IMPACTO DOS PROBLEMAS DE COMUNICAÇÃO NA SEGURANÇA DE VÔO E PROPOSTA PARA CRIAÇÃO DE CURSO ESPECIFICO DE COMUNICAÇÃO RADIOFÔNICA PARA PILOTOS

Tamanho: px
Começar a partir da página:

Download "IMPACTO DOS PROBLEMAS DE COMUNICAÇÃO NA SEGURANÇA DE VÔO E PROPOSTA PARA CRIAÇÃO DE CURSO ESPECIFICO DE COMUNICAÇÃO RADIOFÔNICA PARA PILOTOS"

Transcrição

1 UNIVERSIDADE ANHEMBI MORUMBI AVIAÇÃO CIVIL IMPACTO DOS PROBLEMAS DE COMUNICAÇÃO NA SEGURANÇA DE VÔO E PROPOSTA PARA CRIAÇÃO DE CURSO ESPECIFICO DE COMUNICAÇÃO RADIOFÔNICA PARA PILOTOS Alexandre Braga Ribeiro Gustavo Sartori Meirelles Karina Sampaio Buchalla Marcelo Diulgheroglo Ricardo William Blasco Stipp São Paulo 2009

2 UNIVERSIDADE ANHEMBI MORUMBI AVIAÇÃO CIVIL IMPACTO DOS PROBLEMAS DE COMUNICAÇÃO NA SEGURANÇA DE VÔO E PROPOSTA PARA CRIAÇÃO DE CURSO ESPECIFICO DE COMUNICAÇÃO RADIOFÔNICA PARA PILOTOS Trabalho de Conclusão de Curso, sob orientação do Professor Daniel Celso Calazans. São Paulo

3 RIBEIRO, Alexandre Braga; MEIRELLES, Gustavo Sartori; BUCHALLA, Karina Sampaio; DIULGHEROGLO, Marcelo; STIPP, Ricardo William Blasco. IMPACTO DOS PROBLEMAS DE COMUNICAÇÃO NA SEGURANÇA DE VÔO E PROPOSTA PARA CRIAÇÃO DE CURSO ESPECIFICO DE COMUNICAÇÃO RADIOFÔNICA PARA PILOTOS, São Paulo, Monografia. Universidade Anhembi Morumbi, 135 fls. 1.Introdução 2.A Comunicação 3. Problemas de Comunicação 4.As Soluções 5.Treinamento em Comunicação 6.Conclusão 3

4 Agradecemos nossos familiares, esposas, maridos, pais e filhos, que com muita paciência e compreensão, souberam entender nossas dificuldades, e não mediram esforços para nos apoiar e incentivar durante o decorrer do curso, abrindo mão em algumas oportunidades de horas preciosas do convívio familiar, para nos permitir dedicação a leituras e estudos. Agradecemos também todos os amigos que direta ou indiretamente contribuíram para a realização deste feito. Agradecemos aos professores Calazans e Clodorico que com muita dedicação contribuíram para a realização deste trabalho através da suas orientações e elevado conhecimento profissional. 4

5 RESUMO Esta dissertação aborda o problema dos erros que acontecem durante a comunicação aeronáutica via radiotelefonia, preferencialmente em língua inglesa, e suas implicações à segurança de vôo. Com o aumento do volume de tráfego aéreo mundial e com a maior velocidade e precisão das aeronaves devido ao avanço tecnológico, o tempo disponível para os controladores e pilotos se comunicarem reduziu-se significativamente. Além disso, dentre os avanços experimentados pela industria de aviação civil nos últimos anos, o setor de comunicação, entenda-se comunicação via rádio, não sofreu nenhuma mudança tecnológica significativa desde a segunda guerra mundial, funcionando nas mesmas bases daquelas de há 50 anos atrás. Aliado a isso, muitos operadores de solo e pilotos de aeronaves não possuem nenhum treinamento específico em problemas de comunicação e não têm nenhum treinamento específico da língua inglesa. Nesse contexto, a forma de comunicação também sofreu pouco ou nenhum avanço nesse período em contraponto aos sistemas de navegação e operação, que avançaram extraordinariamente nos últimos anos, devido principalmente a introdução da informática e da transmissão instantânea de dados. O objetivo geral desta pesquisa consiste na análise das causas e efeitos dos problemas mais comuns relacionados à comunicação aeronáutica realizada em língua inglesa e suas implicações à segurança de vôo bem como o estudo de soluções para minimizar ou eliminar o impacto negativo destes problemas. De forma geral, os resultados obtidos demonstram que há soluções disponíveis para melhorar a eficiência das comunicações aeronáuticas, mas que há também um componente relacionado ao treinamento dos profissionais do setor que ainda necessita ser explorado. Como conclusão deste tema, propõe-se a criação de um plano de treinamento específico para comunicação aeronáutica e fraseologia em língua inglesa como o objetivo de melhorar as habilidades de pilotos e controladores quando se comunicando via rádio. 5

6 ABSTRACT This text approaches the possible causes... 6

7 LISTA DE FOTOS Foto 1 - Representação de caça com idade de Foto 2 - Um antigo tipo de manipulador de telegrafia usado para ensino...21 Foto 3 - Dirigível utilizado como bombardeiro na Guerra Italo-Turca Foto 4 - Equipamento de rádio comunicação em aeronaves, Foto 5 - Ilustração parcial do mecanismo de uma bússola giroscópica Foto 6 - Indicador de bordo com escala azimutal e a antena rotativa Foto 7 - Satélite Telstar 1 da AT&T. Foi o primeiro satélite comercial artificial...28 Foto 8 - Local do choque entre as aeronaves Foto 9 - Foto tirada minutos após o choque entre as aeronaves em Tenerife

8 LISTA DE QUADROS Quadro 1 Exemplos de alguns códigos Q Quadro 2 - Representação do Esquema Linear de Comunicação de Lasswell...34 Quadro 3 - Representação da Teoria Matemática da Comunicação de Shannon...35 Quadro 4 - Representação do Esquema de Comunicação de Osgood e Schramm.37 Quadro 5 - Elementos que influenciam na comunicação aeronáutica...40 Quadro 6 - Síntese dos Modelos de Comunicação discutidos Quadro 7 - Fatores causais de acidentes em aproximação e pouso...42 Quadro 8 - Códigos utilizados na transcrição da fita do CVR em Tenerife Quadro 9 - Transcrição dos diálogos em inglês entre as aeronaves da KLM...49 Quadro 10 - Trecho dos diálogos que mostra que houve confusão...50 Quadro 11 - Comunicações momentos antes do acidente Quadro 12 - Trancrição do acidente de Santa Ana em Quadro 13 - Transcrição do acidente da Eastern Airlines em Miami em Quadro 14 - Transcrição do incidente envolvendo terminologia...64 Quadro 15 - Exemplos de cotejamento Quadro 16 - Exemplo de erro de cotejamento...67 Quadro 17 - Exemplo de cotejamento inadequado Quadro 18 - Trancrição do acidente de New York em Quadro 19 - Exemplo de problemas com números Quadro 20 - Confusão relacionada a números e parâmetros...72 Quadro 21 - Exemplo de mensagem não recebida Quadro 23 - Carga Horária Treinamento Especial em Comunicação Quadro 24 - Carga Horária do Módulo Especial Online Quadro 25 - Carga Horária Módulo Especial Presencial

9 LISTA DE ILUSTRAÇÕES Ilustração 1 - Representação livre das conexões que formam a Internet...22 Ilustração 2 - Radio Alinhamento, uma estrada invisível no céu...27 Ilustração 3 - Representação estatística da relação entre as fases de vôo...44 Ilustração 4 - Posicionamento das aeronaves segundos antes do impacto...48 Ilustração 5 - Exemplo do quadro explicativo da fraseologia aeronáutica...87 Ilustração 6 - Técnica de transmissão via rádio para assegurar recepção...89 Ilustração 7 - Comparação dos Fatores Contribuintes para incidentes...93 Ilustração 8 - Países afiliados ao Eurocontrol em Ilustração 9 - Modelo de comunicação da língua inglesa na aviação...96 Ilustração 10 - Modelo simplificado de comunicação no conceito FANS-1/A...99 Ilustração 11 - Componentes FANS para o Airbus A Ilustração 12 - DCDU mostra que o ADS/CPDLC está conectado ao órgão ATC Ilustração 13 - Representação de alertas sonoros e visuais no cockpit Ilustração 14 - Exemplo do ATSU sendo usado para informar ao órgão ATC Ilustração 15 - No ATSU a justificativa DUE TO MEDICAL está na cor azul Ilustração 16 - Situação do DCDU antes do envio da resposta do piloto Ilustração 17 - Situação do DCDU após o envio da resposta pelo piloto Ilustração 18 - Tabela de Código Morse Ilustração 19 - Posição de impacto em Tenerife Ilustração 20 - Transcrição do Memorando do Secretário de Transportes Ilustração 21 - Transcrição de um artigo sobre problemas de comunicação

