Modelagem de Sinapses

Tamanho: px
Começar a partir da página:

Download "Modelagem de Sinapses"

Transcrição

1 Modelagem de Sinapses Introdução à Neurociência Computacional (Graduação) Antonio Roque Aula 15 Há dois tipos de sinapses, químicas e elétricas. Vamos começar considerando apenas a sinapse química, que é tida como a mais importante segundo a maioria dos neurocientistas. Uma sinapse química padrão conecta o axônio do neurônio que envia o estímulo, chamado de neurônio pré-sináptico, a um dendrito do neurônio que recebe o estímulo, chamado de neurônio pós-sináptico (veja a figura abaixo). Quando um potencial de ação chega ao terminal do axônio do neurônio pré-sináptico, uma série de eventos acontece: - Canais de cálcio na membrana do terminal pré-sináptico se abrem e íons de Ca 2+ entram na célula pré-sináptica. - Os íons de Ca 2+ provocam a fusão de vesículas que contêm neurotransmissores com a membrana pré-sináptica, liberando esses neurotransmissores na fenda sináptica. - Depois que as vesículas liberam seu conteúdo, elas retornam ao meio intracelular do neurônio pré-sináptico e são recarregadas com neurotransmissores para ser usadas novamente no futuro. 1

2 - Os neurotransmissores liberados na região do meio extracelular entre os dois terminais sinápticos chamada de fenda sináptica se difundem pela fenda sináptica e se ligam a receptores na membrana do dendrito do neurônio póssináptico. - Há dois tipos básicos de receptores na membrana do neurônios pós-sináptico: receptores ionotrópicos e receptores metabotrópicos. Os receptores ionotrópicos são canais iônicos que se abrem quando se ligam a um neurotransmissor e deixam passar íons para dentro ou para fora do neurônio pós-sináptico. Os receptores metabotrópicos serão descritos mais adiante. - Dependendo do tipo de neurotransmissor, quando ele se liga a um receptor ionotrópico isso pode provocar uma pequena despolarização local na membrana (pela entrada de carga positiva) ou uma pequena hiperpolarização local na membrana (pela entrada de carga negativa). - Uma despolarização local na membrana é chamada de potencial pós-sináptico excitatório e uma hiperpolarização local é chamada de potencial pós-sináptico inibitório. A figura abaixo mostra um exemplo de um potencial pós-sináptico excitatório. - Um neurônio pré-sináptico sempre libera o mesmo tipo de neurotransmissor: quando ele provoca uma despolarização local, o neurônio pré-sináptico é chamado de excitatório e a sinapse é dita excitatória; quando ele provoca uma hiperpolarização local, o neurônio pré-sináptico é chamado de inibitório e a sinapse é dita inibitória. 2

3 - A Figura abaixo ilustra um potencial pós-sináptico excitatório e um potencial póssináptico inibitório. É costume referir-se a esses potenciais pós-sinápticos por suas siglas em inglês: EPSP e IPSP. - A transmissão sináptica é um processo muito rápido. O tempo gasto entre a chegada de um potencial de ação ao terminal do neurônio pré-sináptico e a geração de um potencial pós-sináptico (excitatório ou inibitório) é da ordem de um milissegundo. - Para que o neurônio pós-sináptico esteja novamente pronto a ser afetado pela chegada de novos potenciais de ação ao terminal do neurônio pré-sináptico, um processo de liberação muito rápido (de menos de 1 ms) ocorre na sua membrana. - Este processo de liberação é feito por células gliais especializadas, denominadas transportadoras. As transportadoras removem os neurotransmissores da membrana pós-sináptica antes da chegada de um novo potencial de ação, alteram sua conformação e os transportam ao neurônio pré-sináptico para que eles sejam rearmazenados nas suas vesículas. - Há também neurotransmissores que não provocam a abertura de canais iônicos de forma direta, mas apenas de forma indireta. Estes neurotransmissores se ligam a receptores específicos que não possuem canais iônicos, os chamados receptores metabotrópicos. - Quando um neurotransmissor se liga a um receptor metabotrópico, este libera proteínas chamadas de proteínas G no meio intracelular. As proteínas G se ligam a moléculas sinalizadoras chamadas de segundos mensageiros que desencadeiam uma sequência de eventos bioquímicos no interior do neurônio pós-sináptico. 3

4 - Esta sequência pode causar diversos fenômenos, como a abertura de canais iônicos, a alteração conformacional (sem a abertura de canais) de proteínas de membrana e de moléculas transportadoras e até alterações na expressão gênica. - As modificações causadas pela ligação de um neurotransmissor com um receptor metabotrópico ocorrem mais lentamente e são mais duradouras do que as modificações causadas pela ligação de um neurotransmissor com um receptor ionotrópico. Além disso, elas podem ocorrer em locais mais distantes da região da sinapse. - A figura abaixo ilustra esquematicamente o funcionamento dos receptores ionotrópicos e metabotrópicos. Os potenciais pós-sinápticos (excitatórios ou inibitórios) têm durações muito maiores que a de um potencial de ação. Um potencial pós-sináptico típico tem uma fase de subida que leva de 1 a 2 ms e um tempo de decaimento mais lento, que leva de 3 a 5 ms. A figura a seguir ilustra um potencial pós-sináptico típico. 4

5 O principal neurotransmissor excitatório do cérebro é o glutamato e o principal neurotransmissor inibitório é o GABA (ácido γ-aminobutírico). Os dois podem atuar tanto sobre receptores ionotrópicos como metabotrópicos. Os principais receptores ionotrópicos para o glutamato são os chamados receptores AMPA e NMDA. Eles recebem estes nomes por causa das drogas agonistas que os ativam (ácido α-amino-3-hidroxi-metil-4-isoxazolepropriônico, ou AMPA; e N-metil-D-aspartato, ou NMDA). Tanto os receptores AMPA como NMDA, quando ligados ao glutamato, atuam como canais iônicos para cátions em geral (Na +, Ca 2+, etc), embora o receptor NMDA seja mais permeável ao Ca 2+ do que o receptor AMPA. As correntes resultantes (para dentro da célula) têm potenciais de reversão em torno de 0 mv. A corrente iônica associada ao receptor AMPA é ativada e inativada muito rapidamente. Já a corrente associada ao receptor NMDA é ativada mais lentamente e a sua inativação é muito mais lenta. Além disso, a condutância dos receptores NMDA tem uma dependência com a voltagem mais complicada e o seu comportamento não pode ser reproduzido pelo modelo padrão de Hodgkin-Huxley. Para modelá-la, é necessário modificar um pouco o modelo de Hodgkin-Huxley. O neurotransmissor inibitório GABA ativa dois tipos de receptores, chamados de GABA A e GABA B. O receptor GABA A é ionotrópico e constitui um canal iônico para o Cl cuja condutância se ativa e inativa de maneira relativamente rápida. Já o receptor GABA B é metabotrópico e produz um aumento mais lento e duradouro da condutância ao K +. As correntes resultantes (para dentro ou para fora da célula) têm potenciais de reversão em torno de 75 mv. Estudos experimentais com o uso da técnica de patch-clamp (ver aula 10), que permite o registro da atividade de um único canal, mostram que os potenciais pós-sinápticos são eventos macroscópicos resultantes do comportamento de uma população de canais iônicos que transitam rapidamente entre os seus estados condutor e o não condutor. 5

