MAT0326 Geometria Diferencial I
|
|
|
- Branca Flor Salazar
- 6 Há anos
- Visualizações:
Transcrição
1 MAT6 Geometria Diferencial I Primeira Prova /9/ Soluções Questão Valor:. = pontos). a. Mostre que cos arctanx) ) =. + x b. Determine uma curva plana α : R R, parametrizada por comprimento de arco, tal que κ α s) = + s e α) =, ). Solução. a. Como arctanx) π, π ) temos que sec arctanx) ) > e então cos arctanx) ) = sec arctanx) ) = + tan arctanx) ) =. + x b. Lembremos que se κs) >, s I é uma função dada então toda curva parametrizada por comprimento de arco, α : I R, que tem κs) como curvatura é dada por s s ) αs) = a + cos θt) dt, b + sin θt) dt, onde θt) = t κs) ds + φ. As constantes a, b e φ determinam a posição da curva no plano. Podemos escolher φ = e então Assim, αs) = θt) = Do item anterior temos que cos arctant) ) = αs) = s a + t κs) ds = arctant). s a + cos arctant) ) s dt, b + sin arctant) ) ) dt. + t dt, b + s Como α) =, ), devemos ter a = e b =. + t e disto concluímos que sin arctant) ) = ) t dt = a + lns + + s ), b + ) + s. + t t + t. Logo Os extremos de integração levam em conta o fato de que I
2 Questão Valor:. = pontos). Seja α : I R uma curva regular. Podemos definir seu triedro de Frenet, sua curvatura e sua torsão em termos da reparamentrização de α pelo seu comprimento de arco como se segue. Sejam st) o comprimento de arco de αt) e βs) = α ts) ) a reparamentrização de α por comprimento de arco. Definimos então que T α t) = T β s), N α t) = N β s), B α t) = B β s) e κ α t) = κ β s), α t) = β s). Seja α : R R a curva dada por αt) = cosh t, sinh t, t). a. Mostre que α é regular e calcule seu comprimento de arco. b. Determine os vetores tangente, normal e binormal de α, bem como sua curvatura e torsão. Solução. a. Temos que α t) = sinh t, cosh t, ) e portanto, para todo t R, α t). Logo α é uma curva regular. Calculando explicitamente temos α t) = cosht), donde t t st) = α t) dt = cosht) dt = sinht). b. Qualquer que seja a parametrização da curva temos Tt) = α t) α t) = tanh t,, sech t). Lembrando que a curvatura de uma curva regular é κt) = α t) α t) α t) e α t) = cosh t, sinh t, ) temos sinh t, cosh t, ) κt) = cosh = t cosh t. De B = T N e das equações de Frenet segue-se que T = κn Nt) = sech t,, tanh t) B = T N Bt) = tanh t,, sech t) e B t) = sech t sech t,, tanh t) B = N t) = B, N = cosh t.
3 Questão Valor:. = pontos). Seja α : I R uma curva regular cujas curvatura e torsão nunca se anulam e sejam T, N e B seus vetores tangente, normal e binormal, respectivamente. a. Mostre que N N, N κ ) N = κ ), onde κ e são a curvatura e a torsão de α, respectivamente. + b. Conclua que α é uma hélice se e somente se o conjunto {N, N, N } é linearmente dependente. Solução. a. Das equações de Frenet temos.) N N = N κt B) = κb T. Derivando N obtemos.) N = κt B) = κ T + κt + B + B ) = kappa T κ + )N B. De.) e.) e de {T, N, B} ser base ortonormal segue-se que N N, N = κ + κ. Além disso temos que N = κ +. Logo, N N, N N = κ + κ κ +κ κ ) κ + = κ ) = + κ ). + b. Uma curva é uma hélice se e somente se κ é contante. Segue-se do item anterior que isso ocorre se e somente se N N, N =, ou seja se e somente se os vetores N, N e N são linearmente dependentes.