10 LISTA DE GRÁFICOS Gráfico 1 - Fatores que influenciam os acidentes aéreos entre o período Gráfico 2 - Porcentagem de incidência de erros de comunicação na Aviação...45 Gráfico 3 - Porcentagem de incidência de erros de comunicação na Aviação...45 Gráfico 4 - Porcentagem de incidência de erros de comunicação na Aviação

11 LISTA DE ABREVIATURAS E SIGLAS ACARS ACC ADS AGL AIM AIP ALPA AM ANAC APP ASM ASRS ATC ATFM ATIS ATM ATS ATSU CAA CHT CIAIAC CNS CPDLC CRM (1) CRM (2) CRM (3) CVR DCDU DME Aircraft Communication Addressing and Reporting System Centro de Controle de Área Automatic Dependant Surveillance Above Ground Level Aeronautical Information Manual Aeronautical Information Publication Air Line Pilots Association Amplitude Modulada Agência Nacional de Aviação Civil Approach Control Air Space Management Aviation Safety Reporting System Air Traffic Control Air Traffic Flow Management Automatic Terminal Information Service Air Traffic Management Air Traffic Service Air Traffic Services Unit Civil Aviation Authority Certificado de Habilitação Técnica Comisión de Investigación de Accidentes e Incidentes de Aviación Civil Communication, Navigation and Surveillance Controller Pilot Data Link Communications Cockpit Resource Management Crew Resource Management Corporate Resource Management Cockpit Voice Recorder Data Link Control and Display Unit Distance Measurement Equipment 11

12 Doc EGP ESP FAA FANS Ft FUA GMT GPS HF HPA IATA ICAO ILS KLM NASA NAV CANADA NM NTSB PAMS-ATC PANAM PANS-ATM PC PLA Pol. Hg RBHA RDL SA SATCOM SES SID SSR Abreviação de Documento utilizado pela ICAO English General Purpose English Special Purpose Federal Aviation Administration Future Air Navigation Systems Feet Flexible Use of Airspace Greenwich Mean Time Global Positioning System High Frequency Hectopascal International Air Transport Association International Civil Aviation Organization Instrument Landing System Royal Dutch Airline National Aeronautics and Spatial Administration Órgão privado sem fins lucrativos que controla o Sistema de Navegação Aérea Canadense Nautical Miles National Transportation Safety Board Procedure for Air Navigation Services Air Traffic Control Pan American World Airways Procedure for Air Navigation Services Air Traffic Management Licença de Piloto Comercial Licença de Piloto de Linha Aérea Polegadas de Mercúrio Regulamento Brasileiro de Homologação Aeronáutica Radial Situational Awareness Comunicação via satélite Single European Sky Standard Instrument Departure Secondary Surveillance Radar 12

13 TAI TEM TOD TWR VHF VOR Tráfego Aéreo Internacional Threat and Error Management Top of Descend Torre de Controle Very High Frequency VHF Omni directional Range 13

14 SUMÁRIO RESUMO... 5 ABSTRACT INTRODUÇÃO A COMUNICAÇÃO UMA BREVE HISTÓRIA DA COMUNICAÇÃO A COMUNICAÇÃO E O MEIO AERONÁUTICO Uma Visão Geral Sistemas Atuais de Comunicação em Aviação Transmissão em HF (faixa de 3Mhz a 30Mhz) Transmissões em VHF (faixa de 118Mhz a 136,98Mhz) Transmissão via Satélite (faixa de 4 Ghz a 6Ghz) O Conceito de CNS/ATM TEORIAS DA COMUNICAÇÃO Esquema Linear de Comunicação de Lasswell Teoria Matemática da Comunicação de Shannon e Weaver Esquema de Comunicação de Osgood e Schramm OS ERROS NA COMUNICAÇÃO E OS ACIDENTES AÉREOS O Desastre de Tenerife PROBLEMAS DE COMUNICAÇÃO PROBLEMAS BASEADOS EM LINGUAGEM Ambigüidade Homofonia Pontuação e Entonação Referência Incerta Inferência Implícita Não Familiaridade com a Terminologia Repetição (ou cotejamento) PROBLEMAS NÃO BASEADOS EM LINGUAGEM Problemas com Números

15 3.2.2 Problemas de Complacência Distração ou Fadiga Impaciência Obstinação ou Não Cooperação Irresponsabilidade e Conflito PROLBEMAS GERAIS Mensagem não Enviada Mensagem Enviada mas não Recebida Mensagem Enviada e Recebida, mas não Entendida Mensagem Enviada, Recebida e Entendida mas Esquecida EXEMPLOS NACIONAIS AS SOLUÇÕES FRASEOLOGIA AERONÁUTICA O Surgimento da Fraseologia Padronização em Foco A ICAO E O LEVEL NAVEGAÇÃO E COMUNICAÇÃO DO FUTURO (CNS/ATM) TREINAMENTO E COMUNICAÇÃO TREINAMENTO EM COMUNICAÇÃO EMPRESAS CERTIFICADAS RBHA 121 E CENTROS DE TREINAMENTO RBHA O CENÁRIO A PROPOSTA O DESENVOLVIMENTO Segmento de Currículo de Curso de Comunicação na Língua Inglesa e Fraseologia Módulo de Treinamento Especial On-line Módulo de Treinamento Especial Presencial CONCLUSÃO BIBLIOGRAFIA REFERÊNCIAS GLOSSÁRIO ANEXO A Tabela de Código Morse

16 ANEXO B Posição de Impacto em Tenerife ANEXO C Memorando ao FAA ANEXO D Artigo sobre comunicação aeronáutica

17 1. INTRODUÇÃO O trabalho desenvolvido aqui provem de um estudo de fatores lingüisticos e cognitivos envolvendo análises de protocolos de comunicação ar-solo definidos em manuais operacionais e atualmente utilizado por pilotos e controladores de vôo. Este trabalho tem como foco as comunicações ar-solo e, mais especificamente, nos problemas que surgem da utilização de comunicação por voz via rádio. Os humanos demonstram uma preferência natural em utilizar voz como meio de comunicação entre si ou com máquinas, já que é a forma de comunicação que as pessoas acham mais conveniente. A complexidade e a flexibilidade da linguagem natural são problemáticas, entretanto, devido às confusões e duplo significados que surgem devido a problemas específicos da linguagem, tais como ambigüidade, inferência, entonação e também peculiaridades da interação humana cara a cara ou via rádio. Em particular, erros de vários tipos relacionados à comunicação aeronáutica têm se mostrado como um fator crucial na contribuição de acidentes e incidentes aeronáuticos. O acidente de Tenerife de 1977 está entre eles. Considerado o maior acidente da história da aviação, teve como fator altamente contribuinte para o evento falhas no processo comunicativo entre pilotos e controlador. Algumas soluções para estes problemas já estão em desenvolvimento e implementação. A exigência de um exame de proficiência lingüistica para pilotos está em efeito desde 2008 em alguns países e, no Brasil, desde maio de O desenvolvimento do conceito de CNS/ATM e a implementação dos sistemas de comunicação integrada CPDLC e ADS devem diminuir consideravelmente os problemas de comunicação em área remota. A exigência do treinamento de CRM para tripulantes de empresas aéreas aumenta consideravelmente a consciência situacional dos pilotos relativa aos processos de comunicação interna e externamente ao cockpit. A Publicação de manuais de radiotelefonia pelas autoridades aeronáuticas de todo o mundo servem como referência importante para o profissionalismo e eficiência do processo comunicativo. Porém, apesar da existência de muitos documentos regalórios, não existe treinamento específico previsto pelas autoridades aeronáuticas relativo a comunicação e fraseologia. 17