6 Por causa disso, a geração dos potenciais pós-sinápticos pode ser bem modelada pelo formalismo de Hodgkin e Huxley, que descreve o comportamento temporal de voltagens e correntes em termos de alterações em condutâncias (a única exceção é condutância dos receptores NMDA). Como se trata de sinapses, essas condutâncias são chamadas de condutâncias sinápticas. Segundo o formalismo de Hodgkin-Huxley, a corrente sináptica pela membrana do neurônio pós-sináptico produzida após a chegada de um potencial de ação ao terminal do neurônio pré-sináptico é dada por (1) onde g sin ( é a condutância sináptica (que descreve a variação na condutância dos canais sinápticos na membrana do neurônio pós-sináptico), V pós ( é a voltagem de membrana do neurônio pós-sináptico e E sin é o potencial de reversão (equilíbrio) da sinapse. ó Existem várias maneiras de modelar a condutância sináptica g sin (. Uma maneira muito popular em modelos de redes de neurônios é assumir que g sin ( é uma função prédeterminada de t que vale 0 para t < t 0, onde t 0 é o instante da chegada do potencial de ação ao terminal pré-sináptico, e é positiva para t > t 0 : (2) onde é uma constante escolhida de tal forma que g sin (t pico ) = g pico, onde g pico é o valor de pico da curva descrita pela condutância sináptica a partir de t 0. As formas funcionais pré-determinadas mais usadas para a função z( são: a) Decaimento exponencial simples: (3) 6

7 b) Função alfa (assim chamada porque Rall lhe deu este nome em 1967): c) Duas funções exponenciais: (4) (3) para a modelagem de neurônios, a condutância de uma sinapse é representada pela condutância máxima da sinapse (quando todos os canais sinápticos estão abertos), g, multiplicada pela fração de canais sinápticos abertos, r(, onde r é uma variável com valor entre 0 e 1. Inserir aqui o material sobre funções alfa (ver curso SAIFR2) A dependência temporal de r é governada pela dinâmica de liberação de neurotransmissores do neurônio pré-sináptico após a chegada de um potencial de ação ao seu terminal e pela dinâmica de ligação desses neurotransmissores com os receptores localizados no neurônio pós-sináptico. Essa dinâmica pode ser modelada por um modelo cinético de dois estados (ver, por exemplo, Destexhe et al., 1998) α R + T TR, (1) β onde R representa a quantidade de receptores não-ligados, T representa a quantidade de transmissores liberada, TR representa a quantidade de receptores ligados a transmissores e 7

8 α e β representam as taxas de transição entre os dois estados do sistema. As concentrações de R e de TR devem obedecer à seguinte equação de conservação: [ R ] + [ TR] = 1. Este modelo implica que a fração de receptores ligados (ou de canais abertos) r( obedece à seguinte equação diferencial (considerando que existe um grande número de canais iônicos e desprezando flutuações estatísticas): dr( dt ( 1 r( ) r(. = αt β (2) Esta equação pode ser resolvida exatamente a partir da hipótese de que a liberação de neurotransmissores ocorre em pulsos quadrados e idênticos disparados sempre que o potencial de ação pré-sináptico ultrapassa um dado limiar (por exemplo, 0 mv). Considerando que um pulso se inicia em t 0 e vai até t 1 (duração igual a t 1 t 0 ) e que a sua amplitude é constante e igual a T, podemos dividir o pulso em duas fases distintas: (a) durante um pulso; e (b) após um pulso. A equação (2) pode ser resolvida analiticamente para cada uma dessas duas fases. Seja: a) Durante um pulso (t 0 < t < t 1 ): T = T ; b) Após um pulso (t > t 1 ): T = 0. Durante o pulso caso (a), a equação (2) fica, dr( dt Dividindo-se ambos os lados por (αt +β), Definindo-se, ( 1 r( ) βr( = αt ( αt β ) r. = α T + 1 ( αt + β ) dt ( αt + β ) dr( = ( αt + β ), αt r. αt r (3) 8

9 τ 1 ( αt + β ), (4) pode-se reescrever a equação (2) como, dr( τ = r r. (5) dt Esta equação tem como solução (lembre-se que ela é válida para t 0 < t < t 1 ): r( t 0 ( t t τ ( r( t ) r ) e t ) = r +. (6) 0 0 ) Após o pulso caso (b), a equação (2) torna-se, dr( = βr(, (7) dt cuja solução (lembre-se que ela é válida para t > t 1 ) é: r( t t 1 ) = r( t 1 ) e β ( t t 1 ). (8) A condutância sináptica é modelada pela equação, g s ( = gr(. (9) Para cada fase de um pulso (durante ou depois dele), r( obedece, ou à equação (6), ou à equação (8). Da mesma forma, a corrente sináptica associada à condutância acima é dada por: I = g ( ( V ) sin s E s, (10) onde V é o potencial de membrana, E s é o potencial de reversão da corrente sináptica e g s ( é a condutância da sinapse dada por (9). Para cada fase de um pulso, ela é modelada pelas equações (6) ou (8). A aproximação de tratar as quantidades de neurotransmissores liberadas como pulsos quadrados idênticos simplifica bastante a resolução numérica de um sistema de neurônios 9

10 acoplados sinapticamente. Ao invés de ter que resolver uma equação diferencial como a (2) para cada sinapse, basta calcular numericamente a equação (6) ou a (8), dependendo da fase do pulso em que se esteja, e isto envolve basicamente o cálculo de exponenciais (que podem ser pré-calculadas e tabeladas para facilitar a eficiência computacional). Para maiores detalhes sobre como implementar numericamente o modelo descrito pelas equações (6) e (8), sugere-se o artigo de Destexhe et al. (1998). Uma simulação de uma sinapse excitatória entre dois neurônios modelada pelas equações (6) e (8) foi feita por Giugliano e Arsiero (2006). Uma figura desse artigo é reproduzida abaixo, mostrando que o modelo captura as propriedades de saturação e somação temporal quando ocorrem múltiplos eventos pré-sinápticos. Foi mencionado acima que a condutância do receptor NMDA tem uma dependência com a voltagem diferente da observada nas outras condutâncias. Para modelar essa dependência, a corrente sináptica por um receptor NMDA costuma ser descrita da forma usual (equação 10) multiplicada por um termo a mais que depende de V: Nesta equação, os termos I = g r ( g ( V) ( V E ) NMDA NMDA s NMDA s. (11) g NMDA, r s ( e E s têm as interpretações usuais descritas acima. O termos g NMDA (V), no entanto, descreve uma dependência a mais da condutância do receptor NMDA em relação à voltagem V devido ao fato de que quando o potencial de membrana do neurônio pós-sináptico está próximo do seu valor de repouso os receptores NMDA são bloqueados por íons de magnésio (Mg 2+ ). Quando o neurônio pós-sináptico é despolarizado, esses íons de magnésio são removidos dos receptores e permitem a passagem de carga elétrica. 10