4 4 Questão 4 Valor:. =. +. pontos). Seja α : I R uma curva regular cujas curvatura e torsão nunca se anulam. a. Suponha que a imagem de α está contida numa esfera centrada na origem. Mostre que ) ).) κ + =. κ Dica. Escreva α = ζt + ηn + θb. b. Mostre agora que se.) é satisfeita pelas curvatura e torsão de uma curva α então a imagem de α está contida em alguma esfera. Dica. Usando os valores de ζ, η e θ obtidos acima, mostre que a curva α ζt + ηn + θb) é constante e portanto um fortíssimo candidato a centro da esfera procurada. Solução. a. Podemos supor incialmente que α está paramentrizada por comprimento de arco e como, por hipótese, a curva tem seu traço contido numa esfera centrada na origem temos que αt) = r, donde α, α =. Como o triedro de Frenet em cada t I é uma base ortonormal para R podemos escrever αt) = ζt)tt) + ηt)nt) + θt)bt). Omitindo t, derivando e usando as equações de Frenet temos.4) α = ζ T + ζt + η N + ηn + θ B + θb = ζ ηκ)t + ζκ + η + θ)n + η + theta )B. Como α, α = temos que αt) [ Nt), Bt) ], donde ζ. Além disso, α, N = α, B = e portanto as coordenadas em.4) satisfazem η + θ = η + θ = ηκ =, onde a última equação segue do fato que α = T, pois α é parametrizada por comprimento de arco. Assim temos que η = κ e θ = η = ). Isto substituído na segunda equaçao do sistema acima dá κ κ + ) ) =. κ b. Reciprocamente, considere a curva β = α + ) κ N ) B, onde κ e são as curvatura e torsão de α, κ enquanto N e B são os vetores normal e binormal de α. Cálculo diretos usando o triedro de Frenet mostram que ) ) ) β = α ) ) T + N κ κ κ + ) B =. κ Isto mostra que, para todo t I, βt) = P R é ponto. Finalmente ) α P = κ N ) B = [ κ κ + ) ] κ = R, uma constante. Segue-se então que o traço de α está contido na esfera de centro P e raio R.
5 5 Questão 5 Valor:. pontos). Seja S ) a esfera unitária centrada na origem de R e sejam α e β curvas regulares dadas pela interseção de S ) com x = y e de S ) com y =, respectivamente. a. Parametrize as curvas α e β. b. Calcule o comprimento do arco ligando os pontos, ), e, ), tanto pela curva α quanto por β. c. Determine o ângulo que os vetores normais de α e β fazem com o vetor normal a S ). Solução. a. A curva α é dada pela interseção das superfícies x + y + z = e y = z. Disto temos que x + z = e portanto xt) = cos t e zt) = sin t. Logo, αt) = cos t, cos t ), sin t, t [, π]. A curva β é dada pela interseção das superfícies x + y + z = e y =, ou seja, x + z = 4 e portanto xt) = cos t e zt) = sin t. Logo, βt) = cos t, ), sin t, t [, π]. b. A curva α é um círculo de centro,, ) e raio, logo o seu comprimento de arco entre os pontos, ), e,, ), que produzem um arco de ângulo π, é π. Analogamente, a curva β é um círculo de centro,, ) e raio. Logo o comprimento de arco de β entre os pontos, ), e, ), é arccos, pois o ângulo entre os segmentos que ligam os pontos dados ao centro de β é arccos. c. Um vetor normal unitário à esfera unitária em cada ponto, Np), pode ser o próprio vetor posição, ou seja Np) = p. Para a curva α temos α = sin t, sin t ), cos t α = cos t, cos t ), sin t = α Sendo N α o vetor normal unitário à curva α, temos que α = λn α, já que α = e α é uma curva plana. Como o vetor normal à esfera no ponto αt) é αt) temos que N α, Nα) ) = α, α) = π. Para a curva beta temos β = β = ) sin t,, cos t ) cos t,, sin t Como antes, indicando por N β o vetor normal à curva β temos que β = λn β, pois β = uma curva plana. Deste modo, o ângulo θ entre N β e Nbeta) satisfaz cos θ = N β, Nβ) N β Nβ) = /4 = / θ = 5π 6. e β também é Na sua solução você poderia ter escolhido o vetor oposto e a resposta obtida difere da aqui apresentada por π.
