Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II
|
|
|
- Eugénio Arruda Bentes
- 9 Há anos
- Visualizações:
Transcrição
1 Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda imperfeita é lançada três vezes ao ar. 2. Duas bolas são retiradas de uma urna contendo duas bolas azuis e duas vermelhas. 3. Uma moeda imperfeita é lançada repetidamente ao ar até ocorrer a primeira cara. Exercício 2. Seja (Ω, F, P ) um espaço de probabilidade e A 1, A 2, A 3,... acontecimentos de F tais que P (A n ) = 1 para todo n = 1, 2, 3,.... Mostre que P ( n=1 A n) = 1. Exercício 3. Uma moeda perfeita é lançada repetidamente ao ar. Calcule a probabilidade de no n-ésimo lançamento ocorrer: 1. Uma cara pela primeira vez. 2. O número de caras e coroas observadas até ao momento ser igual. 3. Exactamente duas coroas terem sido observadas consecutivamente. 4. Pelo menos duas caras terem sido observadas até ao momento. Exercício 4. Mostre que a probabilidade de um e um só dos acontecimentos A e B ocorrer é P (A) + P (B) 2P (A B) 1
2 Exercício 5 (*). Uma moeda imperfeita é lançada repetidamente ao ar. A probabilidade de ocorrer cara em cada lançamento é p. Seja p n a probabilidade de até ao n-ésimo lançamento terem ocorrido um número par de caras. Mostre que p 0 = 1 e p n = p(1 p n 1 ) + (1 p)p n 1 se n 1. Determine p n. Exercício 6 (*). No século XVIII o conde de Buffon colocou o seguinte problema: uma agulha de comprimento l cm é lançada aleatoriamente numa folha de papel de linhas espaçadas entre si d cm. Qual é a probabilidade de a agulha intersectar uma linha. Exercício 7. Considere o espaço de probabilidade ([0, 1], B, m) e a variável aleatória X(ω) = min(ω, 1 ω). Determine F X. Exercício 8. Suponha que um comboio parte aleatoriamente do Porto entre as 8h e as 10h da manhã com destino a Lisboa, que fica a 300km de distância. Suponha também que o comboio viaja a uma velocidade constante de 100km/h. 1. Determine a variável aleatória que descreve a distância entre o comboio e Lisboa às 12h. 2. Calcule a distribuição de probabilidade dessa variável aleatória e a respectiva função de distribuição. a sua função de dis- Exercício 9. Seja X uma variável aleatória e F X tribuição. Mostre que: 1. P (a < X b) = F X (b) F X (a). 2. P (a X b) = F X (b) F X (a ). 3. P (a < X < b) = F X (b ) F X (a). 4. P (a X < b) = F X (b ) F X (a ). Exercício 10. Seja X uma variável aleatória com função de distribuição 0 x < 0 x F (x) = 0 x x > 2 e seja Y = X 2. Calcule: 1. P ( 1 X 3)
3 2. P (X 2Y ). 3. a função de distribuição de Z = X. Exercício 11. Uma variável aleatória X tem função de distribuição de probabilidade F X. Determine a função de distribuição de Y = ax + b onde a, b R. Exercício 12. Quais das seguintes funções são funções de distribuição de probabilidade? Para cada caso, determine a respectiva função de densidade de probabilidade. 1 e x2 x 0, 1. F (x) = 0 caso contrário. e 1/x x > 0, 2. F (x) = 0 caso contrário. 3. F (x) = e x /(e x + e x ), x R. Exercício 13. Quais das seguintes funções são funções de densidade de probabilidade? Encontre c e respectiva função de distribuição de probabilidade. c x > 1, x 1. f(x) = d 0 caso contrário. 2. f(x) = ce x (1 + e x ) 2, x R. Exercício 14. Sejam X e Y variáveis aleatórias e α, β R. Mostre que E(αX + βy ) = αe(x) + βe(y ). Exercício 15. Seja X uma variável aleatória. Mostre que V (X) = E(X 2 ) (E(X)) 2. Exercício 16. Uma variável aleatória X : Ω R segue uma distribuição de Poisson se X(Ω) = 0, 1, 2,...} e onde λ > 0. Calcule E(X). P (X = k) = λk k! e λ, k = 0, 1, 2,... Exercício 17 (*). Seja X uma variável aleatória que segue uma distribuição Gaussiana com valor esperado µ e desvio padrão σ. Mostre que, 3