11 Jahr e Stevens (1990) propuseram, a partir de um ajuste de curvas experimentais, uma expressão para descrever o comportamento de g NMDA (V) que tornou-se amplamente utilizado em modelos computacionais. A expressão deles é: [ ] 2+ 1 Mg exp ( /16,13 mv ). ( V ) = 1+ V 3,57 mn g NMDA (12) Os canais iônicos formados pelos receptores NMDA conduzem tanto íons de cálcio (Ca 2+ ) como cátions monovalentes (principalmente Na + ). A entrada no neurônio pós-sináptico de íons de cálcio por seus receptores NMDA é um fenômeno crítico para a modificação de longa duração da eficácia sináptica. Note que a abertura dos receptores NMDA depende tanto da despolarização do neurônio pré-sináptico (pela chegada de um potencial de ação no seu terminal) como da despolarização do neurônio pós-sináptico (para que haja a retirada dos íons de magnésio). Portanto, os receptores NMDA atuam como detectores de coincidência de atividade nos neurônios pré- e pós-sináptico. Eles, portanto, desempenham um importante papel com relação à chamada regra de Hebb para plasticidade sináptica que será vista na próxima aula. O fenômeno conhecido como depressão sináptica pós-ativação refere-se à diminuição da amplitude do potencial pós-sináptico durante uma ativação sináptica repetitiva. Pode-se modelar este fenômeno segundo o formalismo proposto por Abbott et al. (1997). Segundo este formalismo, a condutância de uma sinapse é modelada por g ( = gz( r(, (13) sin onde z( é uma variável que controla a eficácia sináptica. O valor de repouso desta variável é tomado como 1, porém, sempre que ocorrer uma transmissão sináptica esse valor é reduzido por um fator constante f (f < 1), 11

12 z Após a redução, z( retorna exponencialmente ao seu valor de repouso com uma constante de tempo τ rec, fz. dz( τ rec = 1 z(. (14) dt Caso o intervalo entre dois spikes seja grande o suficiente, a variável de controle da eficácia sináptica voltará ao seu valor de repouso. Com a diminuição do intervalo entre spikes, isto é, com o aumento da freqüência dos potenciais de ação pré-sinápticos, a variável de controle sofre forte redução. Isto implica em potenciais pós-sinápticos menores e na conseqüente depressão pós-ativação. Este mesmo modelo pode ser usado para modelar o fenômenos de facilitação sináptica de curta duração, basta fazer f > 1. O resultado de uma simulação da mesma sinapse entre dois neurônios do exemplo anterior (Giugliano e Arsiero, 2006) com o modelo de depressão sináptica pós-ativação está mostrado na figura abaixo. Com relação às sinapses elétricas, pode-se modelá-las como resistências elétricas conectando os citoplasmas de dois neurônios. A figura abaixo ilustra o circuito equivalente correspondente a esse modelo. A sinapse elétrica é modelada como uma gap junction conectando dois compartimentos modelados segundo o esquema de Hodgkin-Huxley. 12

13 A conexão entre os citoplasmas das duas células é feita por uma resistência ôhmica R GJ. As resistências variáveis modelando os canais ativos das duas células não estão mostradas para não sobrecarregar a figura. A figura também ilustra o processo de estimulação de uma célula por injeção de corrente externa, I inj, mostrando que parte dela pode escapar pela gap junction e ir para a outra célula. Referências 1. Abbott, L. F., Varela, J. A., Sen, K. and Nelson, S. B., Synaptic depression and cortical gain control. Science, 275: , Destexhe, A., Mainen, Z. F. and Sejnowski, T. J., Kinetic Models of Synaptic Transmission. In: Koch, C. and Segev, I. (eds.), Methods in Neural Modeling: From Ions to Networks, 2nd. Edition. Cambridge, MA: MIT Press, 1998, pp Giugliano, M. and Arsiero, M., Modeling of biological neuronal networks. In: Akay, M. (ed.), Wiley Encyclopedia of Biomedical Engineering, New York, Wiley, Jahr, C. E. and Stevens, C. F., A quantitative description of NMDA receptor channel kinetic behavior. Journal of Neuroscience, 10: ,

Modelagem de Sinapses

Modelagem de Sinapses Modelagem de Sinapses 5915756 Introdução à Neurociência Computacional Antonio Roque Aula 10 Há dois tipos de sinapses, químicas e elétricas. Vamos começar considerando apenas a sinapse química, que é tida

Leia mais

Tema 07: Propriedades Elétricas das Membranas

Tema 07: Propriedades Elétricas das Membranas Universidade Federal do Amazonas ICB Dep. Morfologia Disciplina: Biologia Celular Aulas Teóricas Tema 07: Propriedades Elétricas das Membranas Prof: Dr. Cleverson Agner Ramos Permeabilidade da Membrana

Leia mais

POTENCIAL DE MEMBRANA E POTENCIAL DE AÇÃO

POTENCIAL DE MEMBRANA E POTENCIAL DE AÇÃO POTENCIAL DE MEMBRANA E POTENCIAL DE AÇÃO AULA 3 DISCIPLINA: FISIOLOGIA I PROFESSOR RESPONSÁVEL: FLÁVIA SANTOS Potencial de membrana Separação de cargas opostas ao longo da membrana plasmática celular

Leia mais

Sinapse. Permitem a comunicação e funcionamento do sistema nervoso. Neurónio pré-sináptico (envia a informação)

Sinapse. Permitem a comunicação e funcionamento do sistema nervoso. Neurónio pré-sináptico (envia a informação) Sinapse Medeia a transferência de informação de um neurónio para o seguinte, ou de um neurónio para uma célula efectora (ex.: célula muscular ou glandular); Permitem a comunicação e funcionamento do sistema

Leia mais

Liberação de neurotransmissores Potenciais pós-sinápticos e integração sináptica Plasticidade sináptica Sinapses elétricas

Liberação de neurotransmissores Potenciais pós-sinápticos e integração sináptica Plasticidade sináptica Sinapses elétricas Liberação de neurotransmissores Potenciais pós-sinápticos e integração sináptica Plasticidade sináptica Sinapses elétricas A sinapse Elemento pré-sináptico Botão sináptico Junção neuromuscular Terminais

Leia mais

CONSIDERAÇÕES SOBRE POTENCIAIS DE MEMBRANA A DINÂMICA DOS FUNCIONAMENTO DOS CANAIS ATIVADOS POR NEUROTRANSMISSORES

CONSIDERAÇÕES SOBRE POTENCIAIS DE MEMBRANA A DINÂMICA DOS FUNCIONAMENTO DOS CANAIS ATIVADOS POR NEUROTRANSMISSORES CONSIDERAÇÕES SOBRE POTENCIAIS DE MEMBRANA A DINÂMICA DOS FUNCIONAMENTO DOS CANAIS ATIVADOS POR NEUROTRANSMISSORES PEÇAS QUE DEFINEM OS POTENCIAIS DE MEMBRANA Canais vazantes de potássio K Canais Sódio

Leia mais

Tema 07: Propriedades Elétricas das Membranas

Tema 07: Propriedades Elétricas das Membranas Universidade Federal do Amazonas ICB Dep. Morfologia Disciplina: Biologia Celular Aulas Teóricas Tema 07: Propriedades Elétricas das Membranas Prof: Dr. Cleverson Agner Ramos Permeabilidade da Membrana

Leia mais

O neurônio. Alguns íons podem utilizar esses poros para passar através da membrana (para dentro ou para fora da célula).

O neurônio. Alguns íons podem utilizar esses poros para passar através da membrana (para dentro ou para fora da célula). O neurônio O objetivo desta aula é fazer uma rápida revisão sobre as propriedades essenciais dos neurônios, utilizados como inspiração para os modelos de unidades das redes neurais artificiais. Ela servirá

Leia mais

As aulas anteriores trataram do modelo de Hodgkin-Huxley e do formalismo de Hodgkin- Huxley para modelar neurônios.