18 Este trabalho levanta a hipótese de que existe um vácuo deixado pela ausência de treinamento específico sobre o assunto da comunicação aeronáutica, seus problemas e influências, para pilotos e controladores no mundo todo. O objetivo desta obra é propor a criação de um plano de treinamento no Brasil de comunicação e fraseologia para pilotos operando sob RBHA 121 com o intuito de melhorar a proficiência em comunicações aeronáuticas de pilotos e aumentar a segurança de vôo. A justificativa para esta pesquisa é a observação de que os órgãos reguladores não exigem nenhum tipo de treinamento específico ou teste de proficiência para o uso da fraseologia, limitando-se apenas a disponibilizar documentos de referência, como manuais de radiofonia e documentos regulatórios. A metodologia empregada baseia-se em pesquisas bibliográficas, sites da Internet e vasta utilização de relatórios de segurança de vôo existentes sobre o assunto em questão. Este trabalho está estruturado em seis capítulos. O primeiro capítulo faz um breve relato da situação da comunicação aeronáutica e dos objetivos deste estudo. O segundo trata da história da comunicação, das teorias e modelos levantados pelos pesquisadores que se encaixa na padrão utilizado na aviação e dos fatores que influenciam no processo comunicativo. O terceiro descreve detalhadamente os diversos problemas que podem influenciar na comunicação aeronáutica, principalmente na utilização da língua inglesa. No quarto capítulo as soluções para os problemas de comunicação são analisadas e discutidas. Um modelo de treinamento é proposto no quinto capítulo, onde a carga horária e a descrição dos tópicos a serem ministrados são apresentados. No sexto capítulo concluímos que uma regulamentação global mais específica aos problemas de comunicação e fraseologia deve ser elaborada, afim de padronizar e aumentar a segurança de vôo em âmbito mundial. 18

19 2. A COMUNICAÇÃO 2.1 UMA BREVE HISTÓRIA DA COMUNICAÇÃO Desde o início dos tempos, o homem procurou se comunicar com os seus semelhantes. Com o passar dos séculos, o sistema de comunicação foi se aprimorando de forma lenta, porém constante. Cada novo episódio na trama da evolução dos sistemas de comunicação caracteriza-se pela utilização de novas formas de comunicação, que transformam a sociedade na medida em que essas formas surgem e se desenvolvem. Há centenas de milhares de anos o Homo Sapiens iniciou a sua jornada através da história da comunicação utilizando-se das expressões corporais e verbais na tentativa de se exteriorizar. Com o passar do tempo, nossos ancestrais começaram a fazer gestos cada vez mais precisos e emitiam sons que pouco a pouco iriam se tornando códigos significativos ou, como definimos hoje, a linguagem propriamente dita. O canto e a dança lhes permitiam exprimir sentimentos e transmitir emoções fazendo com que a única maneira de se comunicar nessa época fosse de forma interpessoal. Logo após o desenvolvimento dos sons e dos gestos e com o aparecimento de núcleos sociais mais desenvolvidos, houve a necessidade de se deixar os registros dos acontecimentos para as gerações posteriores. O primeiro passo foi o de criar uma língua escrita. Ao juntar letras o homem criava palavras, ao juntar as palavras o homem criava frases, transmitindo assim a sua história e as suas idéias para os seus semelhantes e descendentes. Aos poucos o alfabeto, que variava de língua para língua, foi desenvolvido. Mesmo os povos mais primitivos, que não desenvolveram uma linguagem escrita, encontraram outros meios de comunicar entre si enviando as suas mensagens como o uso de tambores ou sinal de fumaça. O muro das cavernas repleto de pinturas dão origem às nossas primeiras bibliotecas. A partir da invenção da escrita, as mensagens são confiadas ao papiro ou ao pergaminho, vencendo, assim, tempo e distância. A escrita tornou possível o que até então não existia: a criação de uma rede de informação. 19

20 Foto 1 - Representação de caça com idade de anos no Rio Grande do Norte. Fonte: A ampliação da rede de comunicação força, então, a criação de meios mais eficientes de se enviar mensagens em menor tempo e em maior quantidade. A criação da imprensa no século XV mudou de forma significativa o modo como a sociedade utilizava as formas de comunicação. Embora os livros fossem ainda restritos à uma pequena parte da sociedade, com o tempo o uso da imprensa se popularizou, permitindo que a informação chegasse a várias camadas sociais até então, sem acesso à informação. Mas havia muitos problemas a serem solucionados. A comunicação ainda não era instantânea e a mensagem podia levar meses ou anos até chegar ao receptor quando o fato descrito na mensagem não fosse mais relevante. A partir do século XIX, com o avanço no desenvolvimento da eletricidade, o homem descobriu que podia enviar mensagens instantâneas inclusive para grandes distancias. Nascia assim o telégrafo (em grego significa escrever à distancia) e, junto com ele, o Código Morse, inventado por Samuel Morse ( ), que permitia a interação quase imediata entre o emissor e o receptor. Embora fosse um avanço importante no sistema de comunicação, o uso do telégrafo era muito restrito e o custo de sua implantação muito alto. Era mister desenvolver um sistema mais prático e mais confiável para transmitir mensagens. Em 1984 Guglielmo Marconi ( ) inventa o rádio como um veículo que possibilita à mensagem a atingir 20

21 uma multidão de anônimos. O rádio substituiu o telégrafo rapidamente pois era de implementação relativamente barata e de custo operacional baixo. Sua eficácia é tão alta que continua sendo usado como meio de comunicação primário em muitos setores importantes da sociedade. Foto 2 - Um antigo tipo de manipulador de telegrafia usado para ensino e treinamento de operadores militares e civis. Fonte: Mas a comunicação interpessoal ainda estava restrita à mensagens escritas, como ha centenas de anos atrás. Foi Alexander Graham Bell ( ) que, em 1876, mudou a história das comunicações para sempre com a invenção do telefone. Agora o cidadão comum também tinha acesso a um meio de comunicação de longa distância de forma instantânea. Com o avanço da tecnologia, as formas de comunicação continuaram as mesmas, porém, mais eficientes. Os satélites retransmitem mensagens e comunicação por todo o planeta. O telefone celular permite ao indivíduo se comunicar em qualquer lugar e a qualquer hora. A Internet agregou à comunicação a informação, onde se conduz a troca de grande quantidade de informação de forma instantânea. A Internet surgiu como um componente do sistema de defesa desenvolvido pelos Estados Unidos na época da Guerra Fria como o intuito de permitir que seus computadores militares se comunicassem de forma instantânea e descentralizada, mesmo se ocorresse um ataque nuclear em qualquer uma das centrais, os dados estariam preservados. As universidades gostaram do modelo e desenvolveram o que hoje conhecemos como sendo a Internet. Enquanto o rádio e o telefone 21

22 permitiam somente a troca de informação de áudio entre indivíduos a Internet possibilitou a troca de todo e qualquer tipo de formato de informação como filmes, música, fotos, textos entre outros de forma instantânea e global. Não seria exagero dizer que a Internet deu início à uma revolução cultural em escala global tornando o mundo menor; é o ápice da jornada do desenvolvimento dos sistemas de comunicação que começou com nossos ancestrais centenas de anos atrás. Ilustração 1- Representação livre das conexões que formam a Internet. Fonte: Mas o meio aeronáutico não se rende facilmente às novidades. Por questões relativas a segurança e a eficiência, os modelos utilizados pela aviação civil necessita de um grau de confiabilidade muito alto. Os meios utilizados para comunicação terra-ar ainda são os mesmos utilizados pelos pilotos da segunda guerra mundial; as freqüências de rádio na faixa de VHF e HF. Embora já existam novas tecnologias disponíveis para utilização nas comunicações aeronáuticas (de fato, essas tecnologias já são utilizadas nas comunicações em terra há algum tempo) o antigo meio de comunicação através da utilização da voz humana propagada por ondas de rádio ainda são dominantes. Apesar de possuírem um alto grau de confiabilidade, carregam consigo algumas características importantes relacionadas à eficiência da comunicação propriamente dita, as quais abordaremos neste estudo. 22

23 2.2 A COMUNICAÇÃO E O MEIO AERONÁUTICO Uma Visão Geral O advento da aviação acompanhou o desenvolvimento tecnológico e industrial do século XIX. Muito antes de Alberto Santos Dumont ( ) ter realizado seu bem sucedido vôo em Paris em 1906, vários estudos sobre aviação já estavam sendo realizados em várias partes do mundo. A tecnologia utilizada no desenvolvimento do telégrafo já estava bem avançada e o rádio, aos poucos, seguiria substituindo o telégrafo como meio de comunicação. Acompanhando a história do desenvolvimento humano, as tecnologias se desenvolvem grandemente através das guerras, e, com a comunicação aeronáutica não seria diferente. Balões de ar já eram usados com o propósito de realizar observações da posição inimiga nos anos de Em 1900, o Conde Ferdinand Von Zeppelin ( ) aprimorou o projeto dos dirigíveis existentes tornando-os mais eficientes e manobráveis. Os zepelins foram utilizados como postos de observação, meio de transporte e algumas vezes como bombardeiros pela primeira vez na Guerra Ítalo - Turca ( ). Com a evolução do avião, esta função foi sendo rapidamente transferida para as aeronaves dos corpos de aviação do exercito, o embrião das futuras forças aéreas, na ocasião da Primeira Guerra Mundial ( ). A comunicação aeronáutica nessa época ainda era baseada em um modelo arcaico de envio de sinais visuais. As aeronaves não possuíam rádio ou qualquer equipamento de comunicação moderno na época. Não havia troca de mensagens entre a aeronave em vôo e o pessoal de solo, apenas o envio de informações básicas da aeronave para o solo através de pombos correio ou sinais visuais. Após o pouso, a tripulação fornecia um relato detalhado daquilo que se pretendia observar, como a posição das tropas inimigas, por exemplo e este era enviado via telégrafo para o centro de comando. 23

