ELETROMECÂNICA DE ENERGIA - CEE
CONVERSÃO ELETROMECÂNICA DE ENERGIA - CEE Na engenharia existe um conjunto vasto de sistemas que promovem uma transformação de energia, convertendo energia elétrica em mecânica e vice-versa. Esta disciplina
Departamento de Engenharia Elétrica Conversão de Energia II Lista 3
Departamento de Engenharia Elétrica Conversão de Energia II Lista 3 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 6.1 Máquinas Síncronas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
ELETROTÉCNICA CAT124 O INDUTOR E OS CIRCUITOS MAGNÉTICOS Adrielle C. Santana
ELETROTÉCNICA CAT124 O INDUTOR E OS CIRCUITOS MAGNÉTICOS Adrielle C. Santana Força Magnetizante A força magnetomotriz por unidade de comprimento é chamada de força magnetizante (H). = F (Ae/m) ou = Força
Conversão de Energia I. Capitulo 4 Princípios da conversão eletromecânica da energia;
Conversão de Energia I Capitulo 4 Princípios da conversão eletromecânica da energia; 1. Introdução De uma forma bastante simplificada podemos tratar os motores com os conceitos de repulsão/atração entre
MÁQUINA DE INDUÇÃO FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA
FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA As máquinas de corrente alternada são geradores que convertem energia mecânica em energia elétrica e motores que executam o processo inverso. As duas maiores
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 2.2 Máquinas Rotativas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
SEL 404 ELETRICIDADE II. Aula 08 Circuitos Magnéticos Parte III
SEL 404 ELETRICIDADE II Aula 08 Circuitos Magnéticos Parte III Exemplo (E1. P. C. Sen) Para o relé mostrado na figura, determine a densidade de fluxo magnético para um corrente de 4 A. No exemplo prévio,
5ª Lista de exercícios Eletromegnetismo 1 Newton Mansur (01/18)
5ª Lista de exercícios Eletromegnetismo 1 Newton Mansur (01/18) 1) Existe no vácuo um vetor campo magnético dado por H = H 0 cos ( πx ) sen (πy ) â a a z. Uma espira quadrada de lado a, inteiramente contida
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica.
Sistemas de Geração, Transmissão e Distribuição de Energia Elétrica. Ímã: Princípios de Eletromecânica Ímã é um objeto formado por material ferromagnético que apresenta um campo magnético à sua volta.
1.7 RESUMO 1.8 PROBLEMAS 56 MÁQUINAS ELÉTRICAS
56 MÁQUINAS ELÉTRICAS Freqüentemente, é conveniente supor que a curva de magnetização CC desses materiais é linear, dentro do seu intervalo útil de operação, com uma inclinação igual à permeabilidade de
Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti INDUTORES: CONCEITOS E DEFINIÇÕES CAMPO MAGNÉTICO Campo Magnético Nem só os imãs possuem campo magnético, mas a corrente
CAPÍTULO 1 CONTROLE DE MÁQUINAS ELÉTRICAS (CME) Prof. Ademir Nied
Universidade do Estado de Santa Catarina Programa de Pós-Graduação em Engenharia Elétrica Doutorado em Engenharia Elétrica CAPÍTULO 1 MÁQUINAS DE CORRENTE CONTÍNUA CONTROLE DE MÁQUINAS ELÉTRICAS (CME)
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA. Excitação CA
Os circuitos magnéticos dos transformadores e das máquinas CA são excitados por fontes CA. Com excitação CA, a indutância influi no comportamento do regime permanente. Joaquim Eloir Rocha 1 Com excitação
AULAS UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied
Universidade do Estado de Santa Catarina Departamento de Engenharia Elétrica Curso de Graduação em Engenharia Elétrica AULAS 01-0 UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied [email protected]
No caso do circuito magnético visto na figura ao lado. Se NI = 40 NA el=o,2m.