As aulas anteriores trataram do modelo de Hodgkin-Huxley e do formalismo de Hodgkin- Huxley para modelar neurônios. Modelos de neurônios do tipo integra-e-dispara Introdução As aulas anteriores trataram do modelo de Hodgkin-Huxley e do formalismo de Hodgkin- Huxley para modelar neurônios. Como a estratégia de Hodgkin

Leia mais

13/08/2016. Movimento. 1. Receptores sensoriais 2. Engrama motor

13/08/2016. Movimento. 1. Receptores sensoriais 2. Engrama motor Movimento 1. Receptores sensoriais 2. Engrama motor 1 Movimento Componentes Celulares e Funcionamento do Sistema Nervoso 2 O Sistema nervoso desempenha importantes funções, como controlar funções orgânicas

Leia mais

CURSO DE EXTENSÃO. Neurofisiologia. Profa. Ana Lucia Cecconello

CURSO DE EXTENSÃO. Neurofisiologia. Profa. Ana Lucia Cecconello CURSO DE EXTENSÃO Neurofisiologia Profa. Ana Lucia Cecconello Transmissão Sináptica Informação sensorial (dor) é codificada Comportamento: erguer o pé Neurônio pré-sináptico Neurônio pós-sináptico sinapse

Leia mais

Sistema Nervoso Central Quem é o nosso SNC?

Sistema Nervoso Central Quem é o nosso SNC? Controle Nervoso do Movimento Muscular Sistema Nervoso Central Quem é o nosso SNC? 1 SNC Encéfalo Medula espinhal Encéfalo - Divisão anatômica Cérebro Cerebelo Tronco encefálico 2 Condução: Vias ascendentes

Leia mais

GÊNESE E PROPAGAÇÃO DO POTENCIAL DE AÇÃO

GÊNESE E PROPAGAÇÃO DO POTENCIAL DE AÇÃO GÊNESE E PROPAGAÇÃO DO POTENCIAL DE AÇÃO Comunicação entre os neurônios no sistema nervoso Introdução Mesmo para um simples reflexo é necessário que o SN, colete, distribua e integre a informação que

Leia mais

TRANSMISSÃO DE INFORMAÇÃO

TRANSMISSÃO DE INFORMAÇÃO Capítulo 3: Parte 2 1 TRANSMISSÃO DE INFORMAÇÃO Quando um neurônio recebe um estímulo, se este é forte o suficiente, leva a produção de um impulso nervoso. O impulso nervoso corresponde a uma corrente

Leia mais

ORGANIZAÇÃO DO SISTEMA NERVOSO FUNÇÕES BÁSICAS DAS SINAPSES E DAS SUBSTÂNCIAS TRANSMISSORAS

ORGANIZAÇÃO DO SISTEMA NERVOSO FUNÇÕES BÁSICAS DAS SINAPSES E DAS SUBSTÂNCIAS TRANSMISSORAS ORGANIZAÇÃO DO SISTEMA NERVOSO FUNÇÕES BÁSICAS DAS SINAPSES E DAS SUBSTÂNCIAS TRANSMISSORAS AULA 4 DISCIPLINA: FISIOLOGIA I PROFESSOR RESPONSÁVEL: FLÁVIA SANTOS Divisão sensorial do sistema nervoso Receptores

Leia mais

Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP

Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP Neurotransmissão ROTEIRO DE AULA TEÓRICA: NEUROTRANSMISSÃO 1. Definição de sinapse a. sinápse elétrica b. sinápse química 2. Princípios da Transmissão

Leia mais

HHSim Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr.

HHSim Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. HHSim 2018 Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. 1 O modelo de Hodgkin-Huxley foi proposto em 1952 para modelar o potencial de ação do axônio de sépia. Os dados sobre a corrente

Leia mais

Desenvolveram a Equação para a propagação do impulso nervoso e suas generalizações para outros tecidos.

Desenvolveram a Equação para a propagação do impulso nervoso e suas generalizações para outros tecidos. Desenvolveram a Equação para a propagação do impulso nervoso e suas generalizações para outros tecidos. Um modelo de equações diferenciais originalmente proposto para a propagação de sinais elétricos no

Leia mais

POTENCIAIS DE MEMBRANA: POTENCIAL DE REPOUSO E POTENCIAL DE AÇÃO. MARIANA SILVEIRA

POTENCIAIS DE MEMBRANA: POTENCIAL DE REPOUSO E POTENCIAL DE AÇÃO. MARIANA SILVEIRA POTENCIAIS DE MEMBRANA: POTENCIAL DE REPOUSO E POTENCIAL DE AÇÃO. MARIANA SILVEIRA COLETA, DISTRIBUIÇÃO E INTEGRAÇÃO DE INFORMAÇÃO Para o cérebro Medula espinhal Corpo celular do neurônio motor Corpo celular

Leia mais

FISIOLOGIA HUMANA UNIDADE II: SISTEMA NERVOSO

FISIOLOGIA HUMANA UNIDADE II: SISTEMA NERVOSO FISIOLOGIA HUMANA UNIDADE II: SISTEMA NERVOSO ORGANIZAÇÃO MORFOFUNCIONAL DO SISTEMA NERVOSO CANAIS IÔNICOS E BOMBAS CONDUÇÃO DE IMPULSOS NERVOSOS (SINÁPSES QUÍMICAS E ELÉTRICAS) SISTEMA NERVOSO SIMPÁTICO

Leia mais

Roteiro MetaNeuron. Problemas sobre bioeletrogênese

Roteiro MetaNeuron. Problemas sobre bioeletrogênese Roteiro MetaNeuron Vá em http://www.metaneuron.org/ e baixe o software MetaNeuron. Baixe também o manual do programa. Potencial de membrana (Lesson 1). Problemas sobre bioeletrogênese Essa lição simula

Leia mais

21/03/2016. NEURÓGLIA (Células da Glia) arredondadas, possuem mitose e fazem suporte nutricional aos neurônios.

21/03/2016. NEURÓGLIA (Células da Glia) arredondadas, possuem mitose e fazem suporte nutricional aos neurônios. NEURÓGLIA (Células da Glia) arredondadas, possuem mitose e fazem suporte nutricional aos neurônios. 1 NEURÔNIO responsável pela condução impulso nervoso, possibilitando a execução de ações e promoção da

Leia mais

SINAPSE E TRANSMISSÃO SINÁPTICA

SINAPSE E TRANSMISSÃO SINÁPTICA SINAPSE E TRANSMISSÃO SINÁPTICA Prof. João M. Bernardes Uma vez que o sistema nervoso é composto por células distintas, torna-se necessário que os neurônios estejam conectados de alguma forma, a fim de

Leia mais

Papel das Sinapses no processamento de informações

Papel das Sinapses no processamento de informações Papel das Sinapses no processamento de informações Impulsos Nervosos Pequenas correntes elétricas passando ao longo dos neurônios Resultam do movimento de íons (partículas carregadas eletricamente) para

Leia mais

Neurofisiologia. Profª Grace Schenatto Pereira Núcleo de Neurociências NNc Bloco A4, sala 168 Departamento de Fisiologia e Biofísica ICB-UFMG

Neurofisiologia. Profª Grace Schenatto Pereira Núcleo de Neurociências NNc Bloco A4, sala 168 Departamento de Fisiologia e Biofísica ICB-UFMG Neurofisiologia Profª Grace Schenatto Pereira Núcleo de Neurociências NNc Bloco A4, sala 168 Departamento de Fisiologia e Biofísica ICB-UFMG www.nnc.icb.ufmg.br link: apoio à graduação ciências biológicas