6 6 Questão 6 Valor:. pontos). Seja S = { x, y, z) R : z = y x }. Para cada θ [, π] seja α θ a curva dada pela interseção de S com o plano que contém o eixo Oz e faz ângulo θ com o eixo Ox. a. Parametrize a curva α θ. b. Determine κ αθ a curvatura de α θ ). c. Determine os valores de θ para os quais κ αθ é máximo e mínimo no ponto,, ). Dica. A curvatura de uma curva regular qualquer em R é dada por κ = α α α. Solução. a. Para cada θ [, π] o plano em questão é dado pela equação cos θx + sin θy =, ou y = cot θx, se θ =, π e x =, se θ =, π. Deste modo a curva dada pela interseção da superfície z = y x com um desses planos pode ser parametrizada, para t R, por { t, cot θt, cot θ)t ), se θ =, π α θ t) =, t, t ), se θ =, π. b. Seguindo a sugestão dada no enunciado, os ingredientes para o cálculo da curvatura de α θ são Assim, { { α, cot θ, cot θ = θ)t), se θ =, π,, cot,, t), se θ =, π e α θ = θ)), se θ =, π,, ), se θ =, π. cot θ +cot θ κ αθ t) = +cot θ+4 cot θ) t ), se θ =, π, se θ =, π. +4t ) c. O ponto,, ) corresponde a t = em cada α θ. Queremos encontrar extremos da função κ αθ ) : [, π] R dada por κ αθ ) = { cot θ +cot θ = cosθ), se θ =, π, se θ =, π. Claramente o valor máximo de κ θ ) é atingido quando θ =, π, π, onde κ θ) = e é mínimo quanto θ = π 4, π 4, onde κ θ) =. Observação.. Note que aqui estamos considerando a curvatura sem sinal das curvas planas α θ. Seria interessante e de grande utilidade para os próximos tópicos do curso estudar esse tipo de problema considerando a curvatura com sinal.
Lista de Exercícios 1
UFS - PROMAT Disciplina: Geometria Diferencial Professor: Almir Rogério Silva Santos Lista de Exercícios. Seja α : I R 3 uma curva regular. (a) Mostre que α é uma reta se α (t) e α (t) são linearmente
MAT Geometria Diferencial 1 - Lista 1
MAT0326 - Geometria Diferencial - Lista Monitor: Ivo Terek Couto 9 de outubro de 206 Observação. Assuma que todas as curvas e superfícies são diferenciáveis. Aquecimento Exercício. Seja α : I R R 3 uma
MAT0326 Geometria Diferencial I
MAT036 Geometria Diferencial I Segunda Prova 06/11/01 Soluções Questão 1 Valor: 3.0 pontos. Considere a superfície S, de Enneper, parametrizada por Xu, v = u u3 3 + uv, v v3 3 + u v, u v. a. Determine
Geometria Diferencial
Geometria Diferencial Exercícios sobre curvas planas e espaciais - 2007 Versão compilada no dia 20 de Setembro de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré: ulysses(a)uel(pt)br Matemática
Teoria Local das Curvas
Teoria Local das Curvas Márcio Nascimento da Silva Departamento de Matemática Universidade Estadual Vale do Acaraú de setembro de 007 [email protected] pré-prints do Curso de Matemática de Sobral no.