No caso do circuito magnético visto na figura ao lado. Se NI = 40 NA el=o,2m. N espiras Comprimento médio l= 0,2 m Variação de µ com a força magnetizante A densidade de fluxo e a força magnetizante estão
Conversão de Energia II
Departamento de Engenharia Elétrica Exercícios Lista 2 Prof. João Américo Vilela Exercício 1 O desenho apresentado abaixo representa um esquema primitivo de um relé. A bobina tem 500 espiras e o caminho
Conversão de Energia I Circuitos Magnéticos Aula I.4
Departamento de Engenharia Elétrica Conversão de Energia I Circuitos Magnéticos Aula I.4 Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas:
Conversão de Energia II
Departamento de Engenharia Elétrica onversão de Energia II ula. ircuitos Magnéticos Prof. João mérico Vilela Bibliografia FITZGERLD,. E., KINGSLEY Jr.. E UMNS, S. D. Máquinas Elétricas: com Introdução
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 2. Máquinas Rotativas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De
Máquinas Elétricas. Máquinas CA Parte I
Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa Mussoi) (Slides da apresentação ão: Geração de Corrente Alternada do professor Clóvis Antônio
Máquinas Elétricas. Máquinas CA Parte I
Máquinas Elétricas Máquinas CA Parte I Introdução A conversão eletromagnética de energia ocorre quando surgem alterações no fluxo concatenado (λ) decorrentes de movimento mecânico. Nas máquinas rotativas,
DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO ELÉTRICAS PEA-2211: INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO
PEA DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO ELÉTRICAS PEA-11: INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO Produção de Forças 1 Introdução à Eletromecânica e à Automação PEA11 Produção de Forças
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 02 Circuitos Magnéticos
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 02 Circuitos Magnéticos Revisão Aula Passada Aplicação da Lei Circuital de Ampère Exemplo 1 l r N núcleo toroidal de material ferromagnético I H.dl NI H
Experimento 6 Laço de histerese
Experimento 6 Laço de histerese 1. OBJETIVO Obter a curva BH do material magnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole,
CIRCUITO EQUIVALENTE MAQUINA
CIRCUITO EQUIVALENTE MAQUINA Se o circuito do induzido for fechado sobre uma carga, vai circular por ele uma corrente que será responsável por perdas por efeito de Joule na resistência do próprio enrolamento,
AULAS UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied
Universidade do Estado de Santa Catarina Departamento de Engenharia Elétrica Curso de Graduação em Engenharia Elétrica AULAS 03-04 UNIDADE 1 MÁQUINAS ELÉTRICAS ROTATIVAS (MAE) Prof. Ademir Nied [email protected]
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07
SEL 39 COVERSÃO ELETROMECÂICA DE EERGIA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente
TRANSFORMADORES. Introdução
TRANSFORMADORES Introdução Por volta do século XIX, o físico britânico Michael Faraday estabeleceu o fenômeno da indução magnética. Uma das experiências de Faraday consistiu em induzir uma corrente numa
Máquinas Elétricas. Odailson Cavalcante de Oliveira
Máquinas Elétricas Odailson Cavalcante de Oliveira Campo Magnético Fluxo magnético Permeabilidade Magnética Relutância Experiência de Oersted Densidade do Campo Magnético Solenoide Vetor Força Magnetizante
Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( )
Eletrotecnia Aplicada Transformadores (parte ) Engenharia Eletrotécnica e de Computadores (3-0-03) Conceito de transformador Os transformadores elétricos são dispositivos eletromagnéticos acoplados indutivamente
Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda
Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07
SEL 39 COVERSÃO ELETROMECÂCA DE EERGA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente
SOLUÇÃO PRATIQUE EM CASA
SOLUÇÃO PC1. A) Verdadeira. O enrolamento primário do transformador, tendo menor número de espiras, terá a menor tensão e a maior corrente em relação ao secundário, pois a potência se conserva. B) Falsa.
