5.3 Variáveis aleatórias gaussianas conjuntas

Tamanho: px
Começar a partir da página:

Download "5.3 Variáveis aleatórias gaussianas conjuntas"

Transcrição

1 M. Eisencraft 5.3 Variáveis aleatórias gaussianas conjuntas 64 respectivamente. São as chamadas funções características marginais: Φ X (ω ) = Φ X,Y (ω,0) (5.0) Φ Y (ω ) = Φ X,Y (0,ω ) (5.) Os momentos conjuntos m nk podem ser encontrados a partir da função característica conjunta por: m nk = ( j) n+k n+k Φ X,Y (ω,ω ) ω n ω k ω =0,ω =0 (5.) Esta expressão é a generalização bidimensional da Eq. (3.6). Exercício 5.3. Duas variáveis aleatórias X e Y tem função característica conjunta Φ X,Y (ω,ω ) = exp ( ω 8ω3 ) (5.3) Mostre que X e Y têm média nula é que elas são não correlacionadas. 5.3 Variáveis aleatórias gaussianas conjuntas Variáveis aleatórias gaussianas são muito importantes porque aparecem praticamente em todas as áreas da Engenharia e das Ciências. Nesta seção o caso de duas variáveis aleatórias conjuntas gaussianas é examinado. Duas variáveis aleatórias X e Y são são ditas conjuntamente gaussianas se sua função densidade conjunta é { [( ) f X,Y = πσ X σ exp x X ρ( x X )( y Y ) ( ) ]} y Y + Y ρ ( ρ ) σx σ X σ Y σy (5.4) [ (X em que X = E[X], Y = E[Y], σx = E ) [ (Y ) X ], σy ] = E Y e ρ = E [( X X )( Y Y )] = C XY σ X σ Y. A Figura 5. mostra um gráfico da função densidade gaussiana bidimensional. Seu máximo

2 M. Eisencraft 5.3 Variáveis aleatórias gaussianas conjuntas 65 ocorre em ( X,Y ). Da Eq. (5.4), se ρ = 0, correspondendo a variáveis não-correlacionadas, f XY (x,y) pode ser reescrita como f X,Y (x,y) = f X (x) f Y (y) (5.5) em que f X (x) e f Y (y) são as densidades marginais de X e Y e dadas por f X (x) = f Y (y) = e (x X) σ X (5.6) πσ X e (y Y) σ Y. (5.7) πσ Y Assim, conclui-se que quaisquer variáveis aleatórias gaussianas não-correlacionadas são independentes. Exercício5.4. SejamduasvariáveisaleatóriasgaussianasX e Y commédiasx e Y, variâncias σ X e σ Y e coeficiente de correlação ρ. Determine o ângulo θ tal que as variáveis A = X cosθ+y sinθ (5.8) B = X sinθ +Y cosθ (5.9) sejam independentes. Exercício 5.5. [] Suponha que a queda de neve anual (quantidade de neve acumulada em metros) em dois hotéis de esqui alpinos vizinhos seja representada por variáveis aleatórias gaussianas conjuntas X e Y para as quais ρ = 0,8, σ X =,5m, σ Y =,m e R XY = 8,476m. Se a queda de neve média no primeiro hotel é 0m, qual a taxa de queda média no outro hotel? Exercício 5.6. [4] Duas variáveis aleatórias X e Y têm medias e variâncias dadas por m X =, σ X = 3, m Y = e σ Y = 5. Uma nova variável aleatória Z é definida por Z = 3X 4Y. (5.30)