24 Foto 3 Dirigível utilizado como bombardeiro na Guerra Italo-Turca. Fonte: O primeiro sistema de controle de tráfego aéreo conhecido foi o do aeroporto de Croydon em 1921, onde se utilizava um sistema de bandeiras coloridas para se comunicar com os pilotos. Logo após a Primeira Guerra, a radiotelefonia passou a ser largamente empregada na comunicação aérea, a qual já adotara algumas técnicas originalmente usadas pela marinha como, por exemplo, o código de 3 letras, conhecido como código Q. Esse código foi originalmente desenvolvido em 1909 pelo governo britânico para facilitar a comunicação telegráfica entre os navios britânicos e estações costeiras. Atualmente ainda são usadas nas comunicações radio amadoras e mesmo aeronáuticas em alguns casos. QRA QRM QRN QNH QRU QDR Nome do Operador? Interferência de outra Estação? Interferência por estática atmosférica? Pressão atmosférica no nível do mar. Você tem algo para mim? Rumo magnético da estação. Quadro 1 Exemplos de alguns códigos Q. Fonte: Autores 24

25 Com o fim da Primeira Guerra Mundial, houve uma disponibilidade de aeronaves remanescentes do exército a disposição da sociedade civil. Logo foram encontradas utilidades para elas criando-se o correio aéreo e, posteriormente, o transporte transcontinental de passageiros. Em 1926 a primeira regulamentação de tráfego aéreo foi estabelecida nos Estados Unidos com o que foi chamado de Air Commerce Act ou o Ato do Comércio Aéreo. Esta legislação autorizava à secretaria do comércio americana a emitir certificados para pilotos, definir rotas, desenvolver sistemas de auxilio a navegação aérea, entre outras funções. No final da década de 1930, os equipamentos de rádio estavam bem desenvolvidos operando em AM, em faixas de freqüências de 100 a 156 Mhz, divididas em vários canais. Os transceptores para fins aeronáuticos eram bastante compactos e providos de inovações como o circuito squelch destinado a suprimir o ruído da falta da portadora. Foto 4- Equipamento de rádio comunicação em aeronaves, Fonte: Na década de 1930 os equipamentos a bordo das aeronaves como o horizonte artificial, o velocímetro e a bússola foram aperfeiçoados, aumentando a eficiência dos vôos. Um dos avanços mais inovadores da época foi o desenvolvimento do radio beacon, que podia orientar as aeronaves através de ondas de rádio. 25

26 Foto 5- Ilustração parcial do mecanismo de uma bússola giroscópica, mostrando o giroscópio, usado em sistemas de navegação inercial. Fonte: Foto 6- Indicador de bordo com escala azimutal e a antena rotativa que era fixada na fuselagem da aeronave. Fonte: Com o início da Segunda Guerra Mundial ( ) o avanço no desenvolvimento das tecnologias de transmissão de ondas eletromagnéticas propagadas pelo espaço ou simplesmente, o rádio, levou ao surgimento do radar. Desenvolvido pelos britânicos da necessidade de se criar uma barreira de alerta 26

27 contra os ataques aéreos alemães rapidamente foi empregado no uso do controle do tráfego de aviões civis. O excesso de aeronaves disponibilizados pelo fim da guerra e a grande demanda de vôos pela sociedade levou as autoridades de vários países a se preocuparem com o aumento do tráfego e com as diferenças de regras experimentadas em várias regiões do planeta. Em 1944 o a Convenção sobre Aviação Civil Internacional estabeleceu a criação da Organização de Aviação Civil (ICAO), uma agência especializada das Nações Unidas incumbida de regular e coordenar assuntos relacionados à aviação internacional, estabelecendo regras em comum para espaços aéreos, aeronaves e pessoal. A aviação ficara assim mais segura e padronizada. Ilustração 2- Radio Alinhamento, uma estrada invisível no céu Figura explicativa da nova tecnologia empregada na navegação aérea. Fonte: Na década de 1960 as aeronaves começaram a incorporar o transponder, tornando o uso do radar pelos órgãos de controle do espaço aéreo mais eficiente e os vôos mais seguros. A NASA lança em 1962 o primeiro satélite artificial comercial de comunicação com órbita sincronizada, possibilitando de uma comunicação por voz de boa qualidade entre grande distâncias devido a sua capacidade de ampliar os sinais recebidos. 27

28 Foto 7- Satélite Telstar 1 da AT&T. Foi o primeiro satélite comercial artificial de comunicações lançado no mundo. Fonte: Na década de 1970 o sistema de tráfego aéreo continua baseado em radares para monitorar o tráfego aéreo e corredores (airways) para organizar este tráfego, mas o sistema de troca de informações no solo se tornara altamente computadorizado aumentando a eficiência do controle de tráfego aéreo. O início do século XXI foi marcado pelo aumento do uso de satélites para fins de navegação, o GPS, tornando a navegação aérea mais precisa e eficiente e pelo aumento exponencial do tráfego aéreo, tornando urgente o desenvolvimento dos sistemas de comunicação entre pilotos e controladores. Embora os pilotos possuam meios modernos para se comunicar com suas respectivas companhias aéreas através de satélites (SATCOM) os meios de comunicação piloto-controlador não acompanharam este desenvolvimento, utilizando ainda os mesmos equipamentos de VHF e HF que eram utilizados na época da Segunda Guerra Mundial. 28

29 2.2.2 Sistemas Atuais de Comunicação em Aviação Transmissão em HF (faixa de 3Mhz a 30Mhz) Com comprimento de ondas muito longas (dezenas de metros), o mecanismo de propagação das ondas nesta faixa se dá esfericamente no espaço, propiciando à transmissão em HF um alcance ilimitado. Isso ocorre porque parte das ondas se propagam pela superfície da terra e parte reflete na ionosfera, retornando à terra. Este sinal poderá refletir na superfície da terra e retornar a atmosfera onde refletirá de volta a terra, alcançando grandes distâncias. Entretanto, o espelho natural, que é a Ionosfera, não é muito estável. Quando há perturbações intensas no sol o efeito de reflexão é anulado, e as comunicações não funcionam a longa distância. Ao se ouvir uma transmissão em HF, verifica-se que o som não é estável. Esta instabilidade é provocada por variações ionosféricas ou variações no trajeto da propagação. O uso de SSB em HF esta sendo abandonado devido ao aparecimento de sistemas que operam via satélite (FANS), em principio mais confiáveis, pois as condições de propagação em HF são muito variáveis. A maior vantagem deste sistema é que permite comunicação a longa distância diretamente com a aeronave sem depender de terceiros. Com apenas 100w de potência é possível atingir o mundo inteiro na faixa de HF. Sua maior desvantagem é o meio de transmissão ser instável e não garantir uma comunicação eficiente a qualquer hora, obrigando cada estação a alocar freqüências diferentes para horários diferentes do dia e da noite. Ainda é o meio utilizado para aeronaves e órgãos de controle se comunicarem em áreas remotas e oceânicas Transmissões em VHF (faixa de 118Mhz a 136,98Mhz) Na faixa de freqüências de VHF só é utilizada a propagação terrestre ou aquela que ocorre na linha de visada. A ionosfera é transparente a estas freqüências, isto é, não as refletem de volta à terra e o sinais seguem para o espaço. Com isto o alcance da transmissão é limitado a aproximadamente 200 quilômetros e depende diretamente da altitude da aeronave. 29