Máquinas elétricas. Máquinas Síncronas
Máquinas síncronas Máquinas Síncronas A máquina síncrona é mais utilizada nos sistemas de geração de energia elétrica, onde funciona como gerador ou como compensador de potência reativa. Atualmente, o
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO 1. PARTES PRINCIPAIS As Máquinas elétricas tem duas partes principais (Figuras 1): Estator Parte estática da máquina. Rotor Parte livre para girar Figura
Análise de Circuitos Acoplados Com a finalidade de mostrar os sentidos dos enrolamentos e seus efeitos sobre as tensões de inductância mútua: L M
Análise de Circuitos Acoplados Com a finalidade de mostrar os sentidos dos enrolamentos e seus efeitos sobre as tensões de inductância mútua: a) L M = L ( + ) e e L M d = L + L d = L + L = L = L M M d
SOLUÇÃO COMECE DO BÁSICO
SOLUÇÃO CB1. 01 + 04 + 16 + 64 = 85. [01] Verdadeira. O enrolamento primário do transformador, tendo menor número de espiras, terá a menor tensão e a maior corrente em relação ao secundário, pois a potência
Aula 3 Corrente alternada circuitos básicos
Aula 3 Corrente alternada circuitos básicos Objetivos Aprender os princípios básicos de corrente alternada. Aprender a analisar circuitos puros em corrente alternada utilizando as diversas formas de representação
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 05
SEL 39 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 05 Revisão da Aula 04 Excitação em corrente alternada: E E πfn max rms φmax 4,44 fnφmax 4,44 fna n max e φ E t Φ Revisão da Aula 04 Indutância: L N l µ A
ELETROTÉCNICA CONCEITOS BÁSICOS. Professor: Edson Pires da Silva
ELETROTÉCNICA CONCEITOS BÁSICOS Professor: Edson Pires da Silva EMENTA 1- CONCEITOS BÁSICOS DE ELETRICIDADE E APLICAÇÕES - 12 horas Resistor e resistência; capacitor e capacitância; indutor e indutância.
Transformadores monofásicos
Transformadores Transformadores Transformadores são utilizados para transferir energia elétrica entre diferentes circuitos elétricos por meio de um campo magnético, usualmente com diferentes níveis de
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia
EXPERIÊNCIA - TORÓIDE FLUXÔMETRO A FLUXÔMETRO Instrumento por meio do qual pode ser executada a exploração de um campo magnético, podendo ser determinada a intensidade dos fluxos locais de indução magnética.
Departamento de Engenharia Elétrica Conversão de Energia II Lista 7
Departamento de Engenharia Elétrica Conversão de Energia II Lista 7 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.
Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho
Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho (Capítulo 9 Páginas 277a 284) Lei de Faraday. Lei de Lenz. Eletromagnetismo I 1 Prof. Daniel Orquiza Campos
Motores Elétricos de Indução Trifásicos. Prof. Sebastião Lauro Nau, Dr. Eng. Set17
Motores Elétricos de Indução Trifásicos Prof. Sebastião Lauro Nau, Dr. Eng. Set17 SUMÁRIO (aproximado): Transdutores elétricos, mecânicos e eletromecânicos; Circuitos Magnéticos; Introdução aos Motores
Questão 1. Questão 3. Questão 2
Questão 1 A autoindutância (ou simplesmente indutância) de uma bobina é igual a 0,02 H. A corrente que flui no indutor é dada por:, onde T = 0,04 s e t é dado em segundos. Obtenha a expressão da f.e.m.
Indução Eletromagnética
Indução Eletromagnética 1 Aprendemos que uma força eletromotriz (fem) é necessária para produzir uma corrente em um circuito. Até aqui, quase sempre tomamos uma bateria como a fonte de fem. Contudo, para
Fís. Fís. Monitor: Leonardo Veras
Professor: Leonardo Gomes Monitor: Leonardo Veras Exercícios sobre Eletromagnetismo 04/06 set EXERCÍCIOS DE AULA 1. Um condutor, suportando uma corrente elétrica I, está localizado entre os pólos de um
Motores de Relutância Chaveados
Máquinas Elétricas Especiais Motores de Relutância Chaveados Switched Reluctance Motors Prof. Sebastião Lauro Nau, Dr. Eng. Set 2017 1 Definição - São também chamados de motores de relutância variável.
Laboratório de Conversão Eletromecânica de Energia B
Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Característica de Magnetização da Máquina de Corrente Contínua 1.1 Introdução Máquinas de corrente contínua (MCC) devem
Magnetismo e Eletromagnetismo. Adrielle de Carvalho Santana
Magnetismo e Eletromagnetismo Adrielle de Carvalho Santana Denomina-se imã, um corpo que possui a propriedade de atrair materiais ferromagnéticos. Magnetismo: Propriedade em virtude da qual esta atração
Transformadores e circuitos magneticamente acoplados. Prof. Luis S. B. Marques
Transformadores e circuitos magneticamente acoplados Prof. Luis S. B. Marques Transformadores Um transformador consiste de duas ou mais bobinas acopladas através de um campo magnético mútuo. O Transformador
Magnetismo e Eletromagnetismo. Odailson Cavalcante de Oliveira
Magnetismo e Eletromagnetismo Odailson Cavalcante de Oliveira Ímãs Naturais O imã é capaz de atrair substâncias magnéticas como certos metais. Imãs Naturais são encontrados na natureza, compostos por minério
4) Quais são os elementos químicos que apresentam efeito ferromagnético? 5) Explique detalhadamente o processo de magnetização.