3 M. Eisencraft 5.3 Variáveis aleatórias gaussianas conjuntas 66 Figura 5.: Densidade gaussiana bidimensional [].

4 M. Eisencraft 5.4 Transformações de múltiplas variáveis aleatórias 67 Determine a média e a variância de Z se o coeficiente de correlação entre X e Y é ρ XY = 0, Transformações de múltiplas variáveis aleatórias Deseja-se encontrar a função densidade conjunta de um conjunto de novas VAs Y i = T i (X,X,...,X N ), i =,,...,N (5.3) definido pelas transformações T i. Assume-se que as novas VAs Y i dadas pela Eq. 5.3 são produzidas por funções contínuas tendo derivadas parciais contínuas em todos os pontos. Assume-se também que um conjunto de funções inversas T j contínuas das novas variáveis: existe tal que as antigas variáveis podem ser expressas como funções X j = T j (Y,Y,...,Y N ), j =,,...,N. (5.3) O jacobiano é o determinante de uma matriz de derivadas definido como J = T Y. T N Y T Y N. T N Y N (5.33) Com esta definição, pode-se mostrar que f Y,...,Y N (y,...,y N ) = f X,...,X N ( x = T (y ),...,x N = T N (y N) ) J (5.34) Quando N =, a Eq. (5.34) reduz-se à Eq. (3.30) previamente deduzida para uma única variável.

5 M. Eisencraft 5.5 Transformações lineares de variáveis aleatórias gaussianas 68 Exercício 5.7. Sejam as transformações lineares dadas por Y = T (X,X ) = ax +bx (5.35) Y = T (X,X ) = cx +dx. (5.36) Encontre f Y,Y (y,y ) em função de f X,X (x,x ) 5.5 Transformações lineares de variáveis aleatórias gaussianas A Eq. (5.3) pode ser diretamente aplicada ao problema de transformar linearmente um conjunto de VAs gaussianas X, X,..., X N para o qual a densidade conjunta gaussiana se aplica. As novas variáveis Y, Y,..., Y N são Y = a X +a X + +a N X N (5.37) Y = a X +a X + +a N X N (5.38). (5.39) Y N = a N X +a N X + +a NN X N (5.40) em que os coeficientes a ij e j =,,...,N são números reais. Definimos a matriz [T] = a a a N a a a N... (5.4) a N a N a NN Pode-se mostrar [] que as novas variáveis Y, Y,..., Y N são conjuntamente gaussianas. Ou seja, uma transformação linear de VAs gaussianas produz VAs gaussianas.

6 M. Eisencraft 5.6 Geração computacional de múltiplas variáveis aleatórias 69 Pode-se mostrar também [] que estas novas variáveis têm médias Ȳ j = N a jk Xk (5.4) k= e co-variâncias dadas pelos elementos da matrix de covariância [C Y ] = [T][C X ][T] t. (5.43) As matrizes de co-variância tem elementos C ij definidos por C ij = E [( X i X )( i Xj X )] σx j = i, i = j C Xi X j, i j (5.44) Exercício 5.8. Duas VAs gaussianas X e X têm médias nulas e variâncias σ X = 4 e σ X = 9. Sua co-variância C X X é igual a 3. Se X e X são linearmente transformadas em novas variáveis Y e Y de acordo com Y = X X (5.45) Y = 3X +4X (5.46) calcule as médias, variâncias e co-variância de Y e Y. 5.6 Geração computacional de múltiplas variáveis aleatórias Para gerar computacionalmente algumas VAs pode ser necessário usar mais de uma distribuição uniforme inicial, como feito na Seção 3.5. Por exemplo, duas VAs gaussianas independentes com médias nulas e variância unitária

7 M. Eisencraft 5.6 Geração computacional de múltiplas variáveis aleatórias 70 podem ser geradas pelas transformações Y = T (X,X ) = ln(x )cos(πx ) (5.47) Y = T (X,X ) = ln(x )sin(πx ) (5.48) (5.49) Variáveis gaussianas com variâncias quaisquer σ W e σ W e coeficiente de correlação ρ W podem ser geradas a partir de Y e Y usando as transformações [] W = σ W Y (5.50) W = ρ w σ W Y +σ W ρ W Y. (5.5) Exercício 5.9. Usando o Matlab R, a gere N = 0000 amostras de duas VAs uniformes no intervalo (0,). Esboce seus histogramas; b a partir destas VAs, gere duas VAs gaussianas com média nula e variância unitária. Esboce seus histogramas; c a partir do resultado do item anterior, gere duas VAs W e W com σ W = 4 e σ W = 9 e coeficiente de correlação ρ W = 0.4; esboce o histograma delas; d para confirmar a qualidade das VAs geradas, estime suas médias, variâncias e coeficiente de correlação usando as estimações W i = N σ W i = N ρ W = N w in (5.5) n= N n= ) ( σ W σ W N ( w in Wi ) (5.53) N ) (w n )(w W n W n= (5.54)

