5,7 0,19.10, então x é
|
|
|
- Luana Faro
- 6 Há anos
- Visualizações:
Transcrição
1 EQUAÇÕES E FUNÇÕES EXPONENCIAIS ) O valor de que verifica a equação 7 9 é 0,4 0,8,,, ) A solução da equação 7 é ) Se 0, então o valor de é 6) O valor positivo de em 6 é 7) Se,7 0,00 0,9.0, então é ) A solução da equação pertence ao intervalo ) sabendo que , então 6 0 vale ) Se 0 é um número entre 00 e 0000, então está entre e 0 e e 0 e e 0000
2 9) A soma das raízes da equação 0,0 0 0, 00 é ) (UFRGS 4) A função f, definida por f ( ) 4, intercepta o eio das abcissas em ) O conjunto solução da equação é 4 ) Calculando em encontra-se 0,4. 0,8 0,, ) Os valores de k para os quais a função f : f ( ) k k é dada por crescente, são tais que k k k k k 4) Os pontos (0, 6) e (, 84) pertencem ao gráfico da função ( ) f A B, onde A e B são números inteiros. Então, A + B vale ) O gráfico que melhor representa a função f ( ) e, com e =,788 (aproimadament é
3 6) a figura que mais aproima a representação geométrica do gráfico da função f :, dada por f ( ),é 9) (UFSM) A figura mostra um esboço do gráfico da função a b, com a, b, a 0, a e b 0. Então, o valor de 0 a b é 7) Esboçando os gráficos das funções definidas por f ( ) e g ( ) num mesmo plano cartesiano, verifica-se que todas as raízes da equação f() = g() pertencem ao intervalo (, ) (, 0) (, ) (0, ) (0, ) 8) Considere a função f :, f ( ) 8. Então, f ( f ( em que a e b são números reais quaisquer, é sempre igual a f ( f ( f (8 f (8 f ( a f ( a f ( f ( 0) É dada a função f ( ) a. b, onde a e b são constantes. Sabendo-se que f(0) = e f() = 4, obtemos para f o valor: ) Uma substância se decompõe aproimadamente 0,t segundo a lei Q( t) K, na qual K é uma constante, t indica o tempo (em minutos) e Q(t) indica a quantidade de substância (em gramas) no instante t. Considerando-se os dados desse processo de decomposição mostrados no gráfico, determine os valores de K e a. k = 048 e a = 4 k = 048 e a = k = 04 e a = 4 k = e a = k = 04 e a =
4 ) Um produto custa inicialmente R$.000,00 e tem seu preço reajustado mensalmente com uma taa de 0%. Ao fim de meses, o preço do produto será, em reais, 000, 000 0, , ) As substâncias radioativas têm a tendência natural a se desintegrarem. Considerando um caso em que a massa inicial da substância seja 4 g, e depois sua massa seja, aproimadamente 4 0,8 t g, pergunta-se: em um dia, que porcentagem da massa dessa substância se desintegra? 8,% 67,% 6,% 8,% 6,7% 4) Uma substância decompõem-se segundo o gráfico eponencial abaio, onde t é o tempo (em segundos) e é a quantidade de substância (em gramas) no instante t. A epressão de = (t) é ) Segundo dados de uma pesquisa, a população de certa região do país vem decrescendo em relação ao tempo t, contado em anos, aproimadamente, 0,t segundo a relação: P( t) P(0). Sendo P(0) uma constante que representa a população inicial dessa região e P(t) a população t anos após, determine quantos anos se passarão para que essa população fique reduzida à quarta parte da inicial ) (UFRGS 06) Uma função eponencial = f(t) é tal que f (0) 0 e as proposições abaio. I) f ( t) 6t II) f é decrescente III) A sequência f (), é uma progressão geométrica Quais são verdadeiras? apenas III. apenas I e II. Apenas I e III. Apenas II e III. I, II e III. f ( t) f ( t ).Considere f, f (), f 00 t 00 t 00 t 0 t ( /00) ( /0) ( /0) ( /0) 0 t ( /00) 7) (UFRGS ) Considere a função f tal que f ( ) k, com k > 0. Assinale a 4 alternativa correspondente ao gráfico que pode representar a função f.