4 1. Para todo n N, E((X µ) n ) = σ n (n 1)(n 3) 1 se n é par 0 caso contrário. 2. E(e tx ) = e µt+ 1 2 σ2 t 2, t R. Exercício 18. Seja (Ω, F, P ) um espaço de probabilidade e B um acontecimento. Mostre que (B, F B, P ( B)) é um espaço de probabilidade, onde F B = A B : A F} e P (A B) = P (A B) P (B). Exercício 19. Mostre que, P (A B C) = 1 P (A c B c C c )P (B c C c )P (C c ) Exercício 20. Mostre que dois acontecimentos são independentes sse as σ- álgebras geradas por esses acontecimentos são independentes. Exercício 21. Seja (X 1, X 2 ) um vector aleatório bidimensional com a seguinte função de distribuição Determine: F (x 1, x 2 ) = (1 e x 1 )(1 e x 2 ), x 1, x 2 > P (1 < X 1 < 2, 1 < X 2 < 3) 2. A função de densidade de probabilidade conjunta f(x 1, x 2 ). 3. Cov(X 1, X 2 ) Exercício 22 (*). Sejam X e Y duas variáveis aleatórias independentes e absolutamente contínuas. Mostre que f X+Y (z) = f X (x)f Y (z x) dm(x). R Exercício 23. Sejam X, Y e Z variáveis aleatórias independentes com distribuição de probabilidade uniforme no intervalo [0, 1]. Determine a função de densidade conjunta de XY e Z 2. Mostre que P (XY < Z 2 ) = 5 9. Exercício 24. Sejam X e Y duas variáveis aleatórias independentes com distribuição de probabilidade uniforme no intervalo [0, 1]. Sejam U = minx, Y } e V = maxx, Y }. Calcule E(U) e Cov(U, V ). 4
5 Exercício 25 (*). Sejam X e Y duas variáveis aleatórias independentes com segundo momento finito. Quando é que as variáveis aleatórias X + Y e XY são não correlacionadas, ou seja, covariância nula. Exercício 26. Mostre que Cov(X 1, X 2 ) = E(X 1 X 2 ) E(X 1 )E(X 2 ). Exercício 27. Mostre que σ(x) é uma σ-álgebra e que a função X é mensurável no espaço mensurável (Ω, σ(x)). Exercício 28. Considere uma variável aleatória X que toma dois valores distintos a, b R. Calcule σ(x). Exercício 29. Mostre que a σ-álgebra σ(x) é a menor das σ-álgebras de partes de Ω que tornam X uma função mensurável. Exercício 30. Mostre que E(X Ω) = E(X). Exercício 31. Sejam X e Y variáveis aleatórias e suponha que Y é discreta. Mostre que E(X Y ) = E(X) se Y (ω) = c para todo ω Ω. Exercício 32. Mostre que se G =, Ω} então E(X G) = E(X) P-q.c. Exercício 33 (*). Sejam X e Y duas variáveis aleatórias discretas, isto é, X(Ω) = x 1, x 2,...} e Y (Ω) = y 1, y 2,...} onde P (Y = y j ) > 0, j = 1, 2,.... Mostre que E(X Y = y j ) = x i f X Y (x i, y j ), onde f X Y (x i, y j ) é a massa de probabilidade condicionada, i=1 f X Y (x i, y j ) = P (X = x i, Y = y j ) P (Y = y j ) Exercício 34. Uma empresa produz diariamente N componentes electrónicas, onde N é uma variável aleatória que segue uma distribuição de Poisson com parâmetro λ > 0. Cada componente pode ter um defeito, independentemente das restantes, com probabilidade p. Seja D o número diário de componentes electrónicas com defeito. Calcule E(D N), E(D) e E(N D). Exercício 35. Seja ([0, 1[, B([0, 1[), P ) o espaço de probabilidade onde P é a medida de Lebesgue restrita ao intervalo [0, 1[ e X, Y : [0, 1[ R as variáveis aleatórias, X(ω) = 2ω 2 2ω 0 ω < 1 2 e Y (ω) = 2 2ω 1 ω < 1. 2 Determine E(X Y ). 5.
6 Exercício 36 (*). Um ponto X é escolhido uniformemente ao acaso da superfície de uma esfera de raio 1. Sejam Θ e Φ a longitude e latitude do ponto X. Determine a função de densidade condicional de Θ dado Φ. Exercício 37. Sejam X e Y variáveis aleatórias com função de densidade conjunta f X,Y (x, y) = cx(y x)e y, 0 x y <. 1. Encontre o valor da constante c. 2. Mostre que f X Y (x, y) = 6x(y x)y 3, 0 x y, f Y X (x, y) = (y x)e x y, 0 x y <. 3. Determine E(X Y ) e E(Y X). Exercício 38. Seja X n, n = 1, 2,... uma martingala relativamente a uma filtração F n. Mostre que X n é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). Exercício 39. Numa folha de papel quadriculado com quadrículas de l cm de lado, um jogador lança aleatoriamente uma moeda perfeita de diâmetro d cm onde d < l. O jogador ganha 1 euro se a moeda não intersectar as linhas da folha. Caso contrário, perde β euros. Após n jogadas independentes entre si, denote-se por S n o ganho acumulado. Determine β tal que o jogo é justo. Exercício 40. Seja S n o passeio aleatório simétrico, S n = X X n onde X 1, X 2,... é uma sucessão de variáveis aleatórias IID tal que P (X n = 1) = P (X n = 1) = 1/2. Mostre que Z n = S 2 n n é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). Exercício 41. Seja S n = X X n o passeio aleatório simétrico definido no exercício anterior. Mostre que Z n = ( 1) n cos(πs n ) é uma martingala relativamente à filtração canónica σ(x 1,..., X n ). 6
7 Exercício 42. Mostre que τ = n} F n sse τ n} F n. Exercício 43. Seja (X n ) n 1 uma sucessão de variáveis aleatórias adaptada a uma filtração F n e seja B R um Boreliano. Mostre que o tempo de primeira entrada de X n em B, τ(ω) = min n N: X n (ω) B}, é um tempo de paragem relativamente a F n. Exercício 44. Sejam X 1, X 2,... variáveis aleatórias IID tais que X n 1, 1} com probabilidade P (X i = 1) = p e P (X i = 1) = q onde p q. Considere o passeio aleatório, e o tempo de paragem onde a, b > 0. Mostre que: S n = X 1 + X X n, τ = min n 1 : S n a, b}}, 1. A sucessão Z n = (q/p) Sn, n = 1, 2,... é uma martingala relativamente à filtração σ(x 1,..., X n ). 2. P (S τ = b) = 1 (q/p) a (q/p) b (q/p) a Exercício 45. Seja (Ω, F, P ) um espaço de probabilidade. Uma variável aleatória ξ : Ω 0, 1, 2,...} tem uma distribuição de Poisson com valor esperado µ > 0 se Seja X 0 = 0 e P (ξ = k) = µk k! e µ, k = 0, 1, 2,... X n = X n 1 + ξ n 1, n = 1, 2,... onde (ξ n ) n 1 é uma sucessão de variáveis aleatórias IID que seguem uma distribuição de Poisson com valor esperado µ > Determine os valores de µ para os quais a sucessão (X n ) n 1 é uma martingala, submartingala ou supermartingala relativamente à filtração canónica F n = σ(ξ 1,..., ξ n ). 7
8 2. Suponha que µ > 1. Mostre que: (a) Existe um único ρ ]0, 1[ tal que E(ρ ξ ) = ρ. (b) A sucessão ρ Xn é uma martingala relativamente a F n e converge P -q.c. Exercício 46. Seja S n = X 1 + X X n o passeio aleatório onde X n 1, 1} é uma sucessão de variáveis aleatórias IID tais que P (X n = 1) = P (X n = 1) = 1, n = 1, 2,.... Supondo que k N: 2 1. Mostre que Z n = ( 1) n cos(π(s n + k)) é uma martingala relativamente à filtração σ(x 1,..., X n ). 2. Calcule E(( 1) τ ) onde τ é o tempo de paragem τ = min n 1 : S n = k}. Exercício 47. Sejam X 1, X 2,... variáveis aleatórias IID tais que X n 1, 1} para todo n = 1, 2,.... Considere o tempo de paragem τ = minn 1: X X n = 1}. Determine E(τ). Exercício 48 (*). Sejam (Ω, F, P ) um espaço de probabilidade, (F n ) n 1 uma filtração e τ um tempo de paragem relativamente a F n tal que para algum k N e algum ɛ > 0, Mostre que τ < P -q.c. P (τ n + k F n ) > ɛ, n = 1, 2, 3,... Exercício 49. Mostre que um processo estocástico X t : t T } tal que X 0 = 0 tem incrementos estacionários sse para todo t s tal que t s T as variáveis aleatórias X t X s e X t s são identicamente distribuídas. Exercício 50. Seja X = X t : t T } um processo estocástico com incrementos independentes e estacionários tal que X 0 = 0 e E(X 2 t ) < para todo t T. Mostre que existe uma constante positiva σ tal que Var(X t X s ) = σ 2 t s. Exercício 51. Seja W = W t : t 0} um processo de Wiener. Mostre que 1. E(e Wt ) = e t/2 para todo t 0. 8
9 2. se c > 0 então } Wc 2 t : t 0 c é também um processo de Wiener. Exercício 52. Mostre que um processo de Wiener é estacionário em média, mas não tem covariâncias estacionárias. Exercício 53 (*). Seja W = W t : t 0} um processo de Wiener. Mostre que dados 0 s < t e A Boreliano de R então, P (W t A W s = w) = p t s (x w)dx, onde p t (x) = 1 2πt e x2 2t. A 9
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I
Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre
Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira
Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira 5 de Janeiro 03 Época Normal - horas Resolva os seguintes exercícios, justificando cuidadosamente as suas respostas..
Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso.
Proposição 2.39 (Propriedades de e.). Sejam µ, λ, λ 1, λ 2 medidas no espaço mensurável (X, F). Então 1. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 2. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 3. se λ 1 µ e λ
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Processos Estocásticos
Licenciatura em Matemática Aplicada e Computação PROCESSOS ESTOCÁSTICOS 2002/03 Colectânea de Exercícios Capítulo 1 Introdução aos Processos Estocásticos Exercício 1.1 O número de sinais emitidos por uma
(a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p), então (X + Y ) Binomial(n + m, p).
Capítulo 0 Revisões Exercício 0.1 Sejam X e Y variáveis aleatórias independentes. Mostre que: (a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p),
Distribuições conjuntas de probabilidades e complementos
Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 5 Distribuições conjuntas de probabilidades e complementos 02 x = 0 065 x = 1 Exercício 51 (a) P(X = x) = 015 x =
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)
Lista de Exercícios 4
Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
Módulo III: Processos de Poisson, Gaussiano e Wiener
Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Probabilidade II Lista 1 - Vetores Aleatórios
Probabilidade II Lista - Vetores Aleatórios Exercício. Duas moedas equilibradas são lançadas de forma independente. Dena as v.a's X : número de caras nos dois lançamentos e Y : função indicadora de faces
TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.
TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
Aula 11. Variáveis Aleatórias Contínuas Bidimensionais
Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Distribuições conjuntas de probabilidade e complementos
Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 5 Distribuições conjuntas de probabilidade e complementos Exercício 51 Uma loja de electrodomésticos
PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012
PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.
a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36
1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
Teoria Ergódica (9 a aula)
Outubro 2012 Espaços de Sequências Seja (X, d 0 ) um espaço métrico compacto. B Z (X ) = X Z = { x = (x j ) j Z : x j X, j Z } B N (X ) = X N = { x = (x j ) j N : x j X, j N } B(X ) designa indiferentemente
TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017
TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda
Par de Variáveis Aleatórias
Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
4.1. ESPERANÇA x =, x=1
4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ
Duração: 90 minutos Grupo I Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Justifique convenientemente todas as respostas 1 o semestre 2017/2018 18/11/2017
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
4. Distribuições de probabilidade e
4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 1 o semestre 2018/2019 30/01/2019 11:30 1 o Teste C 10 valores 1. Numa unidade fabril
3 3. Variáveis Aleatórias
ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio
Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2
Modelos para Séries Temporais Aula 1 Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Os modelos utilizados para descrever séries temporais
O movimento Browniano
O movimento Browniano R. Vilela Mendes http://label2.ist.utl.pt/vilela/ March 2010 () March 2010 1 / 35 Sumário O movimento Browniano Propriedade Markoviana Probabilidade de transição. Medida de Wiener
Revisão de Probabilidade
05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 09.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
Processos Estocásticos
Processos Estocásticos Luis Henrique Assumpção Lolis 26 de maio de 2014 Luis Henrique Assumpção Lolis Processos Estocásticos 1 Conteúdo 1 Introdução 2 Definição 3 Especificando um processo aleatório 4
Variáveis Aleatórias
Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Probabilidade. Experiências aleatórias
Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou
PRE29006 LISTA DE EXERCÍCIOS #
INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável
ME-310 Probabilidade II Lista 0
ME-310 Probabilidade II Lista 0 1. Sejam A e B eventos disjuntos tais que P(A) = 0.1 e P(B) = 0.. Qual é a probabilidade que (a) A ou B ocorra; (b) A ocorra, mas B não ocorra; (c) repita (a) e (b) se os
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
PROBABILIDADE RESUMO E EXERCÍCIOS* P1
PROBABILIDADE RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções grátis em Conceitos e Fundamentos Estudamos probabilidade
Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos
1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo
Exercícios Funções Multivariadas, Exponencial e Outras
Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: RESOLUÇÃO
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 27.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios
Probabilidade Lista - Variáveis Aleatórias Contínuas e Vetores Aleatórios Exercício. Uma v.a. X tem distribuição triangular no intervalo [0, ] se sua densidade for dada por 0, x < 0 cx, 0 x /2 c( x), /2
Sumário. 2 Índice Remissivo 11
i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação
CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo
Processos Estocásticos
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de
Universidade Federal de Goiás Instituto de Matemática e Estatística
Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.
1 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Professores: Clarice Demétrio, Roseli Leandro e Mauricio Mota Lista 3- Distribuições Amostrais-