8 Referências Bibliográficas [] P. Z. P. Jr., Probability, Random Variables And Random Signal Principles, 4th ed. New York: Mcgraw-Hill, 00. [] B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed. New York, NY, USA: Oxford University Press, Inc., 998. [3] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Sinais e sistemas, nd ed. São Paulo: Pearson Prentice Hall, 00. [4] R. E. Ziemer and W. H. Tranter, Principles of Communications, 6th ed. Wiley Publishing,

M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57. + w y. f X,Y (x,y)dxdy (4.24) w y

M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57. + w y. f X,Y (x,y)dxdy (4.24) w y M. Eisencraft 4.6 Distribuição e densidade de uma soma de variáveis aleatórias57 Assim, e usando a Eq. (4.17), F W (w) = F W (w) = + w y + x= f X,Y (x,y)dxdy (4.24) w y f Y (y)dy f X (x)dx (4.25) x= Diferenciando

Leia mais

Processos aleatórios - características

Processos aleatórios - características Capítulo 6 Processos aleatórios - características temporais 6.1 O conceito de processo aleatório Um processo aleatório ou estocástico é um espaço de amostras em que cada elemento é associado a uma função

Leia mais

M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20)

M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20) M. Eisencraft 6.3 Funções de correlação 81 R XY (τ) = E[X(t)Y(t+τ)] e (6.17) R YX (τ) = E[Y(t)X(t+τ)]. (6.18) As propriedades de correlação de dois processos X(t) e Y(t) podem ser mostradas convenientemente

Leia mais

5.7 Amostragem e alguns teoremas sobre limites

5.7 Amostragem e alguns teoremas sobre limites M. Eisencraft 5.7 Amostragem e alguns teoremas sobre limites 7 5.7 Amostragem e alguns teoremas sobre limites Para quantificar os problemas associados às medidas práticas de uma VA, considere o problema

Leia mais

Neste capítulo é introduzido um conceito que permite definir eventos de uma forma mais

Neste capítulo é introduzido um conceito que permite definir eventos de uma forma mais Capítulo 2 A variável aleatória Neste capítulo é introduzido um conceito que permite definir eventos de uma forma mais consistente. Este novo conceito é o de variáveis aleatórias e se constitui em uma

Leia mais

2.3 Operações sobre uma variável aleatória - Esperança matemática

2.3 Operações sobre uma variável aleatória - Esperança matemática matemática 58 atingir a mosca dado que ele atingiu o alvo. Exercício 2.33. [3] Duas caixas tem bolas vermelhas, verdes e azuis dentro; a quantidade de cada uma é dada a seguir. Caixa 01-5 vermelhas; 35

Leia mais

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36)

M. Eisencraft 6.5 Processos aleatórios gaussianos 86. t1 +T. x(t)y(t+τ)dt. (6.35) t 1 T. x(t)y(t+τ)dt R xy (τ) = R XY (τ). (6.36) M. Eisencraft 6.5 Processos aleatórios gaussianos 86 R 0 (t 1 +2T) = 1 2T t1 +T t 1 Assim, tomando t 1 = 0 e assumindo que T é grande, temos x(t)y(t+τ)dt. (6.35) R 0 (2T) = 1 2T x(t)y(t+τ)dt R xy (τ) =

Leia mais

M. Eisencraft 2.5 Outros exemplos de distribuições e densidades 29. Densidade e distribuição uniforme. 0 a b x. 0 a b x

M. Eisencraft 2.5 Outros exemplos de distribuições e densidades 29. Densidade e distribuição uniforme. 0 a b x. 0 a b x M. Eisencraft 2.5 Outros eemplos de distribuições e densidades 29 Densidade e distribuição uniforme /(b a) () a b.8 ().6.4.2.2 a b 2.5.2 Eponencial Figura 2.8: Funções densidade e distribuição uniforme.

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.6: Vetores Aleatórios Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br São José dos Campos,

Leia mais

PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.

PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados. PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1

Leia mais

Par de Variáveis Aleatórias

Par de Variáveis Aleatórias Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3

Leia mais

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica

Leia mais

Processos estocásticos

Processos estocásticos 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos

Motivação. VA n-dimensional. Distribuições Multivariadas VADB. Em muitas situações precisamos Motivação Em muitas situações precisamos Prof. Lorí Viali, Dr. viali@pucrs.br lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma determinada peça.

Leia mais

2.2 A variável aleatória

2.2 A variável aleatória Eisencraft e Loiola 2.2 A variável aleatória 45 de 24 por minuto e que a probabilidade de acertar um alvo seja,4. Encontre a probabilidade de que eatamente 5 balas atinjam o alvo. (Dica: use a aproimação

Leia mais

Operações sobre uma variável aleatória

Operações sobre uma variável aleatória Capítulo 3 Operações sobre uma variável aleatória - Esperança matemática Neste capítulo, introduz-se algumas operações importantes que podem ser realizadas sobre uma variável aleatória. 3.1 Esperança Valor

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Geração de Números Aleatórios Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 61 Simulando de Distribuições Discretas Assume-se que um

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Vetores Aleatórios 10 de setembro de 2017 Modelos Probabiĺısticos para N Variáveis Aleatórias F X1,...,X n (x 1,...,x n) = P[X 1 x 1,..., X n x n] (x 1,...,x

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

Lista de Exercícios #5 Assunto: Variáveis Aleatórias Multidimensionais Contínuas

Lista de Exercícios #5 Assunto: Variáveis Aleatórias Multidimensionais Contínuas 1. ANPEC 018 Questão 9 Uma pessoa investe R$ 10.000,00 (I) em duas aplicações cujas taxas de retorno são variáveis aleatórias independentes, R 1 e R, com médias 5% e 14% e desvios-padrão 1% e 8%, respectivamente.

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 14 de abril de 2014 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Princípios de Comunicação - s.7

Princípios de Comunicação - s.7 Princípios de Comunicação - s.7 Adão Souza Jr. July 7, 207 Abstract Variável aleatória. Momentos de de primeira ordem. Processo gaussiano. Teorema do limite central. Momentos conjuntos. Geração de distribuições

Leia mais

Física Geral - Laboratório. Estimativas e erros em medidas indiretas: Ajuste de funções

Física Geral - Laboratório. Estimativas e erros em medidas indiretas: Ajuste de funções Física Geral - Laboratório Estimativas e erros em medidas indiretas: Ajuste de funções 1 Medidas indiretas: Ajuste de funções Ajuste de funções y = f (x; a 1,a 2,...,a p ) Medidas de duas grandezas x e

Leia mais

1.3.2 Sistemas LIT - a integral de convolução

1.3.2 Sistemas LIT - a integral de convolução Eisencraft e Loiola 1.3 Análise e transmissão de sinais 23 Figura 1.22: Propriedades da Transformada de Fourier [1]. 1.3.2 Sistemas LIT - a integral de convolução Na Seção 1.2, página 4, já foi discutido

Leia mais

Motivação. VA n-dimensional. Distribuições Multivariadas VADB

Motivação. VA n-dimensional. Distribuições Multivariadas VADB Motivação Em muitas situações precisamos lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e a largura de uma Prof. Lorí Viali, Dr. viali@mat.ufgrs.br http://www.mat.ufrgsbr/~viali/

Leia mais

FUNDAMENTOS DE PROBABILIDADE E

FUNDAMENTOS DE PROBABILIDADE E Variáveis aleatórias Estimação e Filtragem Estocástica Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos e de Automação Departamento de Engenharia Elétrica Universidade de Brasília FUNDAMENTOS

Leia mais

Capítulo 5 - Distribuições conjuntas de probabilidade e complementos 3

Capítulo 5 - Distribuições conjuntas de probabilidade e complementos 3 Capítulo 5 - Distribuições conjuntas de probabilidade e complementos Conceição Amado e Ana M. Pires Departamento de Matemática Instituto Superior Técnico Capítulo 5 - Distribuições conjuntas de probabilidade