5 8) UFRGS 04) Analisando os gráficos das funções reais de variável real definidas por f ( ) e g( ), representadas no mesmo sistema de coordenadas cartesianas, verificamos que todas as raízes da equação f ( ) g( ) pertencem ao intervalo [0, ], 4 [, ), 6 (, 6) 9) (UFRGS 4) Uma mercadoria com preço inicial de R$ 00,00 sofreu reajustes mensais e acumulados de 0,%. O preço dessa mercadoria, ao fim de meses, é 000, , 0 00,00 00,0 00 0, 0) (UFRGS ) O número de peies em um lago pode ser estimado utilizando a função N, definida por N ( t) 00,0 t, em que t é o tempo medido em meses. Pode-se, então, estimar que a população de peies no lago, a cada mês, cresce 0,% cresce % cresce 0% decresce % decresce 0%
FUNÇÕES EXPONENCIAIS
FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.
MATEMÁTICA - 1 o ANO MÓDULO 24 FUNÇÃO EXPONENCIAL
MATEMÁTICA - 1 o ANO MÓDULO 24 FUNÇÃO EXPONENCIAL f() = 2 y 1 2 2 4 0 1-1 ½ -2 ¼ 1 y A função é crescente. f() = (1/2) y 1 ½ 2 ¼ 0 1-1 2-2 4 1 y A função é decrescente. Como pode cair no enem (UFF) A automedicação
gráfico de y ax bx c, então, a + b + c vale a) 6 b) 6 c) 0 d) 5 e) 5 d) e) y ax bx c, os valores de a, b e c são
1) O gráfico da função f : FUNÇÕES DO O GRAU definida por f ( ) m intercepta o eio OX em um único ponto. O valor de m é a) 0 1 ) A figura mostra o gráfico da função f definida por f ( ) a b c. Então, podemos
Matemática / Função Exponencial / Questões Comentados Direitos Autorais Reservados
Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões Comentadas 1 Matemática / Função Eponencial / Questões Comentados Matemática / Função Eponencial / Questões
FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA
Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar
Logarítmos básicos. 3 x x 2 vale:
Logarítmos básicos. (Pucrj 05) Se log 3, então 3 vale: a) 34 b) 6 c) 8 d) 50 e) 66. (Unesp 05) No artigo Desmatamento na Amazônia Brasileira: com que intensidade vem ocorrendo?, o pesquisador Philip M.
MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Exponencial Função Logarítmica 3 a SÉRIE ENSINO MÉDIO 2009 Prof.
MATEMÁTICA QUESTÕES DE VESTIBULARES Função Modular Função Eponencial Função Logarítmica a SÉRIE ENSINO MÉDIO 009 Prof. Rogério Rodrigues =======================================================================
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 1. Resolva as equações abaixo: 3. Resolvas as equações exponenciais abaixo: 4.(ITA) A soma das raízes reais e positivas da equação vale: a)
Logaritmos Exponenciais - Fatoração
Logaritmos Eponenciais - Fatoração Prof. Edson. Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t)
2 36) pertence ao. a) { 5, 1, 7, 25} b) { 3, 1, 6, 20} c) { 5, 2, 7, 25} d) { 5, 1, 25} f (1) 9. Calcule f (2). 10. (UFRN) Seja f : D R,
0. Para que valores de k o ponto eio das abscissas? k 3 b) k k ou k 4 k 0 ou k e) k ou k A (k, 4k 36) pertence ao 06. Seja g a função de domínio A,, 0,,, 3 e contradomínio R tal que de g. {,, 7, } b) {
MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL
MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL a >1 f(x) f(x) = a x 1 x f(x) = a x f(x) 1 x Como pode cair no enem Em setembro de 1987, Goiânia foi palco do maior acidente radioativo ocorrido no Brasil,
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Conteúdo: Recuperação do Bimestre Matemática Prof. Leandro Capítulo : Função eponencial: potenciação; função eponencial; gráfico; equações eponenciais; inequações
1ª LISTA DE EXERCÍCIOS - FUNÇÕES 2011/1
1 1. Esboce o gráfico da função y = 1 + 2., determine o domínio, imagem, crescimento ou 2 decrescimento e a assíntota. 2. Esboce o gráfico da função y 2 3.(2) =, determine o domínio, imagem, crescimento
Lista de Exercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Exponencial
Lista de Eercícios Matemática Instrumental Função do Primeiro Grau Função Composta Função Eponencial Professor: Anderson Benites FUNÇÃO POLINOMIAL DO 1º GRAU Uma função é chamada de função do 1º grau (ou