Leia mais

Computação Evolutiva e Cognitiva Simulação de Vida Artificial e Cognição

Computação Evolutiva e Cognitiva Simulação de Vida Artificial e Cognição Computação Evolutiva e Cognitiva Simulação de Vida Artificial e Cognição PROVA DIDÁTICA Tema 01 Neurônios ESCOLA POLITÉCNICA DA USP Engenharia de Sistemas Eletrônicos Especialidade 1 PROVA DIDÁTICA Tema

Leia mais

Origens do potencial de membrana Excitabilidade celular

Origens do potencial de membrana Excitabilidade celular Origens do potencial de membrana Excitabilidade celular Origens do potencial de repouso Todas as células apresentam uma diferença de potencial elétrico (voltagem) através da membrana. Alterações na permeabilidade

Leia mais

Transmissão sináptica

Transmissão sináptica Transmissão sináptica Lembrando que: Distribuição iônica através da membrana de um neurônio em repouso: Íon [i] mm [e] mm Pot. Equ. (mv) K + 400 20-75 Na + 50 440 +55 Cl - 52 560-60 A - 385 - - No Potencial

Leia mais

CURSO DE EXTENSÃO. Neurofisiologia I. Giana Blume Corssac

CURSO DE EXTENSÃO. Neurofisiologia I. Giana Blume Corssac 2017 CURSO DE EXTENSÃO Neurofisiologia I Giana Blume Corssac Tópicos da aula: Bioeletrogênese Potenciais de membrana Transmissão sináptica Sinapses Neurotransmissores Sistema nervoso autônomo Bioeletrogênese

Leia mais

Modelos de neurônios baseados na taxa de disparos

Modelos de neurônios baseados na taxa de disparos Modelos de neurônios baseados na taxa de disparos Devido à complexidade dos chamados modelos realistas de neurônios e redes neurais, baseados no formalismo de Hodgkin-Huxley, muitos autores preferem usar

Leia mais

Terceiro Projeto Computacional (data de entrega: 02/05/18)

Terceiro Projeto Computacional (data de entrega: 02/05/18) Terceiro Projeto Computacional (data de entrega: 0/05/18) 1. Nesta questão, você deverá aproveitar o código escrito no Projeto Computacional em que implementou a solução numérica do modelo de Hodgkin-Huxley.

Leia mais

SINAPSE: PONTO DE CONTATO ENTRE DOIS NEURONIOS SINAPSE QUIMICA COM A FENDA SINAPTICA SINAPSE ELETRICA COM GAP JUNCTIONS

SINAPSE: PONTO DE CONTATO ENTRE DOIS NEURONIOS SINAPSE QUIMICA COM A FENDA SINAPTICA SINAPSE ELETRICA COM GAP JUNCTIONS SINAPSE: PONTO DE CONTATO ENTRE DOIS NEURONIOS SINAPSE QUIMICA COM A FENDA SINAPTICA POTENCIAL DE REPOUSO E SUAS ALTERAÇÕES DESPOLARIZAÇÃO REPOLARIZAÇÃO HIPERPOLARIZAÇÃO POTENCIAL DE ACAO SINAPSE ELETRICA

Leia mais

EXCITABILIDADE I POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO

EXCITABILIDADE I POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO POTENCIAL DE MEMBRANA EM REPOUSO EXCITABILIDADE I 1 - Introdução 1.1 Objetivo da aula: Estudar os mecanismos fisiológicos responsáveis pelos potenciais elétricos através das membranas celulares 1.2 Roteiro da aula: 1.2.1- Estudar o potencial

Leia mais

Introdução à Neurociência Computacional

Introdução à Neurociência Computacional Introdução à Neurociência Computacional Antonio C. Roque USP, Ribeirão Preto, SP Aula 2 Potenciais de membrana e de ação Membrana neuronal Membrana neuronal: fina membrana (60-70 Å de espessura) que recobre

Leia mais

Prof. João Ronaldo Tavares de Vasconcellos Neto

Prof. João Ronaldo Tavares de Vasconcellos Neto Prof. João Ronaldo Tavares de Vasconcellos Neto A habilidade mais marcante do sistema nervoso baseiam-se nas interações entre os neurônios conectados. O grande número de neurônios e interações entre estas

Leia mais

Comunicação entre neurônios. Transmissão de sinais no sistema nervoso

Comunicação entre neurônios. Transmissão de sinais no sistema nervoso Comunicação entre neurônios Transmissão de sinais no sistema nervoso Neurônios Conduzem informações através de sinais elétricos Movimentos de íons através da membrana celular Correntes iônicas codificam

Leia mais

Introdução à Neurociência Computacional (Graduação) Prof. Antônio Roque Aula 6

Introdução à Neurociência Computacional (Graduação) Prof. Antônio Roque Aula 6 Variações do modelo integra-e-dispara Nesta aula vamos apresentar algumas variações do modelo LIF visto na aula passada. Modelo integra-e-dispara com adaptação Estudos in vitro mostram que muitos tipos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOQUÍMICA. Hormônios. Disciplina: Bioquímica 7 Turma: Medicina

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOQUÍMICA. Hormônios. Disciplina: Bioquímica 7 Turma: Medicina UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE BIOQUÍMICA Hormônios Disciplina: Bioquímica 7 Turma: Medicina Profa. Dra. Nereide Magalhães Recife, 2004 Interação

Leia mais

Prof. João Ronaldo Tavares de Vasconcellos Neto

Prof. João Ronaldo Tavares de Vasconcellos Neto Prof. João Ronaldo Tavares de Vasconcellos Neto A habilidade mais marcante do sistema nervoso baseiam-se nas interações entre os neurônios conectados. O grande número de neurônios e interações entre estas

Leia mais

Sinapses. Comunicação entre neurônios. Transmissão de sinais no sistema nervoso

Sinapses. Comunicação entre neurônios. Transmissão de sinais no sistema nervoso Sinapses Comunicação entre neurônios Transmissão de sinais no sistema nervoso Biofísica 2018 / Ciências Biológicas / FCAV UNESP Recordando... Transmissão de sinais em um neurônio Fases: Estímulo alteração

Leia mais

O POTENCIAL DE AÇÃO 21/03/2017. Por serem muito evidentes nos neurônios, os potenciais de ação são também denominados IMPULSOS NERVOSOS.

O POTENCIAL DE AÇÃO 21/03/2017. Por serem muito evidentes nos neurônios, os potenciais de ação são também denominados IMPULSOS NERVOSOS. O POTENCIAL DE AÇÃO 1 2 0 amplitude duração tempo 0 repouso 1 2 Por serem muito evidentes nos neurônios, os potenciais de ação são também denominados IMPULSOS NERVOSOS. O potencial de ação é causado pela

Leia mais

A comunicação celular permite a integração e harmonização de funcionamento entre células do mesmo tecido e de tecidos/órgãos diferentes.