Leia mais

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares 1 / 0 AGA 0505- Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares Laerte Sodré Jr. 1o. semestre, 018 modelos modelagem dos dados dado um conjunto de dados,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufgrs.br http://www.mat.ufrgsbr/~viali/ Motivação Em muitas situações precisamos lidar com duas ou mais variáveis aleatórias ao mesmo tempo. Por exemplo o comprimento e

Leia mais

PLANO DE ENSINO EMENTA DA DISCIPLINA: OBJETIVOS: CONTEÚDO PROGRAMÁTICO:

PLANO DE ENSINO EMENTA DA DISCIPLINA: OBJETIVOS: CONTEÚDO PROGRAMÁTICO: ESTADO DE MATO GROSSO FUNDAÇÃO UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS SINOP SUPERVISÃO DE APOIO ACADÊMICO CURSO BACHARELADO EM ENGENHARIA ELÉTRICA PLANO DE ENSINO DISCIPLINA: SNP33D45 / PRINCÍPIOS

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

Informações Gerais Prof. Aluizio Fausto Ribeiro Araújo Depto. of Sistemas de Computação Centro de Informática - UFPE

Informações Gerais Prof. Aluizio Fausto Ribeiro Araújo Depto. of Sistemas de Computação Centro de Informática - UFPE ES413 Informações Gerais Prof. Aluizio Fausto Ribeiro Araújo Depto. of Sistemas de Computação Centro de Informática - UFPE Objetivos Conteúdo Referências Avaliação Estrutura de Apoio Tópicos 1-2 Principal

Leia mais

Estimativas e Erros. Propagação de erros e Ajuste de funções

Estimativas e Erros. Propagação de erros e Ajuste de funções Estimativas e Erros Propagação de erros e Ajuste de funções 1 Algumas referências Estimativas e Erros em Experimentos de Física - Vitor Oguri et al (EdUERJ) Fundamentos da Teoria de Erros - José Henrique

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15

Um modelo estocástico para o fluxo de caixa de um plano de previdência de um indivíduo 15 2 Simulação estocástica A simulação computacional consiste em empregar técnicas matemáticas em computadores com o propósito de gerar ensaios que tentam reproduzir de maneira análoga um processo ou operação

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Duas Variáveis Aleatórias 29 de agosto de 2017 Duas Variáveis Aleatórias Função Distribuição Acumulada Conjunta: F X,Y (x,y) = P[X x, Y y] Propriedades: (a) 0

Leia mais

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD )XQGDPHQWRVGHUREDELOLGDGHHHVWDWtVWLFD,QWURGXomR A história da estatística pode ser dividida em três fases. De acordo com PEANHA (00), a estatística inicialmente não mantinha nenhuma relação com a probabilidade,

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 01 / Introdução

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 01 / Introdução Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 1 / Introdução Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade Federal da

Leia mais

Física Geral - Laboratório. Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções

Física Geral - Laboratório. Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções Física Geral - Laboratório Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções 1 Medidas indiretas: Ajuste de funções Ajuste de funções y = f (x; a 1,a 2,...,a p ) Medidas de duas grandezas

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 01 / Introdução

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 01 / Introdução Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 1 / Introdução Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade Federal da

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

Universidade Federal do ABC. Processos Estocásticos. Profs. Marcio Eisencraft e Murilo Loiola

Universidade Federal do ABC. Processos Estocásticos. Profs. Marcio Eisencraft e Murilo Loiola Universidade Federal do ABC Processos Estocásticos Profs. Marcio Eisencraft e Murilo Loiola São Paulo 2011 Capítulo 1 Introdução à análise e transmissão de sinais 1.1 Intodução Neste curso, trata-se dos

Leia mais

EES-20: Sistemas de Controle II. 20 Novembro 2017

EES-20: Sistemas de Controle II. 20 Novembro 2017 EES-20: Sistemas de Controle II 20 Novembro 2017 1 / 57 Recapitulando: Filtro de Kalman para sistema de 1a ordem Foi considerado o caso de estado x[k] escalar, com G = 1 e C = 1, por simplicidade: Equação

Leia mais

Pseudo-Aleatórios. Cristiano R. F. Granzotti e Antônio Carlos Roque da Silva Filho 19 de junho de 2017