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO
FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação
EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS
EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06. (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 1 a série do Ensino Médio
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 6 Data / / Escola Aluno A B C D E 4 5 6 7 8 9 A B C
Atividades de Funções do Primeiro Grau
Atividades de Funções do Primeiro Grau 1) Numa loja, o salário fio mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que epresse
Lista de exercícios: Funções do 2º Grau
Lista de eercícios: Funções do º Grau 1 1. Marque quais são as funções do º grau: (R= b, c, d, e, i, j, k,l) a. e. i. b. 6 9 f. 5 10 c. g. 1 j. 5 k. 1 1 d. h. 5 1 l. 1. Quais dos pontos pertencem à parábola
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO PARA ATENDIMENTO DA PROGRESSÃO PARCIAL ESTUDOS INDEPENDENTES- 1º e º SEMESTRE RESOLUÇÃO SEE Nº.197, DE 6 DE OUTUBRO DE 01 ANO 01 PROFESSOR
a 22, nesta ordem, apresentam a seguinte propriedade: Os três primeiros
PROCESSO SELETIVO/2004 CGE GAB. 1 1 o DIA 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. A soma das raízes das equações + 1 log 5 ( 4 ) + log 5 ( 4 7) = 1 e 7 7 = 294 vale: a) 4 b) c) 2 d) 5 e) 6 02. Na matriz quadrada
Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas. Funções Quadráticas
Lista 8 Bases Matemáticas Funções Quadráticas, Eponenciais, Logarítmicas e Trigonométricas Funções Quadráticas Esboce o gráfico das seguintes funções, indicando em quais intervalos as funções são crescentes
FUNÇÕES. Módulo 3. Mottola 1. APRESENTAÇÃO
Módulo 3 FUNÇÕES 1. APRESENTAÇÃO A todo o momento estamos usando funções, eponenciais, logaritmos, matrizes, progressões, trigonometria, geometria, probabilidades, estatística, etc. Não com estes nomes,
Matemática Caderno 5
FUNÇÃO LOGARÍTMICA: Dado um número real a positivo e diferente de um (a > 0 e a 1), denominados função logarítmica de base a à função f() = log a definida para todo real positivo. D (f) = IR * + Im (f)
MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin
MATEMÁTICA Módulo em IR Professor Marcelo Gonzalez Badin Módulo de um número real Chama-se módulo (ou valor absoluto) de um número real a distância da imagem desse número, na reta orientada, até a origem
c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2
UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada
FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.
FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos
f x a , com a e a 1 em que a é denominada de base da função. h x 3 3
FUNÇÃO EXPONENCIAL Definição: É toda função definida por Eemplo: f: tal que f a. Para as funções eponenciais f f 4. f. 4. 4 5 5 f 4 5 h., g 5 Função eponencial, com a e a em que a é denominada de base
Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.
ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =
SEQUÊNCIA DIDÁTICA PARA CONCEITUALIZAÇÃO DE DERIVADA COMO TAXA DE VARIAÇÃO INSTANTÂNEA
UNIVERSIDADE SEVERINO SOMBRA MESTRADO PROFISSIONAL EM EDUCAÇÃO MATEMÁTICA SEQUÊNCIA DIDÁTICA PARA CONCEITUALIZAÇÃO DE DERIVADA COMO TAXA DE VARIAÇÃO INSTANTÂNEA Autora: Monique Sequeira Lehmann Vassouras
Tecnologia em Mecatrônica - Lista de exercícios Funções Matemática Carlos Bezerra
TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Considerando-se as funções reais f(x)=log (x-1) e g(x)=2ñ, é verdade: (01) Para todo
Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda)
Lista de Módulo Etensivo Alfa Professor: Leandro (Pinda). (Pucpr 08) Considere os seguintes dados. Pode-se dizer que quando duas variáveis e y são tais que a cada valor de corresponde um único valor de
O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.
Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são
FUNÇÃO EXPONENCIAL & LOGARITMOS
FUNÇÃO EXPONENCIAL & LOGARITMOS MÓDULO 10 FUNÇÃO EXPONENCIAL MÓDULO 11 LOGARITMOS FUNÇÃO EXPONENCIAL Dado um número real a (a > 0 e a = 1) denomina-se função exponencial de base a uma função f : R R *
= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo.
QUESTÕES 01 E 0 Para responder a essas questões, analise a tabela abaio. Em um clube, cada um dos jogadores de um time de futebol tinha a seguinte idade (em anos): 17 0 0 16 18 19 17 16 18 17 16 17 0 16
Lista 8. Bases Matemáticas. Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas
Lista 8 Bases Matemáticas Funções Quadráticas, Eponenciais, Logarítmicas e Trigonométricas Funções Quadráticas Esboceográficodas seguintes funções, indicando em quais intervalos as funções são crescentes
1º trimestre - Matemática Data:20/04/2017. Sala de Estudo. Resposta: Resposta: números reais positivos, tais que. 1. (Ufjf-pism ) Sejam a, b, c
º trimestre - Matemática Data:0/04/07 Ensino Médio 3º ano classe: Profº. Maurício Sala de Estudo. e. (Ufjf-pism 07) Sejam a, b, c logb d 3. O valor da epressão a) b) c) 3 d) 4 e) 0 e d log números reais
Teste de Matemática A 2016 / 2017
Teste de Matemática A 2016 / 2017 Teste N.º 5 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em
Prova de UFRGS
Prova de UFRGS - 212 1 Considere que o corpo de uma determinada pessoa contém 5,5 litros de sangue e 5 milhões de glóbulos vermelhos por milímetro cúbico de sangue Com base nesses dados, é correto afirmar
BANCO DE QUESTÕES MATEMÁTICA A 12. O ANO
BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Funções reais de variável real. Seja g a função, de domínio,, representada graficamente na figura ao lado, e seja u a sucessão definida por. n Qual é o valor
3 de um dia correspondem a é
. (UFRGS/) Na promoção de venda de um produto cujo custo unitário é de R$ 5,75 se lê: Leve, pague. Usando as condições da promoção, a economia máima que poderá ser feita na compra de 88 itens deste produto
Resolução dos Exercícios sobre Derivadas
Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 11/dezembro/011 matemática 01. Os gráficos abaixo representam as funções receita mensal R(x) e custo mensal C(x) de um produto fabricado por
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
2) Se f, então f(2) é igual a a) c) 1. x1 x2 f x1 f x2 FUNÇÕES DO 1 O GRAU. e) 2
FUNÇÕES DO 1 O GRAU 1) Considere a unção que a cada ϵ (0, 3] associa a área do triângulo assinalado, conforme a figura. A imagem desta função é 5) As escalas de temperatura Celsiuis (C) e Farenheit (F)
Matemática I. Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Elaborado por. Seção 7. Versão
Matemática I Elaborado por Prof. Gerson Lachtermacher, Ph.D. Prof. Rodrigo Leone, D.Sc. Versão 2009-1 Conteúdo da Seção Função Eponencial Função Logarítmica 2 A função eponencial tem a seguinte forma b
FUNÇÕES PARES, IMPARES E FUNÇÃO COMPOSTA. , onde x R e x 0 e g(x) = x.sen x, onde x R, podemos afirmar
FUNÇÕES PARES, IMPARES E FUNÇÃO COMPOSTA 0. (ACAFE SC) Dadas as funções f: RR e g: RR, definidas por f() = + e g () = -, qual alternativa tem afirmação CORRETA? a) f é uma função par e g é ímpar. b) f
Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES
número de bactérias Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES. Um biólogo, ao estudar uma cultura bacteriológica, contou o número de bactérias num determinado instante ao qual chamou
PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)
Questão 0) Um recipiente com capacidade para 5 litros está completamente cheio de leite puro. Uma pessoa retira 3 litros desse leite e completa o recipiente com 3 litros de água. Em seguida, retira 3 litros
PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x
RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se
Lista Sabe-se que o gráfico abaixo representa uma função quadrática. Encontre a expressão que define esta função.