A comunicação celular permite a integração e harmonização de funcionamento entre células do mesmo tecido e de tecidos/órgãos diferentes. Comunicação celular é o processo pelo qual as células de um organismo influenciam umas às outras por meio de moléculas, conhecidas como sinalizadores. A comunicação celular permite a integração e harmonização

Leia mais

FARMACODINÂMICA. da droga. Componente da célula c. (ou organismo) que interage com a droga e

FARMACODINÂMICA. da droga. Componente da célula c. (ou organismo) que interage com a droga e FARMACODINÂMICA Prof. Carlos Cezar I. S. Ovalle Princípio básicob A droga deve se ligar a um constituinte celular (proteína - alvo) para produzir uma resposta farmacológica. Proteínas alvos para ligação

Leia mais

Sistema Nervoso e Potencial de ação

Sistema Nervoso e Potencial de ação Sistema Nervoso e Potencial de ação ELYZABETH DA CRUZ CARDOSO. PROFA TITULAR DA UNIVERSIDADE FEDERAL FLUMINENSE - UFF INSTITUTO DE SAÚDE DE NOVA FRIBURGO. DISCIPLINAS DE FISIOLOGIA HUMANA CURSOS DE ODONTOLOGIA

Leia mais

Origens do potencial de membrana Excitabilidade celular

Origens do potencial de membrana Excitabilidade celular Origens do potencial de membrana Excitabilidade celular Algumas medidas elétricas Potencial (E,V) V (volt) Carga C (coulomb) Corrente (I) A (ampere = C/s) Resistência (R) W (ohm = V/A) Condutância (G)

Leia mais

2015 Dr. Walter F. de Azevedo Jr. Potencial de Ação

2015 Dr. Walter F. de Azevedo Jr. Potencial de Ação Potencial de Ação Objetivos Apresentar conhecimentos relacionados ao potencial de ação. Aprender o uso do programa HHsim para simular potencial de ação. Materiais 1. Computador imac; 2. Programa HHSim.

Leia mais

4 Canais Iônicos Estocásticos

4 Canais Iônicos Estocásticos 4 Canais Iônicos Estocásticos 4.1 Processos Estocásticos e o Modelo de Hodgkin e Huxley O modelo de Hodgkin e Huxley clássico, macroscópico, tem como fundamento a variação dos valores das condutâncias

Leia mais

Capa do programa da cerimônia de entrega do Prêmio Nobel de Medicina e Fisiologia de 1963.

Capa do programa da cerimônia de entrega do Prêmio Nobel de Medicina e Fisiologia de 1963. Os mecanismos iônicos responsáveis pela geração de um potencial de ação foram elucidados pelos trabalhos de Hodgkin e Huxley com o axônio gigante de lula na primeira metade do Século XX. Capa do programa

Leia mais

Introdução ao estudo de neurofisiologia

Introdução ao estudo de neurofisiologia Introdução ao estudo de neurofisiologia Introdução ao estudo de neurofisiologia Peixe Réptil Ave Boi Humano Por que os cérebros são diferentes entre as espécies? Introdução ao estudo de neurofisiologia

Leia mais

29/03/2015 LOCAL DE AÇÃO MECANISMO DE AÇÃO EFEITOS. Fármaco Princípio Ativo. Receptor: componente de uma célula

29/03/2015 LOCAL DE AÇÃO MECANISMO DE AÇÃO EFEITOS. Fármaco Princípio Ativo. Receptor: componente de uma célula LOCAL DE AÇÃO MECANISMO DE AÇÃO Prof. Herval de Lacerda Bonfante Departamento de Farmacologia EFEITOS Fármaco Princípio Ativo Receptor: componente de uma célula interação com um fármaco início de uma cadeia

Leia mais

NEUROFISIOLOGIA DA VISÃO

NEUROFISIOLOGIA DA VISÃO Universidade de São Paulo Faculdade de Medicina de Ribeirão Preto Departamento de Fisiologia NEUROFISIOLOGIA DA VISÃO Prof. Guilherme Lucas ESTRUTURA DO OLHO Renovado 12 vezes ao dia - Vasta Rede Capilar

Leia mais

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Síntese das catecolaminas

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Síntese das catecolaminas Síntese das catecolaminas Mecanismo de Ação Monoaminas não agem diretamente em canais iônicos. Exceção é o receptor 5HT-3 (serotonina). Agem através de segundos mensageiros, como camp. camp ativa PKA que

Leia mais

Neurociência e Saúde Mental

Neurociência e Saúde Mental 1 COMUNICAÇÃO ENTRE AS CÉLULAS NERVOSAS Silvia Helena Cardoso, PhD. Psicobióloga, mestre e doutora em Ciências. Fundadorae editora-chefe da revista Cérebro & Mente. Universidade Estadual de Campinas. http://www.cerebromente.org.br/n12/fundamentos/neurotransmissores

Leia mais

Fisiologia celular I. Fisiologia Prof. Msc Brunno Macedo

Fisiologia celular I. Fisiologia Prof. Msc Brunno Macedo celular I celular I Objetivo Conhecer os aspectos relacionados a manutenção da homeostasia e sinalização celular Conteúdo Ambiente interno da célula Os meios de comunicação e sinalização As bases moleculares

Leia mais

O que é uma lesão neurológica???????

O que é uma lesão neurológica??????? PLASTICIDADE NEURAL O que é uma lesão neurológica??????? Sistema Nervoso Central (SNC) Sistema Nervoso Periférico (SNP) Estruturas cerebrais Recuperação funcional? Como ocorre? Quais são as bases fisiológicas?

Leia mais

POTENCIAIS ELÉTRICOS DAS CÉLULAS

POTENCIAIS ELÉTRICOS DAS CÉLULAS POTENCIAIS ELÉTRICOS DAS CÉLULAS ESTRUTURA DO NEURÔNIO POTENCIAIS ELÉTRICOS DAS CÉLULAS POTENCIAL DE REPOUSO - Conceito; - Origem do potencial de repouso; POTENCIAL DE AÇÃO - Conceito; - Fases do potencial

Leia mais

Fisiologia da motilidade

Fisiologia da motilidade Fisiologia da motilidade Acoplamento excitação-contração Pedro Augusto CM Fernandes 2017 Dep. Fisiologia. Sala 317 E-mail:pacmf@usp.br Junção neuromuscular Junção neuromuscular Neurônio induz contração

Leia mais

Introdução à Neurociência Computacional

Introdução à Neurociência Computacional Introdução à Neurociência Computacional Antonio C. Roque USP, Ribeirão Preto, SP Aula 3 A base iônica do potencial de ação Qual o mecanismo responsável pela geração de um potencial de ação? O mecanismo

Leia mais

Funções do Sistema Nervoso Integração e regulação das funções dos diversos órgãos e sistemas corporais Trabalha em íntima associação com o sistema end

Funções do Sistema Nervoso Integração e regulação das funções dos diversos órgãos e sistemas corporais Trabalha em íntima associação com o sistema end FISIOLOGIA DO SISTEMA S NERVOSO Funções do Sistema Nervoso Integração e regulação das funções dos diversos órgãos e sistemas corporais Trabalha em íntima associação com o sistema endócrino (neuroendócrino)

Leia mais

Excitabilidade elétrica

Excitabilidade elétrica Excitabilidade elétrica O que é uma célula excitável? É uma célula que altera ativamente o potencial da membrana em resposta a algum estímulo (elétrico, físico ou químico). Exemplos: Neurônios e células

Leia mais

O Modelo do Cabo Aplicado a Células com Árvores Dendríticas

O Modelo do Cabo Aplicado a Células com Árvores Dendríticas 595756 Introdução à Neurociência Computacional Antonio oque Aula 8 O Modelo do Cabo Aplicado a Células com Árvores Dendríticas O modelo desenvolvido na Aula 7 se aplica a um único dendrito sem ramificações.