30 Na faixa de VHF utilizada em aviação existe uma deficiência técnica devido a antiga tecnologia de modulação AM utilizada, que não permite filtragem de ruídos adquiridos durante a transmissão (ruído térmico, descargas elétricas, ruído cósmico, ruído gerado no próprio receptor e interferências que podem ser geradas por vários tipos de equipamentos elétricos). Se o ruído na entrada do receptor for maior que o sinal que se quer captar a comunicação se torna ininteligível. A maior vantagem desta faixa de freqüência é a qualidade da recepção que é melhor que a do HF, dentro de certas condições. A desvantagem está na modulação AM, onde não se consegue eliminar as interferências e ruídos na recepção. O alcance também fica limitado, necessitando de repetidoras para se atingir longas distâncias e não pode haver obstáculos entre a aeronave e a estação. A faixa de freqüência está imprensada entre a faixa comercial de FM e a faixa de serviços de VHF (radioamador, policia, serviços particulares, estações marítimas), onde surgem muitas interferências devido a transmissões piratas Transmissão via Satélite (faixa de 4 Ghz a 6Ghz) Com o lançamento dos satélites de comunicações, houve um grande avanço nesta área, pois com os satélites operando na faixa de microondas, temos poucas interferências externas e as portadoras podem levar grande quantidades de canais digitalizados. Os satélites funcionam basicamente como repetidores, regenerando o sinal recebido e os retransmitindo de volta a terra para a área desejada. As dificuldades desta tecnologia são os altos custos de lançamento de satélites e sua operação, pois devido a atração da gravidade, os satélites tem a tendência a sair da órbita pré programada, tendo as estações de monitoramento e controle terem que fazer correções constantes que gastam combustível o que define sua vida útil no espaço. Temos neste segmento os satélites geo-estacionários que orbitam a cerca de km de altura da superfície da terra. Devido a sua velocidade angular ser a mesma da rotação da terra ele permanece estacionário sobre um ponto fixo na terra. A vantagem deste tipo de satélite é que são necessários menos satélites no espaço para cobrir toda a superfície da terra. Entretanto, devido a longa distância que permanecem em órbita da terra, a potência de transmissão dos satélites e dos 30

31 equipamentos de terra devem ser mais altas e o retardo no sinal de voz devido ao tempo de propagação (72.000km) é um incômodo. Estes defeitos são corrigidos com canceladores de eco. Os Satélites de baixa órbita, que se mantém a partir de 300km de altura, são aqueles que circulam a terra em períodos regulares. Como vantagem necessitam de baixa potência de transmissão nos equipamentos dos satélites e de terra, e verificase ausência de ecos para o sinal de voz. Porém, para cobrir toda a terra é necessário uma grande quantidade de satélites. Como regra, quanto menor a altura orbital, maior deve ser o numero de satélites a serem lançados pois menos área eles irão cobrir O Conceito de CNS/ATM Preocupada com a falta de avanço no sistema de comunicação aeronáutico, a ICAO estabeleceu um comitê em 1983 para tratar do FANS. A proposta era a de se estudar a viabilidade de se criar um sistema que integrasse os sistemas de navegação, vigilância e controle de tráfego aéreo em um só sistema com o intuito de se utilizar as novas tecnologias disponíveis e melhorar a eficiência do sistema de tráfego aéreo a ser implantado a partir de A partir disso surge o conceito de CNS/ATM (Communication, Navigation, Surveillance / Air Traffic Management (Comunicação, Navegação e Vigilância / Gerenciamento de Tráfego Aéreo), onde se encontra os avanços das transmissões aeronáuticas. O grande avanço está na comunicação via satélite, que consiste em uma constelação de satélites de cobertura global que permitirão uma comunicação de dados e voz em qualquer lugar, além de permitir a exploração de outros serviços a bordo, como TV a cabo, telefonia e Internet. Os novos sistemas de comunicações estão baseados na comunicação de dados, que consiste na interligação entre os computadores das aeronaves diretamente com os sistemas de controle de tráfego aéreo e centro operacional das empresas através de sistemas automáticos. Estes podem informar a posição da aeronave, velocidade, direção, horário estimado de passagem nos vários pontos da rota, assim como o estimado de pouso e outros dados necessários ao controle de 31

32 tráfego ou à coordenação de vôos da empresa. O caminho também pode ser inverso, com o controle mandando instruções à aeronave, informações meteorológicas atualizadas, etc. Com isto o VHF e HF, que são as formas de comunicações atuais vão desaparecer. Com os sistemas da aeronave se comunicando diretamente com os computadores do controle de tráfego aéreo, o canal de transmissão de voz servirá somente como sistema de contingência em caso de falha na transmissão de dados ou como emergência. A comunicação via rádio entre pilotos e controladores deixará de ser fundamental para o gerenciamento do trafego aéreo. A maior vantagem do sistema é a melhor confiabilidade das informações que chegam ao comandante através de telas, precisão das informações que são geradas por diversos sistemas e tratadas por programas especialistas e menor risco de perda de comunicação. Entretanto, o custo de upgrade é alto para aeronaves antigas equipadas com sistemas analógicos. Como em aviação nada pode mudar de uma hora para outra, deverá se conviver com os 2 sistemas (analógicos e digitais) por longo tempo. A implementação em escala global do sistema está prevista para além de Hoje para haver gerenciamento de tráfego aéreo tem que haver uma comunicação bilateral entre o comandante e o controlador. Veremos nos próximos anos lentamente a transição entre a aviação analógica e a aviação digital, onde o pesadelo do controle de operações atual de fazer voar o maior numero de aeronaves de capacidades e velocidades diferentes no mesmo espaço com segurança, poderá ser finalmente resolvida. Com a tendência cada vez mais evidente da infra-estrutura de telecomunicações se transformar em uma rede única mundial, com alto grau de sofisticação e inteligência, os terminais tornam-se cada vez menores e mais baratos e com melhor confiabilidade, onde se poderá ter acesso a serviços de voz, dados e imagens. Do ponto de vista de acesso sem fio coexistirão as coberturas via radio terrestre e as coberturas via satélite (de baixa, intermediária e alta órbita). O avanço das telecomunicações digitais cresce muito rápido, mas em aviação as mudanças rápidas não são bem vindas. Tudo que equipa uma aeronave tem que ser testado a exaustão e sua confiabilidade deve seguir altos padrões de segurança. Normalmente esta fase segue um longo caminho e, com isto, quando a tecnologia é aprovada para o uso aeronáutico já existe uma nova tecnologia bem mais avançada 32

33 em funcionamento. Por este motivo, o rádio ainda será amplamente utilizado por muitos anos. Suas características tornam necessário entender como o processo comunicativo entre piloto e controlador acontece e quais são suas deficiências. 2.3 TEORIAS DA COMUNICAÇÃO Antes de analisar a comunicação no meio aeronáutico, é importante que observar o que significa a expressão se comunicar. Segundo a Britannica World Language Standard Dictionary (1966, p. 265): Communication 1 : the act of communicating; intercourse; exchange of ideas, conveyance of information, etc e Communicate 2 : To make another or others partakers of; transmit ( ) an idea. Segundo o Mini Dicionário Aurélio (2002, p. 170): Comunicação: Processo de emissão, transmissão e recepção de mensagens por meio de métodos e/ou sistemas convencionados e Comunicar: Travar ou manter entendimento. De acordo com Joseph Rifkind, (1996, p. 13) a comunicação é definida como sendo um processo dinâmico e irreversível pelo qual nos engajamos e interpretamos mensagens em um dado um contexto ou situação, e revela a natureza da dinâmica dos relacionamentos e das organizações.. A comunicação está presente em todos os atos lingüísticos, como em uma conversa ao telefone, em um chat na Internet ou, citando uma área mais específica ao nosso estudo, uma conversa via radio, ou radiofônica como a trataremos daqui por diante. A situação de comunicação baseia-se na troca de mensagens de um ponto para outro, na condição da mensagem estar devidamente codificada. A codificação da mensagem refere-se à organização dos termos que a compõem num sistema lógico de signos reconhecíveis (decodificáveis) por um grupo de falantes. A codificação da mensagem na comunicação lingüística é um processo convencional que se preestabelece entre os falantes de uma língua. A evolução dos modelos propostos para montar um esquema representativo das etapas da comunicação mostra como a visão do sistema de comunicação esta diretamente relacionado com os avanços sociais e tecnológicos. Analisaremos os três modelos de comunicação em que se basearam este estudo: 1 Comunicação: O ato de se comunicar; interagir; troca de idéias; transporte de informação, etc. 2 Comunicar: Tornar o outro ou outros participantes de; transmitir (...) uma idéia. 33

34 2.3.1 Esquema Linear de Comunicação de Lasswell Harold Lasswell ( ), um cientista político, foi o pioneiro, afirmando que descrever um ato comunicativo consiste em responder às questões: Quem? Diz o quê? Através de que meio? A quem? Com que efeito?. Ele formalizou uma estrutura, que abriu as portas para a análise parcelar de cada um dos elementos da comunicação, em resposta ao crescimento de novos meios de comunicação como imprensa, telégrafo e rádio. Essa visão, porém, isola o papel do emissor e do receptor, independentemente das condições sociais, culturais ou cognitivas em que se realiza o ato comunicativo como visto na figura Para que a comunicação funcione de forma eficaz segundo o modelo de Lasswell, basta que ambos, emissor e receptor, conheçam o código utilizado no processo. QUEM DIZ O QUÊ ATRAVÉS DE QUE MEIO A QUEM COM QUE EFEITO E M I S S O R M E N S S A G E M M E D I U M R E C E P T O R I M P A C T O Quadro 2 - Representação do Esquema Linear de Comunicação de Lasswell. Fonte: Silva, Bento. Educação ecomunicação, Teoria Matemática da Comunicação de Shannon e Weaver Os norte-americanos, Claude Shannon ( ) e Warren Weaver ( ), publicaram em 1949 um modelo de comunicação intitulado Teoria Matemática da Comunicação que tem como objetivo medir a quantidade de informação contida numa mensagem e a capacidade de informação de um dado canal, quer a comunicação se efetua entre duas máquinas, dois seres humanos ou entre uma máquina e um ser humano. Com estes autores, aparece um novo elemento no esquema da comunicação: o ruído. O ruído é algo que é acrescentado ao sinal, entre a sua transmissão e a sua 34