Pseudo-Aleatórios. Cristiano R. F. Granzotti e Antônio Carlos Roque da Silva Filho 19 de junho de 2017 Estatística e Geração de Números Pseudo-Aleatórios Cristiano R. F. Granzotti e Antônio Carlos Roque da Silva Filho 19 de junho de 2017 1 Variáveis Aleatórias, Estatísticas e Distribuições Dados de uma

Leia mais

Inversão. Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, Hélio Lopes Departamento de InformáAca PUC- Rio 4/25/13

Inversão. Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, Hélio Lopes Departamento de InformáAca PUC- Rio 4/25/13 Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, 2013.1 Departamento de InformáAca - PUC- Rio Hélio Lopes Departamento de InformáAca PUC- Rio Inversão Teorema: Sejam F : IR [0, 1] a função

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Definições e Notação Estimação Amostra Aleatória

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

2 Conceitos de Teoria da Probabilidade

2 Conceitos de Teoria da Probabilidade 2 Conceitos de Teoria da Probabilidade Neste capítulo, enunciaremos algumas denições e resultados de teoria de probabilidade. justicativa deste capítulo reside no fato que u objetivo nal é estimar momentos

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO

PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO PROBABILIDADES E ESTATÍSTICA LEIC+LEE+LERCI (TagusPark) PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO Secção de Estatística e Aplicações Departamento de Matemática Instituto Superior Técnico Fevereiro 2008

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 6 de outubro de 2016 Segmentação de imagens A segmentação

Leia mais

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Objectivos Estudar as características dos sinais temporais contínuos e discretos Processamento de sinais em Sistemas

Leia mais

Processamento de Sinais e Imagem

Processamento de Sinais e Imagem António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Objectivos Estudar as características dos sinais temporais contínuos e discretos Projecto de filtros Processamento

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário (bootstrap) Este método foi proposto por Efron

Leia mais

Controle Ótimo - Aula 6 Exemplos e Exercícios

Controle Ótimo - Aula 6 Exemplos e Exercícios Controle Ótimo - Aula 6 Exemplos e Exercícios Adriano A. G. Siqueira e Marco H. Terra Departamento de Engenharia Elétrica Universidade de São Paulo - São Carlos Probabilidades Probabilidade: número entre

Leia mais

Métodos Empíricos de Pesquisa I. } Análise Bidimensional

Métodos Empíricos de Pesquisa I. } Análise Bidimensional Métodos Empíricos de Pesquisa I } Análise Bidimensional 1 Aula de hoje } Temas } Associação entre variáveis } Qualitativas e Quantitativas } Covariância: conceitos e propriedades } Coeficiente de correlação

Leia mais

1) Considere Y N(1, 1) e X Y = y N(y, 4). A quantidade de interesse é θ = P (X > 1).

1) Considere Y N(1, 1) e X Y = y N(y, 4). A quantidade de interesse é θ = P (X > 1). 1 Considere Y N1, 1 e X Y y Ny, 4. A quantidade de interesse é θ P X > 1. a Explique como obter uma estimativa de θ via simulação. Solução: Uma maneira simples de obter uma estimativa de θ é simulando

Leia mais

COM29008 LISTA DE EXERCÍCIOS #

COM29008 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES COM29008 LISTA DE EXERCÍCIOS #1 2016.2 Exercícios 1. Verifique se os seguintes

Leia mais

Mais sobre Modelos Continuos

Mais sobre Modelos Continuos Mais sobre Modelos Continuos Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Transformação Linear da Uniforme Seja X uma variável aleatória

Leia mais

Exercícios de programação

Exercícios de programação Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,

Leia mais

1 Equações Diferenciais Ordinárias: Sistemas de Equações

1 Equações Diferenciais Ordinárias: Sistemas de Equações Equações Diferenciais Ordinárias: Sistemas de Equações O sistema geral de duas equações diferenciais pode ser escrito como: ẋ = F x,y,t ẏ = Gx,y,t Uma Solução de é um par x t e y t de funções de t tais

Leia mais

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática

Capítulo 2. Ortogonalidade e Processo de Gram-Schmidt. Curso: Licenciatura em Matemática Capítulo 2 Ortogonalidade e Processo de Gram-Schmidt Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves de Melo Disciplina: Álgebra Linear II Unidade II Aula