Vetor Tangente, Normal e Binormal. T(t) = r (t)
CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)
O Triedro de Frenet. MAT Cálculo Diferencial e Integral II Daniel Victor Tausk
O Triedro de Frenet MAT 2454 - Cálculo Diferencial e Integral II Daniel Victor Tausk Seja γ : I IR 3 uma curva de classe C 3 definida num intervalo I IR. Assuma que γ é regular, ou seja, γ (t) 0 para todo
CURVATURA DE CURVAS PLANAS
CURVATURA DE CURVAS PLANAS PROFESSOR RICARDO SÁ EARP (1) A tractrix. Vamos continuar com o traçado das curvas planas, agora incluindo o estudo da curvatura ao roteiro sugerido no exercício 1 da lista sobre
Lista de Exercícios de Cálculo 3 Terceira Semana
Lista de Exercícios de Cálculo 3 Terceira Semana Parte A 1. Reparametrize as curvas pelo parâmetro comprimento de arco medido a partir do ponto t = 0 na direção crescente de t. (a) r(t) = ti + (1 3t)j
MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN
MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,
3. Quanto é que uma curva curva? Curvatura e torsão; triedro de Frenet-Serret
3. CURVATURA E TORSÃO; TRIEDRO DE FRENET-SERRET 23 3. Quanto é que uma curva curva? Curvatura e torsão; triedro de Frenet-Serret Nesta secção associamos a cada curva duas funções escalares, chamadas curvatura
Evolutas e Involutas: Planas e Espaciais
Evolutas e Involutas: Planas e Espaciais Aluno: Igor Albuquerque Araujo Orientador: Marcos Craizer Introdução Foi feito um estudo de conjuntos focais de superfícies. Foram utilizados os softwares Maple
LISTA 6 DE GEOMETRIA DIFERENCIAL 2008
LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 RICARDO SA EARP (1) Considere a esfera unitária S 2 = {x 2 + y 2 + z 2 = 1} em R 3. (a) Mostre que a projeção estereográfica usual do pólo norte é dada por Π N (x,
MAT Geometria Diferencial 1 - Lista 2
MAT036 - Geometria Diferencial 1 - Lista Monitor: Ivo Terek Couto 19 de outubro de 016 1 Superfícies - parte ; Exercício 1. Mostre que, em um ponto hiperbólico, as direções principais bissectam as direções
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
Geometria Analítica II - Aula 4 82
Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio
Mini Curso. Teoria Local das Curvas Planas
Goiânia, 07 a 10 de outubro Mini Curso Teoria Local das Curvas Planas Profa. Dra. Luciana Maria Dias de Ávila Rodrigues - UnB . Estas notas são dedicadas a todos aqueles (alunos, docentes, técnicos...)
2 Propriedades geométricas de curvas parametrizadas no R 4
2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas
5. Teorema fundamental das curvas
48 CURVAS EM R 3 5. Teorema fundamental das curvas Nesta secção provaremos a versão geral do Teorema Fundamental das Curvas, que mostra que uma curva parametrizada por comprimento de arco fica essencialmente
Geometria Analítica II - Aula 5 108
Geometria Analítica II - Aula 5 108 IM-UFF Aula 6 Superfícies Cilíndricas Sejam γ uma curva contida num plano π do espaço e v 0 um vetor não-paralelo ao plano π. A superfície cilíndrica S de diretriz γ
UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA
1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico
LISTA 6 DE GEOMETRIA DIFERENCIAL 2007
LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 RICARDO SA EARP Vamos tratar a Geometria Diferencial das curvas e superfícies de R 3. Vamos aplicar as equações de compatibilidade; equação de curvatura de Gauss e
Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto
14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO
1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional
3. Algumas classes especiais de superfícies
3. ALGUMAS CLASSES ESPECIAIS DE SUPERFÍCIES 77 3. Algumas classes especiais de superfícies Nesta secção descrevemos algumas das classes de superfícies mais simples. Superfícies quádricas As superfícies
1.3 Comprimento de arco
0 CAPÍTULO. CURVAS NO E ENOE 3.3 Comprimento de arco Seja γ :[a, b] V uma curva não necessariamente regular. Consideremos P ([a, b]) o conjunto de todas as partições de [a, b]. Uma partição P = a = t 0
Equações paramétricas das cônicas
Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:
Vectores e Geometria Analítica
Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II (Escola Politécnica) Primeira Lista de Exercícios - Professor: Equipe de Professores BONS ESTUDOS!.
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
4. Curvas planas. T = κn, N = κt, B = 0.
4. CURVAS PLANAS 35 4. Curvas planas Nesta secção veremos que no caso planar é possível refinar a definição de curvatura, de modo a dar-lhe uma interpretação geométrica interessante. Provaremos ainda o
Luis Fernando Coelho Amaral UNIVERSIDADE FEDERAL DO MARANHÃO. Análise Vetorial. α Rot div
Luis Fernando Coelho Amaral UNIVERSIDADE FEDERAL DO MARANHÃO Análise Vetorial α Rot div Luís Fernando Coelho Amaral Análise Vetorial Universidade Federal do Maranhão 1 Luís Fernando Coelho Amaral À minha
Exercícios resolvidos P3
Exercícios resolvidos P3 Questão 1 Calcule a área da superfície obtida pela revolução da curva α(t) (R cos t,, R sin t + a), t [, 2π], < R < a, em torno do eixo x. Esta superfície é chamada de Toro. Resposta:
PARAMETRIZAÇÃO DE CURVA:
PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de
4. Primeira Forma Fundamental; Área
Conteúdo 3 Superfícies Regulares 81 1. Superfícies Regulares; Pré-imagens de valores regulares............. 81 2. Mudança de Parâmetros; Funções Diferenciáveis sobre Superfícies....... 100 3. Plano Tangente;
Notas de Aula. Geometria Diferencial
Notas de Aula Geometria Diferencial Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula do curso Geometria Diferencial
Cálculo Vetorial. Um Livro Colaborativo
Cálculo Vetorial Um Livro Colaborativo 19 de fevereiro de 2018 Organizadores #srcpath:/organizadores.tex# Esequia Sauter - UFRGS Fabio Souto de Azevedo - UFRGS Pedro Henrique de Almeida Konzen - UFRGS
Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.
Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante
0.1 Superfícies Regradas
Título : Superfícies Regradas Mínimas no Espaço Euclidiano Autor:Gilvan Alves Nascimento Instituição de Origem:Faculdade José Augusto Vieira (FJAV) Sessão temática:geometria Diferencial. RESUMO Apresentaremos
Aula 31 Funções vetoriais de uma variável real
MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução
Processamento de Malhas Poligonais
Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage [email protected] Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento
ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique
raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.
Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro
2 Conceitos Básicos da Geometria Diferencial Afim
2 Conceitos Básicos da Geometria Diferencial Afim Antes de iniciarmos o estudo das desigualdades isoperimétricas para curvas convexas, vamos rever alguns conceitos e resultados da Geometria Diferencial
Mecânica 1. Guia de Estudos P2
Mecânica 1 Guia de Estudos P2 Conceitos 1. Cinemática do Ponto Material 2. Cinemática dos Sólidos 1. Cinemática do Ponto Material a. Curvas Definição algébrica: A curva parametriza uma função de duas ou
(a) Determine a velocidade do barco em qualquer instante.
NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte
MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica
MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção
Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.
Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário
CURVAS REGULARES E EQUAÇÕES DE FRENET. Thiago Mariano Viana ¹, Dr. Fernando Pereira Souza ²
1 CURVAS REGULARES E EQUAÇÕES DE FRENET Thiago Mariano Viana ¹, Dr. Fernando Pereira Souza ² ¹ Aluno do curso de Matemática CPTL/UFMS, bolsista do grupo PET Matemática CPTL/UFMS; ² Professor do curso de
Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff
Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
Geometria Diferencial das Curvas Planas
Geometria Diferencial das Curvas Planas Hilário Alencar Walcy Santos Dedicamos este livro ao amigo e Professor Manfredo do Carmo por sua notável contribuição à Geometria Diferencial. 4 Prefácio Neste
APLICAÇÕES DAS FÓRMULAS DE FRENET EM CURVAS PLANAS E ESFÉRICAS
APLICAÇÕES DAS FÓRMULAS DE FRENET EM CURVAS PLANAS E ESFÉRICAS Adailson Ribeiro da Silva; Carlos Rhamon Batista Morais; Alecio Soares Silva; José Elias da Silva Universidade Estadual da Paraíba; [email protected];
Cálculo Diferencial e Integral II
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -
GEODÉSICAS EM SUPERFÍCIES DE REVOLUÇÃO NO R 3
UNIVERSIDADE ESTADUAL DE SANTA CRUZ DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET COLEGIADO DE MATEMÁTICA Monografia de Graduação - Bacharelado em Matemática GEODÉSICAS EM SUPERFÍCIES DE REVOLUÇÃO
Funções vetoriais. I) Funções vetoriais a valores reais:
Funções vetoriais I) Funções vetoriais a valores reais: f: I R t f( n R (f 1 (,f (,...,f n () I = intervalo da reta real denominada domínio da função vetorial f = {conjunto de todos os valores possíveis
Geometria Diferencial de Curvas de Interseção de Duas Superfícies Implícitas.