35 recepção e que não é pretendido pela fonte. Esse modelo considera a existência de um elemento alheio ao processo de comunicação que interfere na mensagem, permitindo o entendimento da necessidade de se escolher o meio mais adequado de transmissão de mensagens, ou seja, com menor ruído possível. Do lado do emissor há um processo de codificação e do lado do receptor há a decodificação. Entre a mensagem enviada e a recebida há um hiato, em que diversos ruídos podem aparecer, afetando a qualidade da mensagem. Assim, a comunicação não estará completa enquanto o receptor não tiver interpretado (percebido) a mensagem. Se o ruído for demasiadamente forte em relação ao sinal, a mensagem não chegará ao seu destino, ou chegará distorcida. Para solucionar esse problema Shannon e Weaver introduziram o conceito de feedback ou retroalimentação, que consiste no conjunto de sinais perceptíveis que permitem conhecer o resultado da mensagem; é o processo de fazer perguntas e obter as respostas, a fim de verificar se a mensagem foi recebida ou não, como representado no Quadro FONTE DE INFORMAÇÃO TRANSMISSOR CANAL RECEPTOR DESTINO MENSAGEM SINAL SINAL MENSAGEM FONTE DE RUÍDO FEEDBACK Quadro 3 - Representação da Teoria Matemática da Comunicação de Shannon e Weaver. Fonte: Silva, Bento. Educação ecomunicação,

36 2.3.3 Esquema de Comunicação de Osgood e Schramm Charles Osgood ( ) e Wilbur Schramm ( ) propõem que é necessária a existência de vivências comuns entre os participantes do ato comunicativo para haver eficiência no entendimento da mensagem. Eles pressupõem que a mensagem não possui uma vida própria, separada tanto do emissor como do (SCHRAMM, 1963, p9): A antiga idéia de transferir um pacote de fatos de uma mente para outra não é mais uma maneira satisfatória de pensar sobre a comunicação humana. É mais útil pensar em uma ou mais pessoas próximas ou de outros grupos se dirigindo para um determinado pedaço da informação, cada um com suas próprias necessidades e intenções, cada um compreendendo e utilizando a informação à sua maneira. A comunicação é, portanto, baseado em um relacionamento. Essa relação pode existir entre duas pessoas, ou entre uma pessoa e muitas. A essência dessa relação é estar em sintonia uns com os outros, concentrando-se na mesma informação. Este elemento central do relacionamento com a comunicação é normalmente embutido em determinadas relações sociais que contribuem para o uso e a interpretação da informação. Ou seja, Osgood e Schramm nos dizem que a mensagem enviada pelo emissor será sempre diferente daquela recebida pelo receptor, devido a fatores culturais, sociais e psicológicos que poderão ser diferentes para cada indivíduo (SCHRAMM, 1963, p9): Além disso, muito provavelmente o significado nunca é Interpretado da mesma forma por quaisquer dos receptores, ou ainda pelo remetente e o receptor. A mensagem é apenas um conjunto de sinais destinados a evocar determinados respostas culturais aprendidas, sendo entendido que as respostas serão fortemente afetadas pela experiência cultural, a maquiagem psicológica e a situação de qualquer receptor. 36

37 CAMPO DE EXPERIÊNCIA CAMPO DE EXPERIÊNCIA FONTE Codificador SINAL Decodificador DESTINO Quadro 4 - Representação do Esquema de Comunicação de Osgood e Schramm. Fonte: Silva, Bento. Educação e Comunicação, 1998 Existem vários outros modelos de sistema de comunicação dirigidos principalmente para a área pedagógica que, apesar de importantes, não são necessários ao desenvolvimento deste estudo. Pode-se estabelecer uma comparação entre os modelos apresentados e a forma como a comunicação radiofônica se estabelece. Descrevendo de forma simples uma transmissão via rádio, quando o emissor da mensagem (o controlador de vôo por exemplo, para nos atermos ao assunto deste estudo) utilizando um transmissor (microfone e amplificador de som do equipamento de rádio), converte a mensagem em sinais físicos, que através de um canal (ondas hertzianas ou a freqüência do rádio) chegam ao aparelho receptor que as converterá em sinais audíveis que o destinatário descodificará de acordo com um código que conhece (fraseologia aeronáutica). Essa seria adaptação de uma comunicação radiofônica à representação do Esquema Linear de Lasswell: O controlador emite uma mensagem para um piloto utilizando-se do seu equipamento de rádio. O piloto, por sua vez, recebe a mensagem pelo rádio da aeronave. Ambos conhecem o código que está sendo utilizado e a comunicação se estabelece de forma eficaz. Novamente é importante ressaltar que o conhecimento desse código é essencial para que a comunicação se estabeleça com êxito. Caso o piloto desconheça o significado implícito nos termos utilizados na fraseologia aeronáutica padrão, por exemplo, dificilmente poderá atender as expectativas do controlador de vôo. 37

38 A Teoria Matemática da Comunicação de Shannon e Weaver prevê que o processo de comunicação descrito acima não seria necessariamente eficaz apenas se considerarmos que ambos, controlador e piloto, conheçam o código que está sendo utilizado. Entre eles há o ruído, que pode comprometer a qualidade da mensagem ou mesmo impedir que ela chegue ao receptor. Considerando o exemplo anterior, uma comunicação entre um controlador de vôo e um piloto que conheçam perfeitamente os termos da fraseologia aeronáutica pode ser prejudicada pela distância entre seus equipamentos de rádio, gerando um sinal muito fraco, ou pela interferência de fontes alheias ao processo como por exemplo uma estação de rádio não certificada transmitindo próximo da freqüência utilizada pelo controlador ou mesmo dois pilotos transmitindo ao mesmo tempo na mesma freqüência e se bloqueando mutuamente. Embora ambos, transmissor e receptor, conheçam o código da mensagem, esta poderá não ser compreendida devido a existência de ruído na transmissão da mensagem. Para minimizar a possibilidade de erros causados por ruídos que possam comprometer o correto entendimento do significado da mensagem, se incluiu o processo de feedback no sistema. No processo de comunicação aeronáutico, esse mecanismo de controle advém da obrigação do piloto em cotejar ou repetir determinadas informações que são consideradas essenciais à segurança de vôo, a fim de garantir ao controlador que o significado da mensagem foi corretamente compreendido pelo piloto. (DOC 4444, 2005): A tripulação piloto deverá repetir (cotejar) partes relacionadas asegurança de vôo da autorização ATC e instruções recebidas por voz. Os seguintes itens devem sempre ser cotejados ao órgão ATC: a) autorização de rota ATC: b) autorizações e instruções para entrar, pousar, cruzar o decolar qualquer pista, e c) pista em uso, ajuste de altímetro, código SSR, instruções de altitude, proa e velocidade. Há outros fatores, exteriores ao processo de comunicação, que podem interferir no correto entendimento do significado da mensagem transmitida: Os Fatores Cognitivos e os Fatores Sociais. Aplicando o modelo de Osgood e Schramm no exemplo acima, o controlador de vôo e o piloto terão de administrar, além do problema do conhecimento e interpretação dos códigos (fraseologia) e da necessidade de eliminar ou diminuir os 38