8 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira. Construir o gráfico cartesiano das funções definidas em R: (a) = (b) = (c) = (d) = (e) = (f) = (g) = (h) = +4 (i) = (j) = 4 0+4 (k) = + + (l) = +6 (m) = +
Matemática A Extensivo V. 4
Etensivo V. 4 Eercícios 0) C f(t) = at + b (t = tempo) (I) t = 0 f(t) = 9000 (II) t = 4 f(t) = 4000 Substituindo os valores na função f(t) = at + b, temos: (I) 9000 = a. 0 + b b = 9000 (II) 4000 = 4a +
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ANO 015 PROFESSOR (a) DISCIPLINA Aline Heloisa Matemática ALUNO (a) SÉRIE 1º Ano do Ensino Médio 1. OBJETIVO Quanto
CPV especializado na ESPM ESPM Resolvida Prova E 16/novembro/2014
CPV especializado na ESPM ESPM Resolvida Prova E 6/novembro/04 MATEMÁTICA. O valor da epressão + + para = 400 é igual a: 3. Se = 4, y = 3 e y = z, o valor de z é igual a: a) 0,05 b) 0,50 c) 0,0 d) 0,0
) x LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO. PROFESSOR: Claudio Saldan CONTATO: 5 - (UNIFOR CE/2004/Julho)
LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: [email protected] - (PUC MG/006) O valor de certo tipo de automóvel decresce com o passar do t tempo de acordo com
ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU. Apontamentos Teóricos: Função Exponencial e Função Logarítmica
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 007/008 Semestre 1 o Apontamentos Teóricos:
Gabarito - Matemática Grupos I e J
1 a QUESTÃO: (1,0 ponto) Avaliador Revisor Um dos tetos chineses mais antigos é o I-King, ou livro das permutações. Nele aparece um diagrama numérico lo-shu, conhecido como quadrado mágico. A soma dos
Teste de Matemática A 2016 / 2017
Teste de Matemática A 2016 / 2017 Teste N.º 5 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em
Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7
Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função
TÓPICOS DE MATEMÁTICA
INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA FUNÇÕES 2ª Parte Clara Viseu, Maria de Lurdes Vieira Baseado em: Harshbarger, Reynolds.
Unidade 5 Diferenciação Incremento e taxa média de variação
Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 04 - a Fase Proposta de resolução GRUPO I. Usando as leis de DeMorgan, e a probabilidade do acontecimento contrário, temos que: P A B P A B P A B então P A B 0,48
Gráficos de Funções. Matemática Prof. Piloto. d 2. d d 2 2. d 2
Matemática Prof. Piloto Gráficos de Funções 1. Função Uma forma simples de dizer o que é uma função é: Uma função é uma variável (y) que depende de outra () Nosso esquema mental é: y é a função ou variável
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com
Inequação Logarítmica
Inequação Logarítmica. (Fuvest 05) Resolva as inequações: 3 a) 6 0; 3 b) log 6.. (Uerj 05) Ao digitar corretamente a epressão log 0( ) em uma calculadora, o retorno obtido no visor corresponde a uma mensagem
Faculdades Integradas Campos Salles
Aula 5 FUNÇÃO DE º GRAU ( ou função quadrática ) Dados três números reais, a, b e c, com a, denominamos função de º grau ou função quadrática à função f() = a b c, definida para todo número real. Eemplos:
a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.
TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que
A) 45 B) 22,5 C) 43 D) 21, A soma das áreas dos 20 primeiros trapézios é igual a: [A] 260 [B] 130 [C] 70 [D] 450
6. Observe a sequência de trapézios rectângulos construídos como é sugerido na figura. Seja (a n ) a sucessão das áreas dos trapézios, em que o trapézio de ordem tem dois vértices nos pontos (, 0) e (,
6. Sendo A, B e C os respectivos domínios das
1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,
9. Derivadas de ordem superior
9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de
POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016
POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.