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017 TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda

Leia mais

IND 1115 Inferência Estatística Aula 7

IND 1115 Inferência Estatística Aula 7 Conteúdo IND 1115 Inferência Estatística Aula 7 Setembro 2004 Por que a revisão de probabilidades até agora? A importância da distribuição Normal O Mônica Barros mbarros.com 1 mbarros.com 2 Por que uma

Leia mais

DISTRIBUIÇÃO CONJUNTA (parte II)

DISTRIBUIÇÃO CONJUNTA (parte II) UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior DISTRIBUIÇÃO CONJUNTA (parte II) Variáveis

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE

Leia mais

Sistemas Lineares em Engenharia

Sistemas Lineares em Engenharia Sistemas Lineares em Engenharia Prof. Afonso Paiva Departamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação USP São Carlos Métodos Numéricos e Computacionais

Leia mais

Estudo sobre decodificação iterativa usando códigos de treliça

Estudo sobre decodificação iterativa usando códigos de treliça Revista de Engenharia e Pesquisa Aplicada, Volume 2, Número 1, 2016 Estudo sobre decodificação iterativa usando códigos de treliça Souza, I. M. M. Escola Politécnica de Pernambuco Universidade de Pernambuco

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Luis Henrique Assumpção Lolis 26 de maio de 2014 Luis Henrique Assumpção Lolis Processos Estocásticos 1 Conteúdo 1 Introdução 2 Definição 3 Especificando um processo aleatório 4

Leia mais

Teoria para Pequenas Perturbações

Teoria para Pequenas Perturbações Teoria para Pequenas Perturbações João Oliveira Departamento de Engenharia Mecânica, Secção de Mecânica Aeroespacial Instituto Superior Técnico Estabilidade de Voo, Eng. Aeroespacial João Oliveira (SMA,

Leia mais

Comunicações Digitais Prof. André Noll Barreto. Prova /1 (04/04/2017)

Comunicações Digitais Prof. André Noll Barreto. Prova /1 (04/04/2017) Prova 1 17/1 (4/4/17) Aluno: Matrícula: Instruções A prova consiste de quatro questões discursivas A prova terá a duração de h A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas

Leia mais

Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais. Aula 9

Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais. Aula 9 Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais Aula 9 Variáveis Aleatórias Discretas Variável aleatória discreta função definida em um espaço

Leia mais

Probabilidade e Variáveis Aleatórias. Prof. Walter Fetter Lages 4 de outubro de 2004

Probabilidade e Variáveis Aleatórias. Prof. Walter Fetter Lages 4 de outubro de 2004 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE0007-Tópicos Especiais em Automação e Controle II

Leia mais

AGA Análise de Dados em Astronomia I. 5. Testes de Hipótese

AGA Análise de Dados em Astronomia I. 5. Testes de Hipótese 1 / 26 AGA 0505- Análise de Dados em Astronomia I 5. Testes de Hipótese Laerte Sodré Jr. 1o. semestre, 2019 2 / 26 aula de hoje: 1 testes de hipóteses: procedimento básico 2 o valor p 3 erros nos testes

Leia mais

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções

1 x. = π 2. pois. Probabilidade: um curso introdutório - Mônica Barros - Capítulo 7 - Soluções Soluções - Capítulo 7 Lista semestre 000.0:, 3, 5 a, 5, 6, 7,, 4, 5 Problema Ache a mediana das densidades Qui-quadrado com e graus de liberdade. A densidade Qui-quadrado com n graus de liberdade é dada

Leia mais

PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO

PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO PROBABILIDADES E ESTATÍSTICA LEIC+LEE+LERCI (TagusPark) PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO Secção de Estatística e Aplicações Departamento de Matemática Instituto Superior Técnico Fevereiro 2006

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas o semestre 07/08 0/07/08 :0 o Teste C 0 valores. Um relatório anual estabelece que

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre

Leia mais

SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2

SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2 SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística

Leia mais

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara 1 ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS Prof.: Idemauro Antonio Rodrigues de Lara 2 Modelos de variáveis aleatórias discretas 1. Distribuição Uniforme Discreta 2. Distribuição Binomial

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)

Leia mais