Leia mais

Excitabilidade elétrica

Excitabilidade elétrica Excitabilidade elétrica O que é uma célula excitável? É uma célula que altera ativamente o potencial da membrana em resposta a algum estímulo (elétrico, físico ou químico). Exemplos: Neurônios e células

Leia mais

TECIDO NERVOSO HISTOLOGIA NUTRIÇÃO UNIPAMPA

TECIDO NERVOSO HISTOLOGIA NUTRIÇÃO UNIPAMPA TECIDO NERVOSO HISTOLOGIA NUTRIÇÃO UNIPAMPA TECIDO NERVOSO: DISTRIBUIÇÃO SNP Gânglios e Nervos SNC SNP Gânglios e Nervos DIVISÕES ESQUEMÁTICAS DO SISTEMA NERVOSO TECIDO NERVOSO Nervos: constituídos por

Leia mais

Aspectos moleculares

Aspectos moleculares FARMACOLOGIA I DOCENTE: Msc. ROSALINA COELHO JÁCOME Aspectos moleculares FARMACOLOGIA O que o organismo faz com o fármaco? O que o fármaco faz no organismo? FARMACOCINÉTICA FARMACODINÂMICA CORRELAÇÃO FARMACOCINÉTICA/FARMACODINÂMICA

Leia mais

Cada célula é programada para responder a combinações específicas de moléculas sinalizadoras

Cada célula é programada para responder a combinações específicas de moléculas sinalizadoras Sinalização celular Cada célula é programada para responder a combinações específicas de moléculas sinalizadoras Etapas da Sinalização 1) Síntese e liberação da molécula sinalizadora pela célula sinalizadora

Leia mais

MODELOS MATEMÁTICOS E SIMULAÇÕES COMPUTACIONAIS DE FENÔMENOS BIOLÓGICOS

MODELOS MATEMÁTICOS E SIMULAÇÕES COMPUTACIONAIS DE FENÔMENOS BIOLÓGICOS MODELOS MATEMÁTICOS E SIMULAÇÕES COMPUTACIONAIS DE FENÔMENOS BIOLÓGICOS Prof. Dr. Robson Rodrigues da Silva robson.silva@umc.br Mogi das Cruzes Março de 2017 TÉCNICAS DE MODELAGEM 1. REGRESSÃO OU AJUSTE

Leia mais

SINAPSE. Sinapse é um tipo de junção especializada, em que um neurônio faz contato com outro neurônio ou tipo celular.

SINAPSE. Sinapse é um tipo de junção especializada, em que um neurônio faz contato com outro neurônio ou tipo celular. Disciplina: Fundamentos em Neurociências Profa. Norma M. Salgado Franco SINAPSE Sinapse é um tipo de junção especializada, em que um neurônio faz contato com outro neurônio ou tipo celular. Podem ser:

Leia mais

Potencial de Repouso e Potencial de Ação. Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP

Potencial de Repouso e Potencial de Ação. Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP Potencial de Repouso e Potencial de Ação Profa. Dra. Eliane Comoli Depto de Fisiologia da FMRP-USP ROTEIRO: POTENCIAL DE REPOUSO E POTENCIAL DE AÇÃO 1. Potencial de Membrana de Repouso Papel da bomba de

Leia mais

INSETICIDAS NEUROTÓXICOS MECANISMOS DE AÇÃO

INSETICIDAS NEUROTÓXICOS MECANISMOS DE AÇÃO INSETICIDAS NEUROTÓXICOS MECANISMOS DE AÇÃO Transmissões nervosas em insetos Células nervosas neurônios com 2 filamentos Axônio Filamento longo que conduz os impulsos nervosos para fora da célula. Dendrito

Leia mais

Prático de Modelagem Computacional em Neurociência. Dia 25 de Julho. Redes

Prático de Modelagem Computacional em Neurociência. Dia 25 de Julho. Redes Prático de Modelagem 1o Curso Computacional em Neurociência Dia 25 de Julho Redes Rodrigo FO Pena Doutorando Por que redes? Neurociência: ciência complexa ~86 bilhões de neurônios Trilhões de sinapses

Leia mais

1) Neurônios: Geram impulsos nervosos quando estimulados;

1) Neurônios: Geram impulsos nervosos quando estimulados; 1) Neurônios: Geram impulsos nervosos quando estimulados; Partes de um neurônio: Dendritos (captam estímulos do meio ambiente); Corpo celular (centro metabólico); Axônio (conduz impulsos nervosos). Estrato

Leia mais

Os Canais Iônicos. Prof. Ricardo M. Leão FMRP-USP

Os Canais Iônicos. Prof. Ricardo M. Leão FMRP-USP Os Canais Iônicos Prof. Ricardo M. Leão FMRP-USP O que é um canal iônico? -É um caminho hidrofílico para os íons através da membrana -Pode ser entendido como um condutor elétrico Rm Cm E Canais iônicos

Leia mais

Modelagem matemática e computacional de neurônios

Modelagem matemática e computacional de neurônios Modelagem matemática e computacional de neurônios www.lncc.br/ alm Laboratório Nacional de Computação Científica LNCC Petrópolis - RJ Jornada em Neuropsiquiatria Computacional LNCC 02 e 03 de fevereiro

Leia mais

Importância dos processos de sinalização. Moléculas sinalizadoras (proteínas, peptídeos, aminoácidos, hormônios, gases)

Importância dos processos de sinalização. Moléculas sinalizadoras (proteínas, peptídeos, aminoácidos, hormônios, gases) Sinalização celular Importância dos processos de sinalização Seres unicelulares Seres multicelulares Moléculas sinalizadoras (proteínas, peptídeos, aminoácidos, hormônios, gases) Receptores Proteínas -

Leia mais

FISIOLOGIA I. Potencial de Membrana e Potencial de Ação. Introdução

FISIOLOGIA I. Potencial de Membrana e Potencial de Ação. Introdução FISIOLOGIA I Potencial de Membrana e Potencial de Ação Introdução Existem potenciais elétricos através das membranas de, praticamente, todas as células do corpo. Além disso, algumas células, como as nervosas

Leia mais

Potencial de membrana e potencial de ação

Potencial de membrana e potencial de ação Potencial de membrana e potencial de ação Curso de Nutrição Disciplina Fisiologia Humana I Prof. Dr. Leandro Cattelan leandrocattelan@hotmail.com Agosto 2017 Conteúdos a serem abordados O potencial de

Leia mais

A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação

A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação Nesta aula, vamos deixar de lado a abordagem histórica e fazer uma apresentação do ponto de vista moderno sobre a membrana neuronal e

Leia mais

Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular

Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular Transferência citoplasmática direta de sinais elétricos e químicos Como as

Leia mais

Bioeletricidade e Bioeletrogênese

Bioeletricidade e Bioeletrogênese Bioeletricidade e Bioeletrogênese Física e Biofísica Prof. Patrícia Costa Eletricidade A eletricidade é um fenômeno físico originado por cargas elétricas paradas, ou em movimento, e por sua interação.

Leia mais

Fisiologia do Sistema Nervoso 1B

Fisiologia do Sistema Nervoso 1B Fisiologia do Sistema Nervoso 1B Células da Glia Neuroglia Células da Glia / Neuroglia Diversos tipos celulares: 1. Oligodendrócitos 2. Células de Schwann 3. Astrócitos 4. Células ependimárias 5. Microglia

Leia mais

Anatomia e Fisiologia Humana NEURÔNIOS E SINAPSES. DEMONSTRAÇÃO (páginas iniciais)

Anatomia e Fisiologia Humana NEURÔNIOS E SINAPSES. DEMONSTRAÇÃO (páginas iniciais) Anatomia e Fisiologia Humana NEURÔNIOS E SINAPSES DEMONSTRAÇÃO (páginas iniciais) 1ª edição novembro/2006 NEURÔNIOS E SINAPSES SUMÁRIO Neurônios... 04 O neurônio conduzindo informação... 05 Impulso nervoso:

Leia mais

PERGUNTAS - FISIOLOGIA GERAL

PERGUNTAS - FISIOLOGIA GERAL PERGUNTAS - FISIOLOGIA GERAL 1) Membrana plasmática e capilar fenestrado são duas barreiras importantes que separam os compartimentos do organismo. A membrana plasmática é muito mais seletiva e determina

Leia mais

Prof. João Ronaldo Tavares de Vasconcellos Neto

Prof. João Ronaldo Tavares de Vasconcellos Neto Prof. João Ronaldo Tavares de Vasconcellos Neto Compreende basicamente dois tipos de células Neurônios Unidade fundamental função básica de receber, processar e enviar informações Células gliais ou neuroglia

Leia mais

Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular

Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular Mecanismos bio-moleculares responsáveis pela captação e interpretação dos sinais do meio externo e interno comunicação celular Transferência citoplasmática direta de sinais elétricos e químicos Como as

Leia mais

BIOELETROGÊNESE. Capacidade de gerar e alterar a diferença de potencial elétrico através da membrana. - Neurônios. esqueléticas lisas cardíacas

BIOELETROGÊNESE. Capacidade de gerar e alterar a diferença de potencial elétrico através da membrana. - Neurônios. esqueléticas lisas cardíacas BIOELETROGÊNESE Capacidade de gerar e alterar a diferença de potencial elétrico através da membrana - Neurônios - células musculares esqueléticas lisas cardíacas Membrana citoplasmática Os neurônios geram

Leia mais

Eletrofisiologia 13/03/2012. Canais Iônicos. Proteínas Integrais: abertas permitem a passagem de íons

Eletrofisiologia 13/03/2012. Canais Iônicos. Proteínas Integrais: abertas permitem a passagem de íons Eletrofisiologia Proteínas Integrais: abertas permitem a passagem de íons Seletividade Alguns íons podem passar outros não Tamanho do canal Distribuição de cargas Aberto ou fechado Proteínas Integrais:

Leia mais

MEMBRANAS PLASMÁTICAS

MEMBRANAS PLASMÁTICAS MEMBRANAS PLASMÁTICAS Essenciais para a vida da célula https://www.youtube.com/watch?v=qdo5il1ncy4 Funções: Forma da célula. Intercâmbio célula-meio. Delimita conteúdo celular. Reconhecimento celular.

Leia mais

Transmissão Sináptica

Transmissão Sináptica Transmissão Sináptica Objetivos: Rever conhecimentos relacionados ao potencial de ação. Aprender o uso do programa HHsim para simular potencial de ação. Apresentar as bases moleculares para o entendimento

Leia mais

Embriologia (BMH120) - Biologia Noturno. Aula 1

Embriologia (BMH120) - Biologia Noturno. Aula 1 Embriologia (BMH120) - Biologia Noturno Aula 1 Introdução das Bases Moleculares e Celulares: Sinalização Intracelular Prof. Rodrigo A. P. Martins ICB - LaNCE - HUCFF - UFRJ Objetivos Ao final desta aula

Leia mais

BIOELETROGÊNESE. Propriedade de certas células (neurônios e células musculares) gerar e alterar a diferença de potencial elétrico através da membrana.

BIOELETROGÊNESE. Propriedade de certas células (neurônios e células musculares) gerar e alterar a diferença de potencial elétrico através da membrana. Profa Silvia Mitiko Nishida Depto de Fisiologia BIOELETROGÊNESE Propriedade de certas células (neurônios e células musculares) gerar e alterar a diferença de potencial elétrico através da membrana. Afinal

Leia mais

Sistema Nervoso Central - SNC Sistema Nervoso Central Quem é o nosso SNC?

Sistema Nervoso Central - SNC Sistema Nervoso Central Quem é o nosso SNC? Sistema Nervoso Central - SNC Sistema Nervoso Central Quem é o nosso SNC? 1 Divisão funcional do SN SNC Encéfalo Medula espinhal 2 Composição do sistema nervoso central HEMISFÉRIOS CEREBRAIS O Encéfalo

Leia mais

Propriedades eléctricas dos neurónios

Propriedades eléctricas dos neurónios Propriedades eléctricas dos neurónios Estímulo Impulso nervoso (impulso eléctrico ou potencial de acção) Corrente eléctrica fluxo de iões através da membrana Importância dos canais iónicos e transportadores

Leia mais

Bóris Marin professora : Tânia Tomé. 26 de novembro de 2007

Bóris Marin professora : Tânia Tomé. 26 de novembro de 2007 Dinâmica estocástica em neurônios fge746 Bóris Marin professora : Tânia Tomé 26 de novembro de 2007 1 Introdução O presente trabalho explora modelagens para o comportamento elétrico da membrana plasmática

Leia mais

FISIOLOGIA Est s ud u o do fu f n u cio i nam a en e to no n rm r a m l a l d e d e um u

FISIOLOGIA Est s ud u o do fu f n u cio i nam a en e to no n rm r a m l a l d e d e um u FISIOLOGIA Estudo do funcionamento normal de um organismo vivo e de suas partes componentes, incluindo todos os seus processos físicos e químicos O objetivo da Fisiologia é explicar os fatores físicos

Leia mais

André Montillo

André Montillo André Montillo www.montillo.com.br Definição: É a ciência que estuda a inter-relação da concentração de um fármaco e a estrutura alvo, bem como o respectivo Mecanismo de Ação. É a Ação do fármaco no Organismo.

Leia mais

Prof. Adjunto Paulo do Nascimento Junior Departamento de Anestesiologia da Faculdade de Medicina de Botucatu

Prof. Adjunto Paulo do Nascimento Junior Departamento de Anestesiologia da Faculdade de Medicina de Botucatu Eletrofisiolog gia Cardíaca Prof. Adjunto Paulo do Nascimento Junior Departamento de Anestesiologia da Faculdade de Medicina de Botucatu Eletrofisiologi ia Cardíaca eventos elétricos contração cardíaca

Leia mais

Células da Glia Funções das células da Glia

Células da Glia Funções das células da Glia Estrutura e Função do Sistema Nervoso Controle Nervoso do Movimento Células do Sistema Nervoso Células da glia (gliais ou neuróglias) Células neurais (neurônios) 2 Células da Glia Funções das células da

Leia mais

SIMULAÇÃO DA ATIVIDADE ELETROFISIOLÓGICA DE NEURÔNIOS

SIMULAÇÃO DA ATIVIDADE ELETROFISIOLÓGICA DE NEURÔNIOS 1 SIMULAÇÃO DA ATIVIDADE ELETROFISIOLÓGICA DE NEURÔNIOS O Programa AXOVACS [baseado no modelo proposto por Hodgkin e Huxley (1952) (J.Physiol. 117, 500)], que permite simular a atividade eletrofisiológica

Leia mais

Modelagem da influência da nicotina no foco de atenção

Modelagem da influência da nicotina no foco de atenção Trabalho apresentado no III CMAC - SE, Vitória-ES, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Modelagem da influência da nicotina no foco de atenção Karine

Leia mais

Substâncias de origem natural. * Produzir substâncias químicas que irão produzir efeitos terapêuticos específicos. Estudos farmacológicos

Substâncias de origem natural. * Produzir substâncias químicas que irão produzir efeitos terapêuticos específicos. Estudos farmacológicos FARMACODINÂMICA Mecanismo de ação de fármacos AÇÃO DAS DROGAS Substâncias de origem natural 1920 Estudos farmacológicos * Produzir substâncias químicas que irão produzir efeitos terapêuticos específicos

Leia mais