Geometria Diferencial de Curvas de Interseção de Duas Superfícies Implícitas. Osmar Aléssio e Marcela L. V. de Souza UNINCOR- Universidade Vale do Rio Verde de Três Corações Av. Castelo Branco, 8 CEP:
1.2. Curvas, Funções e Superfícies de Nível. EXERCÍCIOS 1. Desenhe as imagens das seguintes curvas, indicando o sentido de percurso:
. MAT - 047 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECÔNOMIA a LISTA DE EXERCÍCIOS - 07.. Retas e Planos. Faça alguns exercícios das seções.3 e.5 do livro Cáculo (vol.) de James Stewart... Curvas, Funções
Geometria Diferencial
Geometria Diferencial Curvas no plano e no espaço - Segundo semestre de 2007 Versão 14 compilada com o pdflatex no dia 2 de Agosto de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré: ulysses(a)uel(pt)br
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas
UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam Lista 1 Curvas 1. Desenhe as imagens das seguintes curvas: (a) γ(t) = (1, t) (b) γ(t) = (cos
Para motivar a definição de integral curvelínea, imagine um fio delgado em forma de uma curva C, com extremidade A e B. Suponha-se que o fio tenha
INTEGRAIS DE LINHA INTRODUÇÃO: Temos como objetivo definir uma integral que é semelhante a uma integral simples, exceto que ao invés de integrarmos sobre um intervalo [a,b], integramos sobre uma curva
Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.
Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015
MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base
Universidade Federal de Mato Grosso do Sul - UFMS VGA - 2 a Prova - Engenharia Civil + Física 03 de Julho de Prof o. E.T.
Universidade Federal de Mato Grosso do Sul - UFMS VGA - 2 a Prova - Engenharia Civil + Física 0 de Julho de 2014 - Prof o ETGalante 1 (2,0 pontos) Na gura acima ABCDEF GH é um paralelepípedo O ponto M
6.1 equações canônicas de círculos e esferas
6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que
MAT0354/MAT Geometria diferencial Lista de exercícios
MAT0354/MAT5751 - Geometria diferencial Lista de exercícios I. Curvas parametrizadas 1. Dado a > 0, considere a circunferência x 2 +(y a 2 )2 = ( a 2 )2. Parametrize a curva C do R 2 formada pelos vértices
Geometria Analítica II - Aula
Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço
Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano
Descrevendo Regiões no Plano Cartesiano e no Espaço Euclidiano Americo Cunha Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro Regiões no Plano
Lista de Exercícios de Cálculo Infinitesimal II
Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,
P1 de Álgebra Linear I
P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para
Universidade Federal da Bahia
Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA3 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atualiada 13.1 Coordenadas Polares [1] Dados os pontos P 1 (3, 5π 3 ), P ( 3, 33 ),
1 Cônicas Não Degeneradas
Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi [email protected] 11 de dezembro de 2001 Estudaremos as (seções) cônicas,
0 < c < a ; d(f 1, F 2 ) = 2c
Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,
MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014
MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t
3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.
Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar
Produto interno e produto vetorial no espaço
14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................
MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.
MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,
Posição relativa entre retas e círculos e distâncias
4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no
Curvas Planas em Coordenadas Polares
Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................
Cálculo 3 Primeira Avaliação (A) 25/08/2016
Cálculo 3 Primeira Avaliação A) 25/08/2016 Nome / Matrícula: / Turma: AA Nota: de 4 pontos) 1. 1 ponto) Determine a equação do plano que é: perpendicular ao plano que passa pelos pontos 0, 1, 1), 1, 0,
Universidade Federal de Mato Grosso do Sul - UFMS VGA - 2 a Prova - Engenharia de Computação 03 de Julho de Prof o. E.T.
Universidade Federal de Mato Grosso do Sul - UFMS VGA - 2 a Prova - Engenharia de Computação 0 de Julho de 2014 - Prof o ETGalante 1 (2,0 pontos) Na gura acima ABCDEF GH é um paralelepípedo O ponto M é
UNIVERSIDADE ESTADUAL DA PARAÍBA SUPERFÍCIES REGULARES E O TEOREMA EGREGIUM DE GAUSS ADAILSON RIBEIRO DA SILVA
UNIVERSIDADE ESTADUAL DA PARAÍBA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA CURSO DE LICENCIATURA EM MATEMÁTICA SUPERFÍCIES REGULARES E O TEOREMA EGREGIUM DE GAUSS ADAILSON RIBEIRO DA SILVA
MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios
MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no