1) Como são chamados os pequenos volumes magnéticos formados em materiais ferromagnéticos? 2) Em um átomo de elemento ferromagnético de onde provém o campo magnético? Represente um modelo simplificado
Física 3 - EMB5031. Prof. Diego Duarte. (lista 10) 12 de junho de 2017
Física 3 - EMB5031 Prof. Diego Duarte Indução e Indutância (lista 10) 12 de junho de 2017 1. Na figura 1, uma semicircunferência de fio de raio a = 2,00 cm gira com uma velocidade angular constante de
Introdução às máquinas CA
Introdução às máquinas CA Assim como as máquinas CC, o princípio de funcionamento de máquinas CA é advindo, principalmente, do eletromagnetismo: Um fio condutor de corrente, na presença de um campo magnético,
Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina! Departamento Acadêmico de Eletrônica! Pós-Graduação em Desen. de Produtos Eletrônicos! Conversores Estáticos e Fontes Chaveadas Revisão
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi
2-ELETROMAGNETISMO (Página 24 a 115 da apostila Fundamentos do Eletromagnetismo, do professor Fernando Luiz Rosa ( Mussoi Disciplina de Eletromagnetismo 1 COMPETÊNCIAS Conhecer as leis fundamentais do
Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.
Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. 1 O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; -
Indutância / Circuitos RL. Indutância Mútua
11/7/17 Eletricidade e Magnetismo ME ndutância / Circuitos R Oliveira Ed. Basilio Jafet sala [email protected] ndutância Mútua Anteriormente consideramos a interação magnética entre dois fios que conduziam
EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA
EFEITO MAGNÉTICO DA CORRENTE ELÉTRICA Em 1819, Oersted ao aproximar uma bússola de um fio percorrido por corrente, observou que a agulha se movia, até se posicionar num plano perpendicular ao fio. Esta
Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas
Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas 1. Na Fig.1, em (a) e (b), as porções retilíneas dos fios são supostas muito longas e a porção semicircular tem raio R. A corrente tem intensidade
MÁQUINA SÍNCRONA FUNDAMENTOS DE MÁQUINAS SÍNCRONAS
FUNDAMENTOS DE MÁQUINAS SÍNCRONAS 1. Máquina síncrona de campo fixo De forma semelhante às máquinas de corrente contínua, o enrolamento de campo é excitado por uma fonte CC. O enrolamento de armadura colocado
Conversão de Energia I
Departamento de Engenharia Elétrica Conversão de Energia I Aula 4.2 Máquinas de Corrente Contínua Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas:
1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA
1ª. LISTA DE EXERCICIOS 2016 PEA 2306 CONVERSÃO ELETROMECÂNICA DE ENERGIA Prof. José Roberto Cardoso Circuitos Magnéticos 1. Um núcleo toroidal de seção transversal 1 cm 2 e comprimento médio 15 cm é envolvido
Máquinas Elétricas. Máquinas Indução Parte I. Motores
Máquinas Elétricas Máquinas Indução Parte I Motores Motor indução Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor
MÁQUINAS ELÉTRICAS ROTATIVAS. Fonte: logismarket.ind.br
MÁQUINAS ELÉTRICAS ROTATIVAS Fonte: logismarket.ind.br OBJETIVO Ao final deste capitulo o aluno estará apto a entender e aplicar conhecimentos relativos a Máquinas Elétricas Rotativas As máquinas elétricas
Eletricidade Aula 09. Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada
Eletricidade Aula 09 Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada Tensão e corrente nos circuitos resistivos Em circuitos de corrente alternada em que só há resistores, como
Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz:
Análise de circuitos de corrente alternada Chama-se corrente ou tensão alternada aquela cuja intensidade e direção variam periodicamente, sendo o valor médio da intensidade durante um período igual a zero.
Lista de Exercícios 4
Lista de Exercícios 4 Leis da Indução Exercícios Sugeridos A numeração corresponde ao Livros Textos A e B. A23.1 Uma espira plana com 8,00 cm 2 de área consistindo de uma única volta de fio é perpendicular
1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo atômico de Bohr?