39 ruídos (interferência), a influência dos diferentes Fatores Cognitivos e Sociais presentes em ambos. Em uma situação hipotética um piloto que tem receio em declarar uma situação de emergência (Fator Social) falha em transmitir claramente ao controlador a natureza do problema que está ocorrendo no vôo. Porém acredita que se comunicou corretamente ao informar de forma vaga a situação em que se encontra (Fator Cognitivo). Nesse exemplo, o controlador fica impedido de fornecer a ajuda necessária por não ter recebido uma informação clara e precisa sobre a situação de emergência em que o piloto se encontrava. Os Fatores Sociais e Cognitivos são elementos difíceis de controlar e avaliar no meio aeronáutico, já que variam de indivíduo para indivíduo, no tempo. Além disso, a qualidade da comunicação é bastante comprometida pela falta de interação visual entre o emissor e receptor. O contato visual se constitui um elemento de grande ajuda na avaliação imediata da condição social e psicológica do indivíduo com quem queremos nos comunicar. Steven Cushing sintetiza quais os elementos que compõe os Fatores Cognitivos e Fatores Sociais (CUSHING,1994, p. 2): Fatores cognitivos individuais são aspectos da comunicação que tem haver com o estado mental interno ou da interação entre dois ou mais interlocutores ou ouvintes. Este inclui aspectos específicos dos modelos mentais do mundo ou de situações específicas, preferencias individuais de como ler o mundo, assumindo valores ou expectativas baseado em crenças individuais. O Fator Social inclui convenções, definição de padronização, protocolos e regulamentações oficiais, fatores culturais e sociais, noções oficiais de hierarquia e autoridade ou comando. Cushing alerta que qualquer tentativa de analisar um fator sem considerar o outro pode ter conseqüências negativas à eficiência do sistema de comunicação e, por conseguinte, a segurança de vôo (CUSHING,1994, p. 2 e 3):...em geral, teorias do fenômeno cognitivo individual devem se basear em parâmetros cujos valores foram definidos por interações sociais e teorias de fenômenos de interatividade social devem se basear em parâmetros cujo valores foram definidos pela particularidade cognitiva individual da mente que participa desses fenômenos. A comunicação aeronáutica tipicamente envolve uma interação complexa de ambos os 39

40 fatores. Se esses fatores não interagem da maneira que deveriam, o resultado pode ser desastroso. Analisando os modelos apresentados, concluímos que a comunicação efetiva somente ocorre quando o receptor decodifica a mensagem conforme o emissor planejou. Uma quebra no processo de comunicação pode ocorrer se a mensagem não foi codificada ou decodificada de forma adequada seja por falta de conhecimento do código pelos participantes do ato comunicativo, seja pela existência de ruído no canal de comunicação ou pela influência de fatores cognitivos ou sociais envolvidos no processo. Devido a particularidade da comunicação aeronáutica, os elementos que influenciam no correto entendimento do significado das mensagens trocadas entre emissor e receptor precisam ser identificados e corrigidos afim de diminuir suas influências negativas na segurança de vôo. É mostrado na Tabela alguns fatores que podem contribuir para um mal entendimento da mensagem aeronáutica em uma comunicação radiofônica, de acordo com os modelos apresentados. LASSWELL SHANOM SCHRAMM Código Ruído Fator cognitivo Fator Social Código Morse Interferência Valores Pessoais Convenções Código Q Qualidade do sinal Expectativas Protocolos Fraseologia Sobremodulação Aspecto Intelectual Regras Língua Inglesa Aspecto Emocional Hierarquias Regulamento Fadiga e estresse Credibilidade Distração Quadro 5 - Elementos que influenciam na comunicação aeronáutica. Fonte: Autores Na Figura combinamos graficamente os três modelos estudados formando um esquema completo e abrangente que mostra, em conjunto, os elementos e influências que atuam no processo de comunicação. Podemos observar através deste esquema representativo que o a mensagem pode sofrer várias influências e interferências no seu caminho até o receptor, comprometendo o significado inicial que o emissor pretendia passar ao receptor. 40

41 EMISSOR RECEPTOR Glossário Significado Fatores Cognitivos e Sociais C o d i f i c a ç ã o M E N S A G E M MEIO Filtro e Perda Conteúdo Ruído e Interferência M E N S A G E M D e c o d i f i c a s ã o Glossário Significado Percebido Fatores Cognitivos e Sociais CANAL FEEDBACK Quadro 6 - Síntese dos Modelos de Comunicação discutidos. Fonte: Language error in aviation maintenance, FAA, 2005 O meio aeronáutico não está imune à essas influências e interferências. Longe disso, a comunicação radiofônica é um meio propício a apresentar graves erros de comunicação caso não haja um controle rígido envolvendo todo o processo comunicativo. Vários instrumentos já foram criados com o intuito de minimizar os efeitos negativos dos elementos descritos no Quadro como a criação de uma fraseologia aeronáutica específica e a necessidade de cotejamento de determinadas mensagens consideradas essenciais à segurança. Porém, por que falhas na comunicação ainda existem e continuam sendo fatores contribuintes e até determinantes em incidentes e acidentes aéreos em todo o mundo, mesmo com o avanço tecnológico no setor de Comunicações e Navegação? 41

42 2.4 OS ERROS NA COMUNICAÇÃO E OS ACIDENTES AÉREOS Com o avanço tecnológico da indústria aeronáutica as aeronaves se tornaram mais velozes e complexas, transportando mais passageiros e congestionando as rotas de ligação dos grandes aeroportos ao redor do mundo. Apesar da tecnologia empregada no sistema de comunicação entre as estações de controle no solo, o modelo de comunicação usado entre controladores e pilotos ainda é antigo e sujeito à influência negativa dos vários elementos descritos nos modelos aqui estudados. O fator comunicação está presente em 33% dos acidentes durante as fases de aproximação e pouso como mostrado no quadro 7. Estudos da NASA baseados no banco de dados do ASRS identifica a comunicação incorreta como responsável por 80% das ocorrências relacionadas a incidentes de comunicação, 33% devido a falta de comunicação e 12% devido a comunicação correta porém atrasada. A pesquisa também revela que em 45% do tempo os interlocutores ouvem, em 30% falam e em 25% estão escrevendo ou lendo. FATORES INFLUENTES EM ACIDENTES % de Eventos Tomada de decisão Inadequada 74% Omissão de ação ou ação não apropriada 72% Não observância de critérios de Aproximação Estabilizada 66% Coordenação de cabine inadequada 63% Consciência situacional horizontal e vertical insuficiente 52% Insuficiente entendimento das condições presentes 48% Ação lenta ou retardada 45% Dificuldade de manobrar a aeronave 45% Desobediência deliberada aos procedimentos 40% Treinamento inadequado 37% Comunicação Piloto - Controlador Incompleta ou incorreta 33% Interação com o automatismo 20% Quadro 7- Fatores causais de acidentes em aproximação e pouso. Fonte: Flight Safety Foundation Flight Safety Digest Vol 17 e 18,

43 O elemento que mais contribui para os acidente aeronáutico ainda hoje é o Erro Humano ou, tecnicamente, o Fator Humano. Cerca de 60 % dos acidentes ocorridos com aeronaves de transporte aéreo regular foram causados por falha humana tais como erros de julgamento, imprudência, imperícia entre outros como mostra o gráfico 1. Fatores Primários como causa de Acidentes Aviação Comercial - Frota Mundial 80,0% 70,0% 60,0% 50,0% 40,0% 30,0% 20,0% 10,0% 0,0% Manutenção 5,6% 4,6%3,8% 7,0% 3,5% 4,9% 4,7% Meteorologia Aeroportos/ATC Outros 14,1% 15,6% 13,7% Aeronave Fator Humano 64,4% 58,1% Total 1985 a 1994 Gráfico 1- Fatores que influenciam os acidentes aéreos entre o período de 1959 a Fonte: Boeing Commercial Airplane Group A fase do vôo também influi nas porcentagens de acidentes e incidentes aeronáuticos. Através da Ilustração 3 verifica-se que a fase que consome a maior parte do vôo é a de cruzeiro, mas, esta é responsável somente por 9% dos acidentes fatais registrados enquanto que na fase de aproximação e pouso observase 33% de ocorrências para uma fase que corresponde a apenas 4% do vôo. O segundo maior índice de ocorrências ocorre nas fases de decolagem e subida inicial (até cerca de 1500 ft) com um índice de 19%. Analisando esses dados concluímos que pousos e decolagens apresentam maiores riscos á segurança do vôo e, consequentemente, estão mais suscetíveis a influência de erros humanos. Esses erros tendem a se concentrar nestas fases devido a vários motivos como, por exemplo, as manobras de pousos e decolagens 43

44 aumentarem a carga de trabalho de pilotos e controladores, o vôo estar próximo ao solo e a outras aeronaves, o tempo disponível para receber e processar informações ser menor e a quantidade de informações trocadas entre piloto e controlador ser maior e, geralmente, mais críticas. Ilustração 3 - Representação estatística da relação entre as fases de vôo e a ocorrência de acidentes fatais (Dados da Frota Mundial de jatos comerciais entre 1998 e 2007). Fonte: Boeing Statistical 2007 Summary É comum a Opinião Pública considerar relevante somente acidentes aéreos que envolvam aeronaves de empresas de transporte aéreo regular. Porem, acidentes e incidentes envolvendo aeronaves da aviação geral também são importantes para este estudo, haja vista que esse setor é a fonte de grande parte dos pilotos profissionais que chegam na linha aérea. Alguns dados mostram como são expressivas as ocorrências envolvendo a aviação geral em problemas de comunicação. O Gráfico 2 mostra que essas ocorrências tendem a acontecer em maior quantidade no espaço aéreo Classe D, que corresponde a área em redor do aeródromo onde se concentram as manobras de pousos e decolagens. Esse dado pode ser comparado com os dados dos Gráfico 3 e 4, onde se observa que o maior índice de ocorrências acontece em um raio de até cinco milhas náuticas do aeródromo e na superfície. De fato, mais da metade dos acidentes envolvendo aeronaves da aviação geral aconteceram dentro de dez milhas náuticas e abaixo de 1000 pés de altitude. 44