LISTA DE RECUPERAÇÃO ÁLGEBRA 1 ANO 3º TRIMESTRE
LISTA DE RECUPERAÇÃO ÁLGEBRA ANO 3º TRIMESTRE ) O valor de é: A) 3 B) 3 C) 3 D) E) ) A soma das raízes reais distintas da equação x é igual a A) 0 B) C) 4 D) 6 E) 8 3) O produto das raízes da equação abaixo
PROF. HENRIQUE DE FARIA
Função Eponencial - EXTRA ª SÉRIE MATEMÁTICA PROF. HENRIQUE DE FARIA 0. Em cada item a seguir, reconheça se é uma unção eponencial. a) 00 b) 0, 000 c) d) 4 e) ) sen 6 0. (Espce (Aman) 08) As raízes inteiras
EXERCÍCIOS Funções Elementares 2017/2
1 1. Esboce o gráfico da função y = 1 + 2., determine o domínio, imagem, crescimento ou 2 decrescimento e a assíntota. 2. Esboce o gráfico da função y 2 3.(2) =, determine o domínio, imagem, crescimento
( a) ( ) ( ) ( ) 1. A função m : x x x 2 tem por representação gráfica. A C 1 B D Seja f uma função definida em R.
Para cada uma das seguintes questões, seleccione a resposta correcta entre as quatro alternativas que são indicadas, justificando a sua escolha.. A função m : tem por representação gráfica. A C B D. Seja
Limites, derivadas e máximos e mínimos
Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,
Interbits SuperPro Web
Lista ita eponencial e modulo Carlos Peioto. (Ita 07) Esboce o gráfico da função f: dada por f().. (Ita 07) Sejam S {(, y) : y } e área da região S S é S {(, y) : (y ) 5}. A a) 5. 4 π b) 5. 4 π c) 5. 4
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO DA
PROCESSO SELETIVO O DIA GABARITO 3 1 MATEMÁTICA QUESTÕES DE 01 A 15
PROCESSO SELETIVO 7 O DIA GABARITO 3 MATEMÁTICA QUESTÕES DE A 5. Sob duas ruas paralelas de uma cidade serão construídos, a partir das estações A e B, passando pelas estações C e D, dois túneis retilíneos,
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA FUNÇÃO EXPONENCIAL - 1º ANO ESTATÍSTICA PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net As funções eponenciais possuem uma diversidade
LISTA DE REVISÃO LOGARITMOS PROFESSOR SANDER
LISTA DE REVISÃO LOGARITMOS PROFESSOR SANDER 01. [Pucpr] Suponha que a vazão de água de um caminhão de bombeiros se dá pela expressão, em que é o volume inicial de água contido no caminhão e t é o tempo
)81'$d 2 *(7Ò/,2 9$5*$6 9(67,%8/$5 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$
)81'$d 2 *(7Ò/,2 9$*$6 9(67,%8/$ (62/8d 2 ( &20(17È,26 32 32)$ 0$,$ $1721,$ *289(,$ QUESTÃO 01. Os números inteiros x e y satisfazem a equação 2 x 3 2 x 1 y 3 3. y. Então x y é: a) 8 b) c) 9 d) 6 e) 7
Resolução - Lista 3 Cálculo I
Resolução - Lista 3 Cálculo I Exercício 1 página 61: Encontre as funções compostas,,, e determine o domínio de cada uma delas, para cada par de funções e dados: c) = e = + 2 Calculando : = = Encontrando
Função Inversa SUPERSEMI. 01)(Aman 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).
Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Inversa SUPERSEMI 0)(Aman 0) Na figura abaio está representado o gráfico de uma função real do º grau f(). A epressão
Erivaldo. UFSC Parte 02
Erivaldo UFSC Parte 02 UFSC 2011 Análise Combinatória página 14 32.( ) O sangue humano pode ser classificado quanto ao sistema ABO e quanto ao fator Rh. Sobre uma determinada populac a o P, os tipos sangui
Itens para resolver (CONTINUAÇÃO)
PREPARAR EXAME NACINAL Itens para resolver (CNTINUAÇÃ) e. Seja g a função, de domínio IR\{}, definida por g(). Sem usar a calculadora, determine, se eistirem, as equações das assíntotas do gráfico de g.
9 Integrais e Primitivas.
Eercícios de Cálculo p. Informática, 006-07 9 Integrais e Primitivas. E 9- Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f() = sin, F (π) = 3.
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaio. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 =
LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: [email protected] PARTE - TRABALHO 4º BIMESTRE - (UEPG PR) + Dada a função f () =, assinale o que for correto. 0.
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
Equação, inequação e função exponencial
Equação, inequação e função exponencial 07 abr 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto RESUMO A função definida pela lei f(x) = a x, sendo 0
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares
