Centro Federal de Educação Tecnológica de Minas Gerais

Tamanho: px
Começar a partir da página:

Download "Centro Federal de Educação Tecnológica de Minas Gerais"

Transcrição

1 Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG) Departamento de Ensino de II Grau Coordenação do Curso Técnico de Eletrotécnica e Automação Industrial Disciplina: Prática de Laboratório de Máquinas Elétricas I Prof. Welington Passos de Almeida Prof. Colimar Marcos Vieira 2007

2 1ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Apresentação, objetivos gerais, conteúdo programático, bibliografia e avaliação. I APRESENTAÇÃO: Disciplina: Prática de Laboratório de Máquinas Elétricas I PLME I. Curso: Eletrotécnica e Automação Industrial Turma: 3º Módulo Carga Horária de 02 aulas semanais. II OBJETIVOS GERAIS: Ao final da disciplina o aluno será capaz de: 1. Identificar os componentes básicos dos transformadores. 2. Utilizar a terminologia específica empregada para transformadores estáticos. 3. Executar os principais ensaios de rotina em transformadores de potência. 4. Obter o circuito equivalente dos transformadores de potência a partir dos ensaios de rotina. 5. Calcular o rendimento de unidades transformadoras a partir dos circuitos equivalentes obtidos dos ensaios. 6. Calcular a regulação de tensão de unidades transformadoras a partir dos circuitos equivalentes obtidos dos ensaios. 7. Estabelecer as diferenças, vantagens e desvantagens entre transformadores convencionais e autotransformadores. 8. Estabelecer as condições para a ligação entre transformadores monofásicos. 9. Estabelecer as condições para a ligação entre transformadores trifásicos. 10. Identificar os componentes básicos da máquina de corrente contínua. 11. Utilizar a terminologia específica empregada para as máquinas de corrente contínua. 12. Identificar os enrolamentos da máquina de corrente contínua. 13. Executar os principais ensaios de rotina da máquina de corrente contínua. 14. Diferenciar os tipos de motores de corrente contínua em relação à conexão do enrolamento de campo. 15. Traçar as características de carga dos diversos tipos de motores de corrente contínua. 16. Analisar o desempenho de motores de corrente contínua sob carga mecânica, em regime permanente. 17. Verificar as principais técnicas de controle de velocidade dos motores de corrente contínua. 2

3 III CONTEÚDO PROGRAMÁTICO: UNIDADE 1: TRANSFORMADORES ESTÁTICOS Partes constituintes, emprego e aplicações Ensaio de polaridade pelo método C.C Ligações entre transformadores monofásicos Ensaio a vazio Ensaio de curto-circuito Ensaio de carga do autotransformador Determinação do deslocamento angular. UNIDADE 2: MÁQUINAS DE CORRENTE CONTÍNUA Partes constituintes, emprego e aplicações Ensaios de características de magnetização do gerador de C.C Controle de velocidade do motor C.C. shunt Controle de velocidade do motor C.C. série Ensaio de carga do motor C.C. shunt Ensaio de carga do motor C.C. série. V AVALIAÇÃO: 1ª Avaliação escrita abrangendo os conteúdos das práticas de transformadores, Valor 30 pontos; 2ª Avaliação escrita abrangendo os conteúdos das práticas de máquinas de corrente contínua, valor 30 pontos; 3ª Avaliação escrita abrangendo os conteúdos das práticas de transformadores e de corrente contínua, valor 40 pontos. 4ª Exame Especial, valor 100 pontos: a) Avaliação da seqüência de ações para resolver um determinado problema, valor 40 pontos; b) Avaliação da execução de ensaios e solução do problema, valor 60 pontos. 3

4 2ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Introdução dos transformadores Fundamentos teóricos O transformador é um dispositivo elétrico que tem a função de transferir uma potência elétrica de um circuito a para um circuito b, mantendo-os isolados eletricamente por meio de um acoplamento magnético. O transformador é constituído pelo núcleo de aço-silício laminado, pelo enrolamento primário, pelo enrolamento secundário e pela placa de identificação. Onde: V p = Tensão aplicada no enrolamento primário I p = corrente que circula no enrolamento primário I p = Tensão induzida no enrolamento primário V s = Tensão aplicada na carga I s = corrente que circula no enrolamento secundário E s = Tensão induzida no enrolamento secundário φ m = Fluxo mútuo N p = Número de espiras do enrolamento primário N s = Número de espiras do enrolamento secundário A seguir, mostramos o diagrama vetorial que representa o funcionamento do transformador operando com carga indutiva quando uma tensão senoidal é instantaneamente aplicada com o sinal positivo crescente: 4

5 O valor eficaz da tensão induzida no enrolamento primário e no enrolamento secundário é dado por: E p = 4, N p. f. ϕ máx E s = 4, N s.f. ϕ máx Onde: f = freqüência da tensão aplicada 10-8 = número de linhas de força que uma espira deve encadear por segundo para que seja induzida a tensão de 1 Volt. A razão entre E p e E s é chamada de relação de transformação ou alfa (α), isto é, E p /E s = N p /N s = α. Para um transformador ideal, isto é, aquele que não tem perdas de potência internas pode afirmar que E p /E s = V p /V s = N p /N s = I s /I p = α. A impedância do secundário refletida no primário é obtida da relação V p = V s. α Ou V p /I s = V s. α = (V s. α) / (I s. α) ou Z p = Z s. α 2. Analogamente, teremos: R p = R s. α 2 e X p = X s. α 2 A Associação Brasileira de Normas Técnicas (ABNT) normaliza a nomenclatura dos terminais dos enrolamentos do transformador da seguinte forma: a) O enrolamento de tensão superior tem os seus terminais designados pela letra maiúscula H seguida do sub índice 0, 1, 2, 3,... (H 1, H 2,...); b) Enrolamento de tensão inferior tem os seus terminais designados pela letra maiúscula X seguida do sub índice 0, 1, 2, 3,... (X 0, X 1,...). 5

6 3ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Determinação da polaridade dos terminais dos enrolamentos, método golpe indutivo. Fundamentos teóricos O ensaio de polaridade de um transformador indica o sinal instantâneo dos seus terminais de referência. A polaridade é subtrativa quando os sinais nos terminais referenciais são iguais e a polaridade é aditiva quando os sinais referenciais são opostos. Os fatores que influenciam no tipo de polaridade são os seguintes: a) as bobinas podem ser enroladas no sentido horário ou no sentido anti-horário; b) as bobinas podem ser colocadas no núcleo de forma direta ou de forma invertida. A polaridade é indicada nos diagramas por um ponto (.) significando que os terminais pontuados têm sinais instantâneos positivos ou, também, consideram-se os subíndices ímpares nas letras H e/ou X para indicar os sinais instantâneos positivos nos terminais dos enrolamentos. O método golpe indutivo consiste-se em aplicar uma tensão contínua nos terminais do enrolamento de tensão superior, tendo como referência o terminal que recebe o sinal positivo da fonte, e verificar a deflexão do ponteiro de um galvanômetro de zero central que é ligado ao enrolamento de tensão inferior, tendo como referência o terminal que é ligado no seu borne positivo. É possível verificar a deflexão do ponteiro somente em regime transitório, ou seja, no fechamento ou na abertura do circuito elétrico. A polaridade dos terminais de referência será subtrativa (mesmos sinais) se o ponteiro do instrumento defletir para a direita na energização do circuito ou se defletir para a esquerda na desenergização do circuito. A polaridade dos terminais de referência será aditiva (sinais opostos) se o ponteiro do instrumento defletir para a esquerda na energização do circuito ou se defletir para a direita na desenergização do circuito. Procedimentos 1) Executar o diagrama de montagem no transformador de múltiplos enrolamentos da marca CIME e determinar a polaridade de todos os seus terminais: 6

7 (2) Faça os ensaios e preencha a tabela abaixo: Terminais referenciais Tipo de polaridade H 1 H 3 H 1 H 4 H 1 X 1 H 1 X 2 H 1 X 3 H 1 X 4 X 1 X 3 X 1 X 4 Terminais referenciais Tipo de polaridade X 2 X 3 X 2 X 4 X 3 H 2 X 3 H 3 X 3 H 4 H 2 X 4 X 4 X 3 H 3 X 4 7

8 4ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Ligação série/paralelo dos enrolamentos dos transformadores monofásicos Fundamentos teóricos: É possível executar ligações série/paralelo entre transformadores individuais ou em transformadores de múltiplos enrolamentos com a finalidade de variar a relação tensão/corrente ou variar a potência disponibilizada ao sistema. Para executar com sucesso as ligações série/paralelo nos terminais dos enrolamentos é necessário ter o pleno conhecimento de suas polaridades. a) Ligação série: Deve-se observar que os enrolamentos deverão ter a mesma capacidade de corrente elétrica e os terminais dos enrolamentos podem ser conectados com polaridade subtrativa ou aditiva, tendo como resultante a subtração ou a adição das tensões induzidas nas bobinas. A potência disponibilizada ao sistema é aumentada para a conexão que utiliza a polaridade aditiva, mas será reduzida se a conexão utilizada for subtrativa. b) Ligação paralela: Neste caso deve-se observar que os enrolamentos deverão ter a mesma capacidade de tensão elétrica e os terminais dos enrolamentos só admitem a conexão com polaridade subtrativa. A potência disponibilizada ao sistema é sempre aumentada para esse tipo de conexão. Procedimentos 1) Utilizando um transformador da marca CIME de 0,5 kva e um varivolt para alimentá-lo, executar as seguintes conexões de seus terminais, anotando as leituras das tensões primárias (V p ) e secundárias (V s ), além de calcular a relação de transformação para cada caso: a) Ligar os terminais de tensão superior (T s ) em série com polaridade aditiva e os terminais de tensão inferior (T i ) em série com polaridade aditiva, aplicar a tensão nominal em T i : V p = V s = α = 8

9 b) Ligar os terminais de tensão superior (T s ) em série com polaridade aditiva e os terminais de tensão inferior (T i ) em paralelo, aplicar a tensão nominal em T i : V p = V p = α = c) Ligar os terminais de tensão superior (T s ) em paralelo e os terminais de tensão inferior (T i ) em paralelo, aplicar a tensão nominal em T s : V p = V s = α = 9

10 d) Ligar os terminais de tensão superior (T s ) em paralelo e os terminais de tensão inferior (T i ) em série com polaridade aditiva, aplicar a tensão nominal em T s : V p = V s = α = 10

11 5ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Ensaio a vazio do transformador monofásico. Fundamentos teóricos: O ensaio a vazio é executado para determinar a potência desenvolvida no núcleo do transformador, ou seja, a potência desenvolvida por histerese e correntes de Foucault (P hf ) na condição de tensão e freqüência nominais. Sabe-se que P h = K h. V núcleo. f. (β máx ) x e P f = K f. (V núcleo. f. β máx. e) 2, onde P h = potência desenvolvida por histerese K h = constante de histerese V núcleo = volume do núcleo f = freqüência da tensão aplicada (β máx ) x = densidade máxima do fluxo elevado ao expoente de Steinmetz (x) que varia normalmente de 1,5 a 2,5 P f = potência desenvolvida por Foucault K f = constante de Foucault e = espessura das lâminas do núcleo No ensaio a vazio, o enrolamento secundário fica aberto, logo, a corrente secundária (I s ) é igual a zero e a corrente primária (Ip) é igual à corrente de excitação (I e ): Onde, R m = Resistência de magnetização - dissipa a potência de histerese e Foucault (P hf ) X m = Reatância de magnetização - produz o fluxo mútuo (Φ m ) R p = Resistência do enrolamento primário X p = Reatância de dispersão do enrolamento primário R s = Resistência do enrolamento secundário X s = Reatância de dispersão do enrolamento secundário V m = Tensão aplicada na resistência de magnetização e na reatância de magnetização A corrente de excitação (I e ) é decomposta vetorialmente da seguinte forma: 11

12 De forma que R m = V m / (I e. cos Θ ), mas V m = V p Z p.i p e Z p = R p + jx p. A queda de tensão na impedância primária é desprezível porque a corrente do ensaio a vazio também é pequena (cerca de 6% da corrente nominal, no máximo) se a potência dissipada na resistência do enrolamento primário (P rp ) for desprezível então a tensão V p será semelhante à tensão V m, ou seja, a queda de tensão em Z p será praticamente nula, logo R m = V p / (I e. cos Θ ) e por analogia X m = V p / (I e. sen Θ ). O fator de potência é dado por cos Θ = P t / (Vp. I p ) e P t = potência total (leitura do wattímetro). Rigorosamente, a equação de potência do ensaio a vazio é dada por P t = P hf + P rp, onde P rp = Rp.Ip 2, logo P hf = P t P rp. Para verificar a insignificância de P rp deve-se fazer o cálculo utilizando-se o valor de R p corrigido para a temperatura de 75 o C, pois é esse valor de temperatura máxima que a ABNT normaliza para que um transformador opere continuamente com a potência nominal. R 75 = R ta. [(234,5 o + 75 o ) / (234,5 o + t a o )], onde: R 75 = resistência corrigida para a temperatura de 75 o C; 234,5 o = temperatura, em o C, que um fio elétrico feito de cobre apresenta uma resistência elétrica aproximadamente igual a zero; R ta = resistência elétrica medida na temperatura ambiente; t a = valor da temperatura ambiente em o C. Procedimentos 1) Ligar os enrolamentos de tensão superior (T s ) em paralelo e os enrolamentos de tensão inferior (T i ), também, em paralelo do transformador de múltiplos enrolamentos da marca CIME de 0,5 kva e medir a resistência do enrolamento de tensão inferior, corrigindo-a para a temperatura de 75 o C; 12

13 2) Executar o diagrama de montagem A ABNT não normaliza o lado em que deve ser feito o ensaio a vazio no transformador monofásico, entretanto é mais seguro executá-lo no lado de tensão inferior (T i ). 3) Aplicar a tensão e a freqüência nominais de operação do transformador no lado de T i, anotar as leituras dos instrumentos de medição e fazer os cálculos para completar a tabela abaixo: V p (V) I p (A) P t (W) R p 75 o C (Ω) P rp (W) P hf (W) Cos Θ θ ( o ) R m (Ω) X m (Ω) 13

14 6ª Aula prática: Laboratório de Máquinas Elétricas Assunto: Ensaio de curto circuito do transformador monofásico. Fundamentos teóricos O ensaio de curto circuito é executado para determinar a impedância, a resistência e a reatância equivalentes referidas ao enrolamento primário do transformador. O ensaio se consiste em curto circuitar o enrolamento de tensão inferior e aplicar uma tensão reduzida ou tensão de impedância (V z ) no enrolamento de tensão superior até que circule por ele a corrente nominal. Onde, V z = tensão de impedância I p = corrente do enrolamento primário I e = corrente de excitação I s = corrente do enrolamento secundário V s = tensão nos terminais do enrolamento secundário R m = resistência de magnetização X m = reatância de magnetização R p = resistência do enrolamento primário X p = reatância de dispersão do enrolamento primário R s = resistência do enrolamento secundário X s = reatância de dispersão do enrolamento secundário A potência ativa total (P t ) dissipada no circuito é dada por P t = P rerp + P hfcc, onde: P t = potência total do ensaio de curto circuito (leitura do wattímetro) P rerp = potência dissipada na resistência equivalente referida ao primário P hfcc = potência de dissipada na resistência de magnetização 14

15 P hfcc é a potência de histerese e correntes de Foucault do ensaio de curto circuito e é normalmente desprezível, pois a tensão de impedância é cerca de 5% da tensão nominal e o P hf varia quadraticamente com a variação da tensão aplicada, logo é muito pequeno. Mas para a certificação do valor desprezível do P hfcc deve-se fazer o seguinte cálculo: P hfcc = P hf. (V z / V nominal ) 2, onde o P hf e o V nominal são dados do ensaio a vazio. Então P rerp é facilmente obtido: P rerp = P t - P hfcc. A resistência equivalente referida ao primário (R erp ) é obtida da seguinte forma: P rerp = R erp. (I nominal ) 2 ou R erp = P rerp / (I nominal ) 2. A impedância equivalente referida ao primário (Z erp ) é dada por Z erp = V z / I nominal, e a reatância equivalente referida ao primário (X erp ) é dada por X erp = [(Z erp ) 2 - (R erp ) 2 ] 1/2. Os parâmetros equivalentes são usados nos cálculos do rendimento percentual e da regulação de tensão percentual do transformador monofásico para qualquer ponto de carga: η% = (P s / P t ). 100% = [(V s. I s. cos Θ s ). 100%] / [(V s. I s. cos Θ s ) + P hf + P rers ], onde: η% = é o rendimento percentual P rers = potência na resistência equivalente referida ao secundário = R ers. (I s ) 2, onde R ers é a resistência equivalente referida ao secundário ou R ers = R erp / (α) 2. O rendimento percentual do transformador é máximo quando P hf = P rers e como o P hf é normalmente constante, a corrente secundária para o máximo rendimento percentual é obtida simplesmente a partir da equação I s = (P hf / R ers ) 1/2. A regulação de tensão percentual R% é dada por R% = (E s V s ). 100% / V s, onde E s é a tensão induzida no enrolamento secundário que dependerá da característica da carga (resistiva, indutiva ou capacitiva). Para carga puramente resistiva temos E s = [(V s + R ers. I s ) 2 + (X ers. I s ) 2 ] 1/2, onde X ers é a reatância equivalente referida ao secundário ou X ers = X erp / (α) 2. A impedância percentual (Z%) indica a fração máxima de tensão que pode ser aplicada no enrolamento primário com o enrolamento secundário curto circuitado sem causar danos aos enrolamentos: Z% = V z. 100% / V nominal. Procedimentos 1) Ligar os enrolamentos de tensão superior (T s ) em paralelo e os enrolamentos de tensão inferior (T i ), também, em paralelo do transformador de múltiplos enrolamentos da marca CIME (0,5 kva) e executar o diagrama de montagem; 15

16 A ABNT não normaliza o lado em que deve ser feito o ensaio de curto circuito no transformador monofásico, entretanto é mais seguro executá-lo no lado de tensão superior (T s ), curto circuitando o lado de tensão inferior. 2) Aplicar a tensão V z no lado de T s até que circule a corrente nominal no enrolamento primário. Anotar as leituras dos instrumentos de medição e fazer os cálculos para completar a tabela abaixo: V z (V) I p (A) P t (W) P hfcc (W) P rerp (W) R erp (Ω) Z erp (Ω) X erp (Ω) Z% E s 3) Utilizando o P hf do ensaio a vazio, determine o rendimento máximo percentual e a regulação de tensão percentual do transformador monofásico para a corrente de rendimento máximo, considerar o fator de potência igual a 1 (um). 16

17 7ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Ensaio de carga do autotransformador monofásico. Fundamentos teóricos Denomina-se autotransformador aquele transformador isolado que tem o terminal do enrolamento primário ligado em série com o terminal do enrolamento secundário, com polaridade aditiva ou subtrativa, de modo a formar um único enrolamento. O autotransformador é utilizado para aumentar a capacidade da potência instalada de um sistema e o prejuízo disto é a perda do isolamento elétrico entre os enrolamentos primário e secundário. O autotransformador não deve ser entendido eletricamente como um circuito divisor de tensão, pois os sentidos das correntes nos enrolamentos dependerão da polaridade de ligação dos seus terminais. O autotransformador respeita a capacidade de corrente dos enrolamentos do transformador isolado e considera correta a igualdade entre a potência de saída e a potência de entrada. Na análise de potência do autotransformador é necessário ter o conhecimento do tipo de polaridade da conexão dos seus terminais e a partir daí montar a equação de suas tensões. Em seguida, monta-se a equação das correntes baseando-se na corrente total do primário (I tp ) e na corrente de carga (I carga ), observando-se que onde tiver a maior corrente terá a menor tensão e vice-versa. A equação de potências é obtida a partir da equação de tensões, fazendo-se o produto da equação de tensões pela corrente relacionada à tensão total, ou seja, à maior tensão. A equação de potências é constituída pela potência aparente total (S at ), pela potência aparente transferida por transformação (S atra ) e pela potência aparente transferida por condução (S ac ), que pode ser reescrita da seguinte forma: S at = S atra + S ac, todas dadas em Volt.Ampèr. a) Configurações do autotransformador elevador: a1) V carga = V s + V p, porque I carga é menor que I tp, Logo, I tp = I p + I s. 17

18 A equação de potências então será: V carga.i carga = V s. I carga + V p. I carga, onde: S at = V carga.i carga S atra = V s. I carga, porque está relacionada somente à tensão induzida. S ac = V p. I carga a2) V carga = V s + V p, porque I carga é menor que I tp. Logo, I tp = I p + I s. A equação de potências então será: V carga.i carga = V s. I carga + V p. I carga, onde: S at = V carga.i carga S atra = V s. I carga, porque está relacionada somente à tensão induzida. S ac = V p. I carga b) Configurações do autotransformador abaixador: b1) V p = V s + V carga porque I carga é maior que I tp, 18

19 Logo, I carga = I p + I tp. A equação de potências então será: onde: V p. I tp = V s. I tp + V carga. I tp S at = V p. I tp S atra = V s. I tp porque está relacionada somente à tensão induzida S ac = V carga. I tp b2) Onde: I pa = corrente primária no enrolamento de tensão superior I pb = corrente primária no enrolamento de tensão inferior I tp = corrente total no primário V tp = tensão total primária V pa = tensão primária no enrolamento de tensão superior V pb = tensão primária no enrolamento de tensão inferior V tp = V pa + V pb porque I carga é maior que I tp, Logo, I carga = I pa + I pb. A equação de potências então será: V tp. I tp = V pa. I tp + V pb. I tp, onde: S at = V tp. I tp S atra = V pb. I tp porque está relacionada somente à tensão induzida S ac = V pb. I tp Procedimentos 1) Executar o diagrama de montagem do autotransformador abaixador utilizando o transformador de múltiplos enrolamentos da marca CIME de 0,5 kva 19

20 2) Aplicar a tensão nominal no enrolamento primário e ajustar a carga resistiva reostato até obter a corrente nominal. Anotar as leituras dos instrumentos de medição; 3) Executar o diagrama de montagem do autotransformador elevador utilizando o transformador de múltiplos enrolamentos da marca CIME de 0,5 kva; 20

21 3) Aplicar a tensão nominal no enrolamento primário e ajustar a carga resistiva (reostato) até obter a corrente nominal. Anotar as leituras dos instrumentos de medição e fazer os cálculos para completar a tabela abaixo: AUTOTRANSFORMADOR Abaixador V p (V) V s (V) V carga (V) I tp (A) I p (A) I s (A) I carga (A) S at (VA) S atra (VA) S ac (VA) Elevador 21

22 8ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Determinação do deslocamento angular do transformador trifásico. Fundamentos teóricos O deslocamento angular de um transformador trifásico é indicado pelo defasamento entre a tensão aplicada e a tensão induzida em fases correspondentes. Os transformadores trifásicos só admitem a ligação paralela entre si, e para executar esta operação deve-se ter as mesmas tensões, as mesmas polaridades e os mesmos deslocamentos angulares. A nomenclatura do deslocamento angular, segundo a ABNT e segundo as normas brasileiras registradas NBR 5380 e NBR 5356 são as seguintes: a primeira letra maiúscula (D, Y ou Z) indica a conexão do enrolamento trifásico primário que pode estar em triângulo ou estrela ou zig-zag respectivamente, e a segunda letra minúscula (d, y ou z) indica a conexão do enrolamento trifásico secundário que pode estar também em triângulo ou estrela ou zig-zag respectivamente, que é seguida pelo número natural que varia de 0 a 11, e cada unidade representa trinta graus elétricos de deslocamento angular (30 o ), exemplo Dd0, Dy2, Yd5, etc. A determinação do deslocamento angular, utilizando o método clássico, é feita da seguinte forma: a) Desenham-se os diagramas vetoriais da conexão do enrolamento primário e da conexão do enrolamento secundário do transformador, fazendo-se as seguintes observações: a1) os vetores H2 e X2 devem estar na direção norte-sul, e a ponta dos vetores deve indicar o maior potencial instantâneo; a2) os diagramas estarão corretos se os vetores passarem em ordem crescente ao girarem no sentido anti-horário; b) Sobrepor os dois diagramas, da mesma forma que foram desenhados, em uma circunferência marcada com doze arcos iguais, cada arco representando trinta graus geométricos (30 o ), a diferença entre X1 e H1 na circunferência, em graus, é o deslocamento angular do transformador trifásico, tendo X1 como referência e verificando a defasagem até H1 no sentido anti-horário. A determinação das relações de tensões para a certificação do deslocamento angular é feita da seguinte forma: a) Desenha-se o diagrama vetorial do enrolamento de tensão superior em escala normal e em seguida o do enrolamento de tensão inferior em escala menor do que a normal, de forma que sejam ligados H1 a X1; b) Pesquisar as distâncias dos segmentos e montar uma relação de igualdade e duas relações de desigualdade. Estas relações dos segmentos são chamadas também de relações de tensões para um determinado deslocamento angular, e podem ser verificadas qualitativamente por meio de dois voltímetros para a verificação da igualdade e das desigualdades. Procedimentos 1) Considerando os enrolamentos de T s como o primário do transformador, fazer uma conexão trifásica qualquer em T s e outra conexão trifásica qualquer em T i e a partir daí, determinar o deslocamento angular e as suas relações de tensões; 22

23 2) Executar o diagrama de montagem das referidas ligações no transformador trifásico da marca Trancil de 3 kva, ligando em comum H 1 a X 1 ou H 2 a X 2 ou H 3 a X 3. Considere o seguinte diagrama que indica as polaridades dos terminais dos enrolamentos do referido transformador: 3) Aplicar a tensão nominal no lado de T s e fazer as medições das tensões de acordo com as relações de tensões levantadas no primeiro procedimento. Observação: Se forem verificadas todas as relações de tensões, o deslocamento angular estará de acordo com o determinado no primeiro procedimento. 23

24 9ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Introdução da Máquina de corrente contínua. Fundamentos teóricos Qualquer máquina elétrica rotativa funciona a partir de uma tensão aplicada e induzida nos condutores elétricos inseridos em um campo magnético e, além disto, deve haver um movimento relativo entre o campo magnético e os condutores. Na máquina de Corrente Contínua, o campo magnético é suprido pelas peças polares (sapata polar) e pelo enrolamento de campo magnético, que junto à carcaça e escovas formam o estator. Os condutores elétricos formam o enrolamento de armadura que é colocado no núcleo da armadura estando solidários ao eixo do rotor e ao comutador constituindo, assim, o rotor. A tensão induzida e a tensão aplicada na armadura são ligadas ao exterior da máquina por meio das escovas de grafite metálica e do comutador. O comutador funciona como retificador de tensão, quando a máquina de corrente contínua opera como um gerador, mas funciona como um inversor de tensão, quando a máquina de corrente contínua opera como um motor. A reação da armadura é responsável pelo desempenho da máquina, mas também é responsável pela torção do fluxo do campo magnético principal, e é por isto que foi associado à máquina um núcleo de interpolo, um enrolamento de interpolo e um enrolamento de compensação para corrigir o efeito negativo de ter grande faiscamento na comutação. 24

25 A linha neutra é sempre perpendicular à direção do fluxo do campo magnético resultante e se não existisse o fluxo de reação da armadura (Φ ra ) a linha neutra estaria localizada na direção norte - sul exatamente entre os dois pólos. No caso acima, temos o fluxo do campo magnético principal (Φ cmp ) se dirigindo para a esquerda (leste) e o fluxo de reação da armadura (Φ ra ) se dirigindo para cima (norte), logo o fluxo resultante estará apontando para o nordeste e a linha neutra vai se estabelecer na direção noroeste - sudeste: O quadro, a seguir, mostra a nomenclatura e a polaridade dos terminais dos enrolamentos da máquina de corrente contínua: Norma Enrolamento + ABNT - + DIN - Armadura A1 - A2 A - B Campo shunt E1 - E2 C - D Campo série D1 (S1) - D2 (S2) E - F Interpolo B1 - B2 G - H Compensação C1 - C2 G c - H c Shunt independente F1 - F2 J - K Tipos de ligação da máquina de corrente contínua: a) Ligação série: 25

26 b) Ligação shunt: c) Ligação shunt independente: 26

27 d) Derivada curta ou composta curta: e) Derivada longa ou composta longa: Procedimento 1) Verificar no painel de ligação da máquina de corrente contínua os terminais dos enrolamentos da armadura, do campo shunt, do campo série e do interpolo. Observar que os terminais estão identificados pela norma DIN e que o enrolamento de compensação só é utilizado em máquinas de grande porte. 27

28 10ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Acionamento do motor de corrente contínua, ligação shunt, através do demarrador. Fundamentos teóricos Uma tensão aplicada na armadura (V a ) e uma tensão gerada na armadura (E a ) ocorrem simultaneamente na máquina de corrente contínua. A tensão V a é maior que a tensão E a, se a máquina opera como motor de corrente contínua. O circuito elétrico da armadura do motor é: E a equação de tensões do circuito elétrico da armadura é dada por: V a = [(R e / 2) + (Re / 2)].I a + (R AB + R GH ). I a + E a = R e. I a + R AH. I a + E a Onde: V a = tensão aplicada nos terminais do motor R e = [(R e / 2) + (R e / 2)] = resistência elétrica das escovas R AH = (R AB + R GH + R e ) = resistência elétrica do enrolamento da armadura, interpoloe escovas. I a = corrente da armadura E a = tensão gerada ou induzida na armadura A tensão gerada varia linearmente com a constante de tensão (K t ) da máquina, com a intensidade do fluxo de campo (φ) e com a velocidade de rotação da armadura (N). Logo: 8 N tca. p.10 E a = K t. Φ. N, onde K t = 60. a N tca = número total de condutores da armadura p = número de pólos a = número de caminho em paralelo na armadura 10-8 = número de linhas que deve ser encadeada por espira por segundo para que seja induzida a tensão de 1 volt. 28

29 Obs: A velocidade N é dada em rpm. A equação geral de velocidade do motor de corrente contínua é obtida substituindose E a = K t. Φ. N na equação de tensões e isolando-se o valor da variável N : V a = R AH.I a + K t. Φ. N ou N = (V a - R AH.I a )/(K t. Φ). φ é o domínio da função, já que K t 0, e deve ser diferente de zero para qualquer ponto de operação do motor. O demarrador é um equipamento utilizado para acionar o motor de corrente contínua, ligação shunt. Ele garante um fluxo diferente de zero na partida e uma tensão inicialmente reduzida no enrolamento de armadura e interpolos. O diagrama interno do demarrador é simples: Procedimentos 1) Anotar o valor da temperatura ambiente no laboratório de máquinas elétricas e medir a resistência dos enrolamentos da armadura e de interpolo, utilizando um multímetro digital, e corrigir a resistência R AH para a temperatura de 75 o C, considerando que os enrolamentos são feitos com fio magnético de cobre esmaltado; 29

30 2) Executar o diagrama de montagem: 3) Acionar o motor e ajustar a sua velocidade para o valor nominal (de placa) através do reostato de campo magnético e anotar as leituras dos instrumentos. 30

31 11ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Controle de velocidade do motor de corrente contínua, ligação shunt, pela variação da tensão aplicada no enrolamento da armadura (V a ) ou pela variação do fluxo do campo magnético principal (φ). Fundamentos teóricos Va RAH. I a Re. I a A equação geral de velocidade N = mostra que N varia em K t.φ proporção direta com a tensão aplicada na armadura V a, desde que a corrente de armadura I a e o fluxo do campo magnético principal φ sejam mantidos constantes. a) Controle de velocidade do motor de C.C. pela variação da tensão aplicada na armadura: O torque eletromagnético T = K torq.φ. I desenvolvido pelo rotor varia linearmente a com a intensidade do fluxo do campo magnético principal φ e com a intensidade da corrente de armadura I a, considerando-se que a constante de torque (K torq ) da máquina é 8 N tca. p.10 dada por K torq =. 2π. a A potência ativa total (P t ) desenvolvida pelo motor varia linearmente com a variação de V a, pois neste caso, a corrente de armadura I a é constante (P a = k. V a ). Esse tipo de variação da velocidade do motor de corrente contínua, ligação shunt, é utilizado quando o motor opera com a velocidade dentro do intervalo de zero rpm até o seu valor de velocidade nominal. b) Controle de velocidade do motor de C.C. pela variação do fluxo do campo magnético principal: A equação geral de velocidade mostra que N é inversamente proporcional ao fluxo de campo magnético principal (φ), desde que a tensão aplicada no enrolamento da armadura (V a ) e a corrente do enrolamento da armadura (I a ) sejam mantidos constantes. Nesta condição, o torque eletromagnético T diminui com a redução do fluxo do campo magnético principal Φ e a potência ativa total P a permanece constante. Esse tipo de variação da velocidade do motor de corrente contínua, ligação shunt, é utilizado quando o motor opera acima da velocidade nominal. Os gráficos de F( N ) = P a e F( N ) = T mostram as variações de P a e T para velocidades abaixo e acima da velocidade nominal: 31

32 Procedimentos 1) Executar o diagrama de montagem Observação: O motor de corrente contínua é acoplado mecanicamente a um gerador síncrono trifásico (G.S.T) e fornece-lhe a potência mecânica (rotação). Ao excitar o circuito de campo magnético do G.S.T é induzida uma tensão trifásica nas linhas L1, L2 e L3 que por sua vez estão conectadas a um reostato trifásico que atua como carga elétrica, logo, para variar ou manter constante a corrente de armadura I a do motor de corrente contínua, bastará fazer os ajustes da corrente de campo magnético do G.S.T através do seu reostato de campo magnético. 2) Acionar o motor de corrente contínua, ajustar o valor da velocidade para o valor nominal, ajustando concomitantemente o valor da corrente de armadura para um valor constante (7,0 A). A partir da tensão nominal, variar a tensão V a decrescentemente por cinco vezes, anotando as leituras dos instrumentos: 32

33 V a (V) I a (A) I campo (A) N (rpm) P a (W) ) Sem desligar o motor de corrente contínua, ajustar o valor de V a para o valor nominal, mantendo constante o valor de Ia, e diminuir a corrente de campo (I campo ), por quatro vezes, até que o valor da velocidade atinja 125% do valor nominal. Anotar as leituras dos instrumentos: V a (V) I a (A) I campo (A) N (rpm) P a (W) ) Construir as curvas de F(V a ) = N, P a = F(V a ) para a tabela do ensaio de controle de velocidade pela variação da tensão aplicada no enrolamento da armadura e as curvas de F(I campo )= N, P a = F(I campo ) para a tabela do ensaio de controle de velocidade pela variação do fluxo do campo magnético principal. 33

34 12ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Controle de velocidade do motor de corrente contínua, ligação série, pela variação da tensão aplicada no enrolamento da armadura (V a ). Fundamentos teóricos A equação geral de velocidade N = [V a (R AH + R EF ). I a ] / (k t.φ) mostra que N varia linearmente com a tensão aplicada na armadura, desde que a corrente de armadura I a seja mantida constante e neste caso, o fluxo do campo magnético dependerá da corrente de armadura e a equação geral de velocidade pode ser escrita da seguinte forma: N = [V a (R AH + R EF ). K ] / (k t. k ). O torque eletromagnético T = K torq.φ. I desenvolvido pelo rotor será constante, uma a vez que a corrente de armadura I a e o fluxo do campo magnético principal φ são constantes, logo, T = k torq. (k ) 2. A potência ativa total (P t ) desenvolvida pelo motor variará linearmente com a variação da tensão aplicada na armadura V a ou P t = k. V a. Procedimentos 1) Executar o diagrama de montagem 2) Acionar o motor de corrente contínua com carga, ajustando a tensão e a velocidade para os seus valores nominais. Anotar as leituras dos instrumentos; 34

35 3) Diminuir a tensão aplicada na armadura V a, por quatro vezes, mantendo constante o valor da corrente de armadura I a. Anotar as leituras dos instrumentos após cada variação: V a (V) I a (A) N (rpm) P t (W) ) Construir as curvas de P t = F(V a ) e N = F(V a ). 35

36 13ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Ensaio de carga do motor de corrente contínua, ligação shunt. Fundamentos teóricos Neste ensaio é verificada a variação de velocidade do motor de corrente contínua, ligação shunt, em função da variação de sua carga (I a ), baseando-se na equação geral de velocidade N = [V a (R AH ). I a ] / (k t.φ), ou seja, N em função de I a [N = F(I a )], desde que a tensão aplicada na armadura V a e o fluxo do campo magnético Φ sejam mantidos constantes. O ensaio a vazio ou sem carga é executado para determinar a perda de potência por atrito e ventilação P av quando o eixo do motor gira com a velocidade nominal. Sabese que P av varia dependendo da velocidade do eixo do motor, por isso deve-se corrigir P av quando a velocidade variar, e neste caso consideraremos a variação de P av linear à variação de N. A potência ativa total P t = V a. I t, com I t = I a + I campo, no ensaio a vazio, é constituída de P av somada à potência consumida pelo enrolamento de campo magnético P campo = V a. I campo, somada à potência consumida pelo enrolamento de armadura e interpolo P AH = R AH. (I a ) 2 e somada à potência mecânica de saída P s, que neste caso é igual a zero, logo P t = P av + P campo + P AH + P s, isolando-se P av na equação e considerando-se P s = 0 teremos P av = P t (P campo + P AH ). No ensaio de carga é possível determinar P s para cada ponto de solicitação de carga, isto é, P s = P t (P av + P campo + P AH ), ou através da potência desenvolvida na armadura P da, onde P da = E a. I a = P s + P av ou P s = P da P av. O rendimento percentual pontual η% é obtido através da seguinte equação: η% = [(p s). 100%] / P t. O torque mecânico de saída T s, dado em N.m, é obtido a partir da seguinte equação: T s = [9.55.(P s )] / N r, onde N r é a velocidade do eixo do rotor para o referido ponto de carga. A regulação de velocidade percentual R N% é definida como sendo a razão entre a variação de velocidade N vazio N carga e a velocidade de referência N vazio vezes o 100%: R N% = [(N vazio N carga ). 100%] / N vazio. 36

37 1) Executar o diagrama de montagem Procedimentos 2) Acionar o motor de corrente contínua a vazio, ajustando a tensão e a velocidade para os valores nominais. Anotar as leituras dos instrumentos; 3) Mantendo a tensão aplicada na armadura V a e o fluxo de campo magnético Φ constantes, variar o valor da corrente de armadura I a, por quatro vezes, anotando as leituras dos instrumentos após cada variação: V a (V) I a (A) 15 I campo (A) I t (A) N r (rpm) 1800 P t (W) P AH (W) P campo (W) P av (W) P s (W) 0 η% 0 T s (N.m) 0 R N% 0 4) Construir as curvas de N = F(I a ), η% = F(I a ), T s = F(I a ) e R N% = F(I a ). 37

38 14ª Aula prática: Laboratório de Máquinas Elétricas I Assunto: Ensaio de carga do motor de corrente contínua, ligação série. Fundamentos teóricos Neste ensaio verificaremos a péssima regulação de velocidade do motor de corrente contínua, ligação série, em função da variação de sua carga (I a ), baseando-se na equação geral de velocidade N = [V a (R AF ). I a ] / (k t. Φ), ou seja, N em função de I a [N = F(I a )], desde que a tensão aplicada na armadura V a seja mantida constante. O ensaio a vazio ou sem carga é executado para determinar a perda de potência por atrito e ventilação P av quando o eixo do motor gira com a velocidade nominal e neste caso, a velocidade nominal é obtida com a tensão reduzida aplicada no enrolamento da armadura e interpolo do motor V a. Sabe-se que P av varia dependendo da velocidade do eixo do motor, por isso deve-se corrigir P av quando a velocidade variar, e neste caso consideraremos a variação de P av quadraticamente à variação de N. A potência ativa total P t = V a. I a, no ensaio a vazio, é constituída de P av somada à potência consumida pelos enrolamentos de armadura, interpolo e campo série P AF = R AF. (I a ) 2 e somada à potência mecânica de saída P s, que neste caso é igual a zero, logo P t = P av + P AF + P s, isolando-se P av na equação e considerando-se P s = 0 teremos P av = P t P AF. No ensaio de carga é possível determinar P s para cada ponto de solicitação mecânica ou de carga, isto é, P s = P t (P av + P AF ), ou através da potência desenvolvida na armadura P da, onde P da = E a. I a = P s + P av ou P s = P da P av. O rendimento percentual pontual η% é obtido através da seguinte equação: η% = [(p s). 100%] / P t. O torque mecânico de saída T s, em N.m, é obtido a partir da seguinte equação: T s = [9.55.(P s )] / N r, onde N r é a velocidade do eixo do rotor para o referido ponto de carga. A regulação de velocidade percentual R N% é definida como sendo a razão entre a variação de velocidade N vazio N carga e a velocidade de referência N vazio vezes o 100%: R N% = [(N vazio N carga ). 100%] / N vazio. A regulação de velocidade do motor de corrente contínua, ligação série, é normalmente negativa pelo fato deste tipo de motor não poder ser acionado sem carga, logo, inicia-se o ensaio com carga nominal e velocidade nominal e à medida que se retira carga a velocidade fica em patamares acima do valor nominal. 38

39 Procedimentos 1) Anotar o valor da temperatura ambiente no laboratório de máquinas elétricas e medir a resistência dos enrolamentos da armadura e de interpolo, utilizando um multímetro digital, e corrigir a resistência R AF para a temperatura de 75 o C, considerando que os enrolamentos são feitos com fio magnético de cobre esmaltado; 2) Executar o diagrama de montagem 3) Acionar o motor de corrente contínua, a vazio, com a tensão aplicada no enrolamento da armadura reduzida, ajustando a velocidade para o valor nominal. Anotar as leituras dos instrumentos; 4) Colocar carga no motor de corrente contínua, ajustando a sua velocidade para o valor nominal com a tensão aplicada no enrolamento da armadura nominal. Anotar as leituras dos instrumentos. Variar a carga, decrescentemente por três vezes, até que a velocidade do motor atinja a velocidade máxima de 2250 rpm, anotar as leituras dos instrumentos após cada variação: V a (V) I a (A) N r (rpm) P t (W) P AF (W) P av (W) P s (W) 0 η% 0 T s (N.m) 0 R N% 0 39

40 5) Construir as curvas de N = F(I a ), η% = F(I a ), T s = F(I a ) e R N% = F(I a ). IV BIBLIOGRAFIA: 1. Almeida, Welington Passos Apostila de aulas práticas de Laboratório de Máquinas Elétricas e Acionamentos. Edições Cefet-MG - Belo Horizonte, janeiro de Kosow, Irving L. - Máquinas Elétricas e Transformadores - Editora Globo, Porto Alegre, Fitzgerald, A. E. - Máquinas Elétricas. Editora McGraw Hill, Rio de Janeiro, Toro, Vincent Del. Fundamentos de Máquinas Eléctricas. Livros Técnicos Científicos Editora, Rio de Janeiro, Norma NBR 5380 ABNT 6. Site ABNT 40

Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila.

Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Departamento de Engenharia Elétrica Conversão de Energia I Lista de Exercícios: Máquinas Elétricas de Corrente Contínua Prof. Clodomiro Vila. Ex. 0) Resolver todos os exercícios do Capítulo 7 (Máquinas

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 3.4 Máquinas de Corrente Contínua Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução

Leia mais

TRANSFORMADORES. Fonte: itu.olx.com.br

TRANSFORMADORES. Fonte: itu.olx.com.br Fonte: itu.olx.com.br OBJETIVO Ao final deste capitulo o aluno estará apto a entender, aplicar e realizar cálculos referentes Transformadores. Transformador é uma máquina elétrica estática, sem partes

Leia mais

PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima:

PROVA DE CONHECIMENTOS ESPECÍFICOS. É característica que determina a um transformador operação com regulação máxima: 13 PROVA DE CONHECIMENTOS ESPECÍFICOS QUESTÃO 35 É característica que determina a um transformador operação com regulação máxima: a) A soma do ângulo de fator de potência interno do transformador com o

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 09

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 09 SEL 39 COVERSÃO ELETROMECÂCA DE EERGA Aula 09 Tópicos da Aula de Hoje Polaridade de transformadores Autotransformadores Transformadores Trifásicos Polaridade dos enrolamentos do transformador Dois terminais

Leia mais

O MOTOR DE INDUÇÃO - 1

O MOTOR DE INDUÇÃO - 1 PEA 2211 Introdução à Eletromecânica e à Automação 1 O MOTOR DE INDUÇÃO - 1 PARTE EXPERIMENTAL Conteúdo: 1. Introdução. 2. Observando a formação do campo magnético rotativo. 3. Verificação da tensão e

Leia mais

LABORATÓRIO INTEGRADO II

LABORATÓRIO INTEGRADO II FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO II Experiência 05: MOTOR TRIFÁSICO DE INDUÇÃO ENSAIOS: VAZIO E ROTOR BLOQUEADO Prof. Norberto Augusto Júnior

Leia mais

3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE

3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE 25 3 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES MONOFÁSICOS E TESTE DE POLARIDADE 31 INTRODUÇÃO Um estudo mais completo da teoria do transformador deve levar em conta os efeitos das resistências dos enrolamentos,

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 2.3 Transformadores Prof. Clodomiro Unsihuay Vila CARACTERISTICAS ELÉTRICAS Lembrete: https://www.youtube.com/watch?v=culltweexu Potência Nominal: NBR 5356:2006

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 2.5 Transformadores Prof. Clodomiro Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.

Leia mais

PEA EPUSP DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO PEA-2211 INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO. TRANSFORMADORES - Prática

PEA EPUSP DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO PEA-2211 INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO. TRANSFORMADORES - Prática PEA EPUSP DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO PEA-2211 INTRODUÇÃO À ELETROMECÂNICA E À AUTOMAÇÃO TRANSFORMADORES - Prática 2014 PEA2211-2014 Transformadores Parte Prática 1 Data / / 2014

Leia mais

PRÁTICAS DE LABORATÓRIO

PRÁTICAS DE LABORATÓRIO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Departamento Acadêmico de Eletrotécnica Disciplina: Máquinas Elétricas 1 PRÁTICAS DE LABORATÓRIO Professor: Joaquim

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 6.1 Máquinas Síncronas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Laboratório de Conversão Eletromecânica de Energia B

Laboratório de Conversão Eletromecânica de Energia B Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Característica de Magnetização da Máquina de Corrente Contínua 1.1 Introdução Máquinas de corrente contínua (MCC) devem

Leia mais

Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente

Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente Experiência V Característica de Regulação do Gerador de Corrente Contínua com Excitação Independente 1. Introdução A mesma máquina de corrente contínua de fabricação ANEL utilizada no ensaio precedente

Leia mais

MÁQUINAS E ACIONAMENTOS ELÉTRICOS. Prof. Hélio Henrique Cunha Pinheiro Curso: Eletrotécnica (integrado) Série: 4º ano C.H.: 160 aulas (4 por semana)

MÁQUINAS E ACIONAMENTOS ELÉTRICOS. Prof. Hélio Henrique Cunha Pinheiro Curso: Eletrotécnica (integrado) Série: 4º ano C.H.: 160 aulas (4 por semana) MÁQUINAS E ACIONAMENTOS ELÉTRICOS Prof. Hélio Henrique Cunha Pinheiro Curso: Eletrotécnica (integrado) Série: 4º ano C.H.: 160 aulas (4 por semana) OBJETIVOS Compreender os princípios básicos de funcionamento

Leia mais

Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa.

Questão 1. Gabarito. Considere P a potência ativa da carga e Q a potência reativa. Questão 1 Uma indústria tem uma carga de 1000 kva com fator de potência indutivo de 95% alimentada em 13800 V de acordo com medições efetuadas. A maneira mais fácil de representar a carga da indústria

Leia mais

Características Básicas dos Transformadores

Características Básicas dos Transformadores Características Básicas dos Transformadores (Roteiro No 2) Universidade Federal de Juiz de Fora Departamento de Energia Elétrica Juiz de Fora, MG 36036-900 Brasil 2018 (UFJF) Lab Maq I 2018 1 / 35 Introdução

Leia mais

ENGC25 - ANÁLISE DE CIRCUITOS II

ENGC25 - ANÁLISE DE CIRCUITOS II ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo

Leia mais

Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Magnéticos Os circuitos magnéticos são empregados com o intuito de concentrar o efeito magnético em uma dada região do espaço.

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 6.3 Máquinas Síncronas Prof. João Américo Vilela Máquina Síncrona Representação Fasorial Motor síncrono operando sobre-excitado E af > V t (elevada corrente de

Leia mais

LABORATÓRIO INTEGRADO III

LABORATÓRIO INTEGRADO III FACULDADE DE TECNOLOGIA E CIÊNCIAS EXATAS CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO INTEGRADO III Experiência 03: Ensaio de Vazio e Curto em Transformadores Trifásicos Prof. Norberto Augusto Júnior USJT

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 2.3 Transformadores Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Máquinas Elétricas. Máquinas CC Parte IV

Máquinas Elétricas. Máquinas CC Parte IV Máquinas Elétricas Máquinas CC Parte IV Máquina CC eficiência Máquina CC perdas elétricas (perdas por efeito Joule) Máquina CC perdas nas escovas Máquina CC outras perdas a considerar Máquina CC considerações

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07 SEL 39 COVERSÃO ELETROMECÂICA DE EERGIA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente

Leia mais

Capítulo 1 Introdução aos princípios de máquinas 1. Capítulo 2 Transformadores 65. Capítulo 3 Fundamentos de máquinas CA 152

Capítulo 1 Introdução aos princípios de máquinas 1. Capítulo 2 Transformadores 65. Capítulo 3 Fundamentos de máquinas CA 152 resumido Capítulo 1 Introdução aos princípios de máquinas 1 Capítulo 2 Transformadores 65 Capítulo 3 Fundamentos de máquinas CA 152 Capítulo 4 Geradores síncronos 191 Capítulo 5 Motores síncronos 271 Capítulo

Leia mais

Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono

Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono Máquinas Síncronas Determinação da Reatância Síncrona Campos Girantes Máquina Síncrona ligada ao Sistema de Potência Gerador e Motor Síncrono Aula Anterior Circuito Equivalente por fase O Alternador gerava

Leia mais

Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente Perdas elétricas e Rendimento

Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente Perdas elétricas e Rendimento Faculdade Pitágoras de Betim Engenharia Elétrica / Controle e Automação Máquinas Elétricas II Ensaio de circuito aberto (CCA) Ensaio de curto-circuito (CCC) Determinação dos parâmetros do circuito equivalente

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 07 SEL 39 COVERSÃO ELETROMECÂCA DE EERGA Aula 07 Revisão Corrente de excitação: circuito elétrico equivalente do eletroímã, desprezando a histerese i φ E i φ Corrente de excitação: circuito elétrico equivalente

Leia mais

Máquinas elétricas. Máquinas Síncronas

Máquinas elétricas. Máquinas Síncronas Máquinas síncronas Máquinas Síncronas A máquina síncrona é mais utilizada nos sistemas de geração de energia elétrica, onde funciona como gerador ou como compensador de potência reativa. Atualmente, o

Leia mais

Máquina de Indução - Lista Comentada

Máquina de Indução - Lista Comentada Máquina de Indução - Lista Comentada 1) Os motores trifásicos a indução, geralmente, operam em rotações próximas do sincronismo, ou seja, com baixos valores de escorregamento. Considere o caso de alimentação

Leia mais

Departamento de Engenharia Elétrica Conversão de Energia II Lista 7

Departamento de Engenharia Elétrica Conversão de Energia II Lista 7 Departamento de Engenharia Elétrica Conversão de Energia II Lista 7 Exercícios extraídos do livro: FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica De Potência.

Leia mais

MÁQUINA DE INDUÇÃO FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA

MÁQUINA DE INDUÇÃO FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA FUNDAMENTOS DE MÁQUINAS DE CORRENTE ALTERNADA As máquinas de corrente alternada são geradores que convertem energia mecânica em energia elétrica e motores que executam o processo inverso. As duas maiores

Leia mais

Experimento 4 Ensaios de curto-circuito e circuito aberto para determinação dos parâmetros de transformadores

Experimento 4 Ensaios de curto-circuito e circuito aberto para determinação dos parâmetros de transformadores Experimento 4 Ensaios de curto-circuito e circuito aberto para determinação dos parâmetros de transformadores 1. OBJETIVO Obtenção experimental dos parâmetros do circuito equivalente de um transformador

Leia mais

EXP 05 Motores Trifásicos de Indução - MTI

EXP 05 Motores Trifásicos de Indução - MTI EXP 05 Motores Trifásicos de Indução - MTI Funcionamento e Ligações Objetivos: Compreender o funcionamento e as ligações do motor de indução; Analisar os diferentes tipos de construção e as principais

Leia mais

Transformadores monofásicos

Transformadores monofásicos Transformadores monofásicos Motivações. Introdução. Transformador ideal. Transformador real. Circuito equivalente. Determinação dos parâmetros do circuito equivalente. Rendimento. Motivações Por que precisamos

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório UNIVERSIDADE FEDERAL DE SANA CAARINA DEPARAMENO DE ENGENHARIA ELÉRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 07 POÊNCIA MONOFÁSICA E FAOR DE POÊNCIA 1 INRODUÇÃO A análise de circuitos em corrente

Leia mais

O campo girante no entreferro e o rotor giram na mesma velocidade (síncrona); Usado em situações que demandem velocidade constante com carga variável;

O campo girante no entreferro e o rotor giram na mesma velocidade (síncrona); Usado em situações que demandem velocidade constante com carga variável; Gerador Síncrono 2. MÁQUINAS SÍNCRONAS Tensão induzida Forma de onda senoidal Número de pólos Controle da tensão induzida Fases de um gerador síncrono Fasores das tensões Circuito elétrico equivalente

Leia mais

Ensaio 6: Característica de Tensão-Carga de Geradores CC: Excitação Independente, Shunt Auto- Excitado e Série

Ensaio 6: Característica de Tensão-Carga de Geradores CC: Excitação Independente, Shunt Auto- Excitado e Série Ensaio 6: Característica de Tensão-Carga de Geradores CC: Excitação Independente, Shunt uto- Excitado e Série 1. Objetivos Os objetivos desse ensaio são: a) Construir a curva característica de tensão-carga

Leia mais

SEL330 LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA PRÁTICA #4 MÁQUINAS DE CORRENTE CONTÍNUA PARTE 1 CARACTERIZAÇÃO E FUNCIONAMENTO COMO GERADOR

SEL330 LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA PRÁTICA #4 MÁQUINAS DE CORRENTE CONTÍNUA PARTE 1 CARACTERIZAÇÃO E FUNCIONAMENTO COMO GERADOR SEL330 LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA PRÁTICA #4 MÁQUINAS DE CORRENTE CONTÍNUA PARTE 1 CARACTERIZAÇÃO E FUNCIONAMENTO COMO GERADOR Professores: Eduardo Nobuhiro Asada, Elmer Pablo Tito

Leia mais

Ensaios de Transformadores 1φ

Ensaios de Transformadores 1φ INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA BAHIA Campus Santo Amaro Curso de Eletromecânica Apostila de Laboratório, Ensaios de Transformadores 1φ Máquinas Elétricas Prof.: Elvio Prado da Silva

Leia mais

16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS

16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍICOS 6. Um condutor conduz uma corrente contínua constante de 5mA. Considerando-se que a carga de 19 um elétron é 1,6x1 C, então o número de elétrons que passa pela seção reta do condutor

Leia mais

MÁQUINAS ELÉTRICAS ROTATIVAS. Fonte: logismarket.ind.br

MÁQUINAS ELÉTRICAS ROTATIVAS. Fonte: logismarket.ind.br MÁQUINAS ELÉTRICAS ROTATIVAS Fonte: logismarket.ind.br OBJETIVO Ao final deste capitulo o aluno estará apto a entender e aplicar conhecimentos relativos a Máquinas Elétricas Rotativas As máquinas elétricas

Leia mais

Princípios de máquinas elétricas força induzida Um campo magnético induz uma força em um fio que esteja conduzindo corrente dentro do campo

Princípios de máquinas elétricas força induzida Um campo magnético induz uma força em um fio que esteja conduzindo corrente dentro do campo Princípios de máquinas elétricas Uma máquina elétrica é qualquer equipamento capaz de converter energia elétrica em energia mecânica, e vice-versa Principais tipos de máquinas elétricas são os geradores

Leia mais

Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético;

Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético; Relembrando... Em um gerador síncrono, uma corrente contínua é aplicada ao enrolamento do rotor, o qual produz um campo magnético; Como o rotor é girado por uma força mecânica, se produz um campo magnético

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia EXPERIÊNCIA: ENSAIOS EM CURTO E VAZIO DE TRANSFORMADORES

Leia mais

Experimento Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade

Experimento Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade - 1 o Semestre de 2011 Prof. Rubens H. Korogui Experimento 03 1 Ensaio 01: Variação da tensão induzida no circuito do rotor em função da sua velocidade 1.1 Objetivo Verificação do comportamento freqüência

Leia mais

Partes de uma máquina síncrona

Partes de uma máquina síncrona Oque são geradores síncronos Um dos tipos mais importantes de máquinas elétricas rotativas é o Gerador Síncrono, que é capaz de converter energia mecânica em elétrica quando operada como gerador. Os Geradores

Leia mais

Máquinas Elétricas. Máquinas CC Parte II

Máquinas Elétricas. Máquinas CC Parte II Máquinas Elétricas Máquinas CC Parte II Máquina CC Máquina CC Máquina CC comutação A comutação é o processo de converter as tensões e correntes CA do rotor de uma máquina CC em tensões e correntes CC em

Leia mais

Nome do Aluno Assinatura Nome do Aluno Assinatura. Parte Experimental

Nome do Aluno Assinatura Nome do Aluno Assinatura. Parte Experimental Nome do Aluno Assinatura Nome do Aluno Assinatura 1- A Bancada Experimental Parte Experimental Observe a montagem da figura 1. Note que o esquema possui um grau de diversidade de equipamentos bastante

Leia mais

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém

Leia mais

A) 15,9 A; B) 25,8 A; C) 27,9 A; D) 30,2 A; E) 35,6 A.

A) 15,9 A; B) 25,8 A; C) 27,9 A; D) 30,2 A; E) 35,6 A. 53.(ALERJ/FGV/2017) Um motor CC do tipo shunt que possui uma potência mecânica de 6 HP é alimentado por uma fonte de 200 V. Sabendo-se que o seu rendimento é de 80 % e que a corrente de excitação é de

Leia mais

Universidade Paulista Unip

Universidade Paulista Unip As máquinas de corrente contínua podem ser utilizadas tanto como motor quanto como gerador. 1 Uma vez que as fontes retificadoras de potência podem gerar tensão contínua de maneira controlada a partir

Leia mais

Introdução às máquinas CA

Introdução às máquinas CA Introdução às máquinas CA Assim como as máquinas CC, o princípio de funcionamento de máquinas CA é advindo, principalmente, do eletromagnetismo: Um fio condutor de corrente, na presença de um campo magnético,

Leia mais

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Guia da 2 a aula prática 2014 Carga RLC Monofásica Assunto: - Medição de potência em carga RLC monofásica e correção

Leia mais

Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( )

Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( ) Eletrotecnia Aplicada Transformadores (parte ) Engenharia Eletrotécnica e de Computadores (3-0-03) Conceito de transformador Os transformadores elétricos são dispositivos eletromagnéticos acoplados indutivamente

Leia mais

CIRCUITO EQUIVALENTE MAQUINA

CIRCUITO EQUIVALENTE MAQUINA CIRCUITO EQUIVALENTE MAQUINA Se o circuito do induzido for fechado sobre uma carga, vai circular por ele uma corrente que será responsável por perdas por efeito de Joule na resistência do próprio enrolamento,

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório UNIVERSIDADE FEDERAL DE SANA CAARINA Departamento de Engenharia Elétrica EEL7040 Circuitos Elétricos I - Laboratório Aula 07 POÊNCIA MONOFÁSICA E FAOR DE POÊNCIA 1.0 INRODUÇÃO 1.1 Instrumento Eletrodinâmico

Leia mais

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita Eletricidade Aplicada Aulas Teóricas Professor: Jorge Andrés Cormane Angarita O Transformador Eletricidade Aplicada Introdução Circuitos acoplados condutivamente são aqueles que afetam a malha vizinha

Leia mais

Características Básicas das Máquinas de Corrente Contínua

Características Básicas das Máquinas de Corrente Contínua Características Básicas das Máquinas de Corrente Contínua (Roteiro No. 6) Universidade Federal de Juiz de Fora Departamento de Energia Elétrica Juiz de Fora, MG 36036-900 Brasil 2018 (UFJF) Lab. Maq. I

Leia mais

Máquinas Elétricas. Máquinas Síncronas Parte I. Geradores

Máquinas Elétricas. Máquinas Síncronas Parte I. Geradores Máquinas Elétricas Máquinas Síncronas Parte I Geradores Introdução Em um gerador síncrono, um campo magnético é produzido no rotor. través de um ímã permanente ou de um eletroímã (viabilizado por uma corrente

Leia mais

Máquinas Elétricas. Máquinas CC Parte II

Máquinas Elétricas. Máquinas CC Parte II Máquinas Elétricas Máquinas CC Parte II Máquina CC Máquina CC Máquina CC comutação A comutação é o processo de converter as tensões e correntes CA do rotor de uma máquina CC em tensões e correntes CC em

Leia mais

Instalações Elétricas Prediais A ENG04482

Instalações Elétricas Prediais A ENG04482 Instalações Elétricas Prediais A ENG04482 Prof. Luiz Fernando Gonçalves AULA 2 Conceitos Fundamentais Porto Alegre - 2012 Tópicos Energia elétrica Fontes de eletricidade Fontes de tensão e corrente Geração

Leia mais

MOTORES DE INDUÇÃO. Estator: Campo Tres fases P polos (4-8) Distribução senoidal do fluxo. Rotor: Armadura Cilindro de ferro com conductores: Gaiola

MOTORES DE INDUÇÃO. Estator: Campo Tres fases P polos (4-8) Distribução senoidal do fluxo. Rotor: Armadura Cilindro de ferro com conductores: Gaiola MOTORES DE INDUÇÃO Estator: Campo Tres fases P polos (4-8) Distribução senoidal do fluxo Rotor: Armadura Cilindro de ferro com conductores: Gaiola Cortocircuito Conductores CAMPOS MAGNÉTICOS GIRANTES

Leia mais

ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS

ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS ENUNCIADO DOS EXERCÍCIOS ESTÃO NAS ULTIMAS PÁGINAS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA - Departamento de Engenharia de Energia e Automação Elétricas Eletrotécnica Geral Lista de Exercícios

Leia mais

Exercícios: Eletromagnetismo, circuitos CC e aplicações

Exercícios: Eletromagnetismo, circuitos CC e aplicações 1 UFOP - Universidade Federal de Ouro Preto - Escola de Minas CAT17 - Eletrotécnica Geral - Prof. Danny Tonidandel. Data: Aluno: Matrícula: Exercícios: Eletromagnetismo, circuitos CC e aplicações Resolva

Leia mais

Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição)

Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição) Universidade Federal de Minas Gerais Escola de Engenharia Curso de Graduação em Engenharia Elétrica Disciplina: Conversão da Energia Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição) 5.3) Cálculos

Leia mais

MOTOR DE CORRENTE CONTÍNUA

MOTOR DE CORRENTE CONTÍNUA PEA DEPARTAMENTO DE ENGENHARIA DE ENERGIA E AUTOMAÇÃO ELÉTRICAS PEA-3311 Laboratório de Conversão Eletromecânica de Energia MOTOR DE CORRENTE CONTÍNUA ROTEIRO EXPERIMENTAL 2016 Motor de Corrente Contínua

Leia mais

Acionamento de motores de indução

Acionamento de motores de indução Acionamento de motores de indução Acionamento de motores de indução Vantagens dos motores de indução Baixo custo Robustez construtiva 1 Controle da velocidade de motores de indução Através de conversores

Leia mais

Experimento 3 Formação de um transformador trifásico

Experimento 3 Formação de um transformador trifásico erimento 3 Formação de um transformador trifásico 1. OBJETIVO Verificação experimental das diferentes conexões dos enrolamentos primários e secundários para formar um banco trifásico. 2. MATERIAIS UTILIZADO

Leia mais

ET720 Sistemas de Energia Elétrica I. Capítulo 4: Transformadores de potência. Exercícios

ET720 Sistemas de Energia Elétrica I. Capítulo 4: Transformadores de potência. Exercícios ET720 Sistemas de Energia Elétrica I Capítulo 4: Transformadores de potência Exercícios 4.1 Um transformador monofásico de dois enrolamentos apresenta os seguintes valores nominais: 20 kva, 480/120 V,

Leia mais

Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda

Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***

Leia mais

campo em 2 A e a velocidade em 1500 rpm. Nesta condição qual o valor do torque

campo em 2 A e a velocidade em 1500 rpm. Nesta condição qual o valor do torque Um alternador síncrono de pólos lisos possui quatro pólos, está ligado em estrela e apresenta potência nominal igual a 20kVA. Em vazio a tensão entre os terminais é igual a 440 V, quando o rotor da máquina