ATIVIDADE T3 - Capítulo 8. 1. Princípios básicos de eletrônica 8.1 Cargas elétricas. 1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo
Máquinas Elétricas. Máquinas Síncronas Parte I. Geradores
Máquinas Elétricas Máquinas Síncronas Parte I Geradores Introdução Em um gerador síncrono, um campo magnético é produzido no rotor. través de um ímã permanente ou de um eletroímã (viabilizado por uma corrente
Figura 1: Forma de onda da tensão quadrada.
Problema 1.21 a) O esboço da forma de onda da tensão quadrada com frequência de 60 Hz e amplitude E é exposto na Figura 1. Figura 1: Forma de onda da tensão quadrada. E T = 1/60 s -E Para determinar a
Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético;
Relembrando... Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético; Como o rotor é girado por uma força mecânica, se produz um campo magnético
Capítulo 1 Introdução aos princípios de máquinas 1. Capítulo 2 Transformadores 65. Capítulo 3 Fundamentos de máquinas CA 152
resumido Capítulo 1 Introdução aos princípios de máquinas 1 Capítulo 2 Transformadores 65 Capítulo 3 Fundamentos de máquinas CA 152 Capítulo 4 Geradores síncronos 191 Capítulo 5 Motores síncronos 271 Capítulo
LABORATÓRIO INTEGRADO II
FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO II Experiência 05: MOTOR TRIFÁSICO DE INDUÇÃO ENSAIOS: VAZIO E ROTOR BLOQUEADO Prof. Norberto Augusto Júnior
Prova 05/06/2012. Halliday Vol 3-6ª edição Cap 29, 30, 31,32. Halliday Vol 3-8ª edição Cap 28, 29, 30, 32. Aulas 9-15
7. Campo Magnético 7.1 - Campo magnético de uma corrente elétrica 7.2 - Linhas de força 7.3 - Fluxo magnético e indução magnética 7.4 - Campo magnético de uma espira 7.5 - Lei de Ampère 7.6 - Campo magnético
Máquinas Elétricas. Introdução Parte III
Máquinas Elétricas Introdução Parte III Conversão eletromecânica de energia A energia é convertida para a forma elétrica por ser fácil a transmissão e o processamento. Raramente a energia será utilizada
Projeto Transformadores
Parte 0 Equipamentos e membros Projeto Transformadores Para esse experimento, precisaremos da seguinte lista de equipamentos: 1 gerador de sinais digital 1 transformador didático (desmontável) 2 galvanômetros
AUTO INDUTÂNCIA, INDUTÂNCIA MÚTUA E TRANSFORMADOR IDEAL
179 19 AUTO INDUTÂNCIA, INDUTÂNCIA MÚTUA E TRANSFORMADOR IDEAL 19.1 Indutância No capítulo 1 apresentamos a definição de indutância como sendo a relação entre fluxo magnético concatenado e corrente, não
Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila.
Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Ex. 0) Resolver todos os exercícios do Capítulo 7 (Máquinas
1- INTRODUÇÃO ÀS MÁQUINAS ELÉTRICAS As máquinas elétricas podem ser classificadas em dois grupos:
MOTORES DE INDUÇÃO 1- INTRODUÇÃO ÀS MÁQUINAS ELÉTRICAS As máquinas elétricas podem ser classificadas em dois grupos: a) geradores, que transformam energia mecânica oriunda de uma fonte externa (como a
Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Magnéticos Os circuitos magnéticos são empregados com o intuito de concentrar o efeito magnético em uma dada região do espaço.
1ª. Prova. Conversão Eletromecânica de Energia
ª. Proa Conersão Eletromecânica de Energia José Roberto Cardoso GABARITO 08 de Abril de 06 ª. Questão: Descrea o significado físico de cada parâmetro do circuito elétrico equialente do transformador destacando
Circuitos Magneticamente Acoplados. Prof. André E. Lazzaretti
Circuitos Magneticamente Acoplados Prof. André E. Lazzaretti [email protected] Ementa Função de excitação senoidal Conceitos de fasor Análise de circuitos em CA Potência em circuitos CA Circuitos
Indutores. Prof. Fábio de Oliveira Borges
Indutores Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php Indutância
1 Introdução aos princípios de máquinas
capítulo 1 Introdução aos princípios de máquinas OBJETIVOS DE APRENDIZAGEM Aprender os fundamentos da mecânica de rotacional: velocidade angular, aceleração angular, conjugado e a lei de Newton para a