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETROTÉCNICA

UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETROTÉCNICA UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETROTÉCNICA Experiência 03: Polaridade de transformadores monofásicos Objetivos: Obtenção

Leia mais

Lista de Exercícios 3 Conversão de Energia

Lista de Exercícios 3 Conversão de Energia Lista de Exercícios 3 Conversão de Energia Aluno: Turma: 6 Período Professor(a): Geraldo Leão Lana ENSAIOS DE TRANSFORMADORES 1) Por que o ensaio a vazio a realizado no lado de baixa tensão? Quais as medidas

Leia mais

PRINCIPIO DE FUNCIONAMENTO DE GERADOR SINCRONO

PRINCIPIO DE FUNCIONAMENTO DE GERADOR SINCRONO 1 UNIVERSIDADE DO ESTADO DE MATO GROSSO FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE BACHARELADO EM ENGENHARIA ELÉTRICA PRINCIPIO DE FUNCIONAMENTO DE GERADOR SINCRONO UNEMAT Campus de Sinop 2016

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de ngenharia létrica Aula 3.5 Transformadores Prof. Clodomiro Unsihuay Vila Bibliografia FITZGRALD, A.., KINGSLY Jr. C. UMANS, S. D. Máquinas létricas: com Introdução à letrônica De Potência.

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 2.2 Máquinas Rotativas Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ

PÓS-GRADUAÇÃO PRESENCIAL MARINGÁ 17/09/2016 1 / 26 PRESENCIAL MARINGÁ Professor CURSOS 2016 Introdução aos Sistemas Elétricos de Potência Circuitos Trifásicos e Laboratório MatLab Gerador Síncrono Transformadores TOTAL DE CURSO 10 10

Leia mais

Experiência I Lab. de Conv. Eletrom. de Energia B Prof. N.SADOWSKI GRUCAD/EEL/CTC/UFSC 2005/2

Experiência I Lab. de Conv. Eletrom. de Energia B Prof. N.SADOWSKI GRUCAD/EEL/CTC/UFSC 2005/2 Experiência I Obtenção Experimental dos Parâmetros do Circuito Equivalente do Motor de Indução Trifásico Ensaio com o Rotor Travado e Ensaio a Vazio O Laboratório de Máquinas Elétricas do Departamento

Leia mais

C k k. ω 0 : VELOCIDADE EM VAZIO (SEM CARGA) - α : DEFINE A REGULAÇÃO DE VELOCIDADE COM O TORQUE PEA MÁQUINAS ELÉTRICAS E ACIONAMENTOS 22

C k k. ω 0 : VELOCIDADE EM VAZIO (SEM CARGA) - α : DEFINE A REGULAÇÃO DE VELOCIDADE COM O TORQUE PEA MÁQUINAS ELÉTRICAS E ACIONAMENTOS 22 PEA 3404 - MÁQUINAS ELÉTRICAS E ACIONAMENTOS 22 MOTORES DE CORRENTE CONTÍNUA: CARACTERÍSTICAS EXTERNAS LIGAÇÃO DE CAMPO INDEPENDENTE FONTES INDEPENDENTES P/ ALIMENTAÇÃO DE ARMADURA E CAMPO FONTES INDIVIDUALMENTE

Leia mais

PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS

PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS PEA 2404 MÁQUINAS ELÉTRICAS E ACIONAMENTOS Resumo das notas de aula 1 A1 PROGRAMA: 1 MÁQUINAS ASSÍNCRONAS: Caracterização e classificação das máquinas assíncronas - Aspectos construtivos Princípio de funcionamento

Leia mais

3. Um transformador de 220/400 V foi ensaiado em vazio, tendo-se obtido os seguintes valores: P 10 =20 W, I 10 =0,5 A. Calcule:

3. Um transformador de 220/400 V foi ensaiado em vazio, tendo-se obtido os seguintes valores: P 10 =20 W, I 10 =0,5 A. Calcule: 1. Um transformador de 220/112 V, 110 VA, foi ensaiado em vazio tendo-se obtido os seguintes valores: U 1n =220 V, U 20 =112 V, I 10 =0,14 A, P 10 =8,8 W. Medimos ainda as resistências do primário e do

Leia mais

O MOTOR DE INDUÇÃO - 2 PARTE EXPERIMENTAL

O MOTOR DE INDUÇÃO - 2 PARTE EXPERIMENTAL EA 22 Introdução à Eletromecânica e à Automação Conteúdo: O MOTOR DE INDUÇÃO - 2 ARTE EXERIMENTAL. Verificação do escorregamento do motor de indução Comportamento em carga. 2. Verificação do conjugado

Leia mais

Fotos. Transformadores utilizados em sistemas de transmissão

Fotos. Transformadores utilizados em sistemas de transmissão Trafos Monofásicos Motivações Por que precisamos estudar este tópico? Os transformadores permitem a transmissão a grandes distâncias usando altos níveis de tensão e reduzindo as perdas elétricas dos sistemas.

Leia mais

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)

Leia mais

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 20

SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 20 SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 20 Aula de Hoje Introdução à máquina síncrona trifásica Características Básicas de uma Máquina Síncrona O enrolamento de campo é posicionado no rotor; O

Leia mais

Prof. José Alberto Marques Prof. Alexandre Shozo Onuki

Prof. José Alberto Marques Prof. Alexandre Shozo Onuki Prof. José Alberto Marques Prof. Alexandre Shozo Onuki 1 egras das aulas de Laboratório de Máquinas Elétricas: 1 - O relatório só será aceito no prazo de 2 semanas após o ensaio. 2 - O relatório deverá

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PLANO DE ENSINO (Provisório) PERÍODO LETIVO: 2007/2

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PLANO DE ENSINO (Provisório) PERÍODO LETIVO: 2007/2 DISCIPLINA: Créditos: 6 Caráter: Obrigatório Professor regente: Ály Ferreira Flores Filho UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PLANO DE ENSINO

Leia mais

Motores Elétricos de Indução Trifásicos. Prof. Sebastião Lauro Nau, Dr. Eng. Set17

Motores Elétricos de Indução Trifásicos. Prof. Sebastião Lauro Nau, Dr. Eng. Set17 Motores Elétricos de Indução Trifásicos Prof. Sebastião Lauro Nau, Dr. Eng. Set17 SUMÁRIO (aproximado): Transdutores elétricos, mecânicos e eletromecânicos; Circuitos Magnéticos; Introdução aos Motores

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Conversão de Energia Aula 4.6 Máquinas de Corrente Contínua Pro. Clodomiro Unsihuay-Vila Bibliograia FTZGERALD, A. E., KNGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas:

Leia mais

Conversão de Energia I

Conversão de Energia I Departamento de Engenharia Elétrica Aula 3.3 Transformadores Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Máquinas Elétricas. Máquinas Indução Parte I. Motores

Máquinas Elétricas. Máquinas Indução Parte I. Motores Máquinas Elétricas Máquinas Indução Parte I Motores Motor indução Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor indução conjugado induzido Motor

Leia mais

Conversão de Energia II

Conversão de Energia II Departamento de Engenharia Elétrica Aula 4.1 Motores Monofásicos Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica

Leia mais

Classificação de Máquinas quanto ao tipo de Excitação

Classificação de Máquinas quanto ao tipo de Excitação Classificação de Máquinas quanto ao tipo de Excitação Máquinas de cc podem ser classificadas conforme as interconexões entre os enrolamentos do campo e da armadura. Ela pode ser basicamente de quatro formas:

Leia mais

Transformadores elétricos (trafos)

Transformadores elétricos (trafos) Transformadores elétricos (trafos) Dispositivo que converte, por meio da ação de um campo magnético, a energia elétrica CA em uma certa frequência e nível de tensão em energia elétrica CA de mesma frequência,

Leia mais

4 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES TRIFÁSICOS

4 CIRCUITO EQUIVALENTE PARA TRANSFORMADORES TRIFÁSICOS 34 4 CIRCUITO EQUIVLENTE PR TRNSFORMDORES TRIFÁSICOS 4.1 INTRODUÇÃO caracterização dos bancos trifásicos, formados por transformadores monofásicos (mostrados nas Figura 13 (b), Figura 14 (b), Figura 15

Leia mais

Corrente Alternada. Circuitos Monofásicos (Parte 2)

Corrente Alternada. Circuitos Monofásicos (Parte 2) Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO

Leia mais

APÊNDICE C. Ensaio da Performance do Protótipo. MATRBGC-HGW560-75kW

APÊNDICE C. Ensaio da Performance do Protótipo. MATRBGC-HGW560-75kW APÊNDICE C Ensaio da Performance do Protótipo MATRBGC-HGW560-75kW 298 LABORATÓRIO DE ENSAIOS ELÉTRICOS - BAIXA TENSÃO WEG MÁQUINAS RELATÓRIO DE ENSAIO DE PROTÓTIPO MATRBGC 560 POTÊNCIA: 75KW / 25KW TENSÃO

Leia mais

Máquinas Elétricas. Máquinas CC Parte III

Máquinas Elétricas. Máquinas CC Parte III Máquinas Elétricas Máquinas CC Parte III Máquina CC Máquina CC Máquina CC Comutação Operação como gerador Máquina CC considerações fem induzida Conforme já mencionado, a tensão em um único condutor debaixo

Leia mais