45 Problemas de Comunicação na Aviação Geral Classe do Espaço Aéreo 47% 3% 8% 11% Other C B G E 18% 13% D Gráfico 2 - Porcentagem de incidência de erros de comunicação na Aviação Geral por classe do espaço aéreo. Fonte: ASRS NASA (Pub. 57) Problemas de Comunicação na Aviação Geral Distância do Aeródromo - NM 40% 18% at location 1 a 5 6 a 10 7% 11 a % 24% unknown Gráfico 3 - Porcentagem de incidência de erros de comunicação na Aviação Geral por distância do aeródromo. Fonte: ASRS NASA (Pub. 57) 45

46 Problemas de Comunicação na Aviação Geral Altitude das ocorrências (Ft - AGL) on surface 1 a a a a a a a a % 4% 2% 2% 1% 2% 1% 7% 17% 62% 0% 10% 20% 30% 40% 50% 60% 70% Gráfico 4 - Porcentagem de incidência de erros de comunicação na Aviação Geral por altitude. Fonte: ASRS NASA (Pub. 57) Os Gráficos 3 e 4 mostram ainda que um grande número de ocorrências aconteceu exatamente dentro dos limites do aeródromo. Isso ocorre devido ao problema de runway incursion 3 que, freqüentemente, é motivado por erro de comunicação entre piloto e controlador associado a perda de consciência situacional de ambos. Estes dados mostram que um acidente aeronáutico é mais propenso de ocorrer quando a aeronave está próxima ao aeródromo nos procedimentos de pouso ou decolagem, onde o volume de informação trocada pelo piloto e o controlador é alto, as mudanças de direção e altitudes são constantes e a carga de trabalho aumentada. Nesta fase, qualquer dos fatores mencionados pode influenciar decisivamente na segurança de vôo como uma informação mal interpretada (Fator Código), uma mensagem sobremodulada (Fator Ruído) ou um problema pessoal do 3 Runway incursion: Ocorrência em um aeródromo envolvendo a presença não autorizada de uma aeronave ou veículo dentro da área protegida da superfície designada para procedimentos de pousos e decolagens (pista). 46

47 piloto ou controlador (Fator Cognitivo). Pode parecer uma situação muito difícil de acontecer, porém, os fatos mostram que os problemas relacionados ao erro nas comunicações é mais comum do que poderia se esperar. O maior acidente da história da aviação teve suas causas relacionadas diretamente com erros graves no processo de comunicação entre pilotos e controlador, perda de consciência situacional e condições meteorológicas desfavoráveis O Desastre de Tenerife Ao meio dia e trinta minutos do dia 27 de março de 1977 uma bomba explodiu no terminal de passageiros do Aeroporto de Gran Canária em Las Palmas. Um grande número de vôos teve que alternar seu pouso para o Aeroporto de Los Rodeos, Tenerife, entre eles os vôos da KLM número 4805 e da PANAM número Las Palmas reabriu para pousos e decolagens às 15:00 horas GMT. As condições meteorológicas em Los Rodeos era de baixa visibilidade devido a chuvisco e bancos de nevoeiro, conforme reporte meteorológico das 17:03 horas para a pista 30 (CIAIAC A-102/1977 e A-103/1977): Visibilidade en pista: 300m; Tiempo presente: Llovizna y niebla en bancos. Devido aos passageiros do vôo da PANAM terem permanecido a bordo foi possível decolar imediatamente para Las Palmas significando pouco atraso no vôo. Embora fosse decolar primeiro, o vôo da KLM teve de aguardar quase 2 horas para re-embarcar os passageiros e reabastecer e por isso estava mais atrasado que o vôo da PANAM. A pista de taxi que dava acesso à pista de pouso estava bloqueada por aeronaves estacionada no pátio do aeroporto que não possuía espaço suficiente para acomodar todas os vôos que alternaram Tenerife. Isso significava que o Boeing 747 da PANAM deveria taxiar por um determinado segmento da pista de pouso e entrar na pista de taxi pela taxiway C-4, ao invés de taxiar somente pela pista de taxi como faria em condições normais. Enquanto isso o Boeing 747 da KLM também estava taxiando pela pista e deveria sair pela taxiway C-4, alinhar na pista 30 e aguardar autorização de decolagem (CIAIAC A-102/1977 e A-103/1977). 47

48 CÓDIGO APP RDO-2 CAM-1 CAM-2 CAM-3 KLM KLM-1 KLM-2 KLM-3 QUEM FALA Torre de Los Rodeos Mensagens do PanAm Comandante do PanAm Co-piloto do PanAm Engenheiro do PanAm Mensagens do KLM Comandante do KLM Co-piloto do KLM Engenheiro do KLM Quadro 8 Códigos utilizados na transcrição da fita do CVR em Tenerife. Fonte:www.project-tenerife.com Ilustração 4 - Posicionamento das aeronaves segundos antes do impacto em Los Rodeos. A Taxiway número 4 (C-4) em destaque azul e os 3 asteriscos em destaque vermelho representam a área de movimento bloqueada por aeronaves estacionadas. Fonte: Air Disaster, Volume 1 48

49 Hora GMT Fonte Diálogo 1701:57.8 CL1736 Tenerife the Clipper one seven three six (Tenerife, PANAM 1736) 1702:01.8 APP 4 Clipper one seven three six Tenerife. (PANAM 1736, Tenerife) 1702:03.6 RDO :08.4 APP Ah- We were instructed to contact you and also to taxi down the runway, is that correct? (Ah- Nós fomos instruídos a lhe chamar e também a taxiar pela pista, está correto?) Affirmative, taxi in to the runway and ah- leave the runway third, third to your left, third. (Afirmativo, taxie pela pista e ah- livre a pista terceira, terceira a sua esquerda, terceira.) 1702:16.4 RDO-2 Third to the left, okay. (terceira a esquerda, okay) Quadro 9 - Transcrição dos diálogos em inglês entre as aeronaves da KLM e PANAM com o controlador de Los Rodeos. Fonte: CIAIAC A-102/1977 e A-103/1977 A tripulação do vôo da PANAM também foi instruída a informar quando estivesse liberando a pista de decolagem e ingressando na taxiway C-4, porém, houve confusão em qual pista de taxi deveriam sair já que o nome da taxiway nunca foi usado. Enquanto isso o KLM passou do ponto de entrada devido à má visibilidade e necessitou fazer um giro de 180 graus na cabeceira da pista para poder alinhar para decolagem. Hora GMT 1702:18.4 Fonte CAM- 3 Diálogo Third he said (Ele disse terceira) 1702:20.6 APP 1702:21.9 CAM- 1 -ird one to your left. (-eira a sua esquerda) I think he said first. (eu acho que ele disse primeira) 4 A função de torre de controle estava sendo prestada pelo APP. 49

50 CAM :49.8 APP 1702:55.6 KLM 1702:59.9 APP 1703:29.3 RDO :36.4 APP 1703:39.2 RDO :47.6 APP 1703:55.0 RDO- 2 I ll ask him again. (vou perguntar novamente) KLM four eight zero five how many taxiway ah- did you pass? (KLM 4805, quantas pistas de taxi ah você passou?) I think w just passed charlie tour now. (eu acho que acabamos de passar a Charlie agora) Okay at the end of the runway make one eighty and report, -ah- ready ah- for ATC clearance (Okay no fim da pista faça uma curva de 180 graus e informe ah- pronto ah- para receber autorização de tráfego) Would you confirm that you want the clipper one seven three six to turn left at the third intersection? (Poderia confirmar se quer que o PANAM 1736 curve a esquerda na terceira interseção?) The third one sir, one two three, third third one (a terceira senhor, um dois três, terceira, a terceira) Very good, thank you (Muito bom, obrigado) er seven one three six report leaving the runway. ( er, 7136 informe livrando a pista) Clipper one seven three six (Panam 1736) Quadro 10 - Trecho dos diálogos que mostra que houve confusão sobre a posição correta da taxiway a ser utilizada e o KLM não conseguiu sair pela taxiway designada pelo controlador. O sentença em vermelho mostra que o controlador se confundiu com o número do vôo do PANAM. Fonte: CIAIAC A-102/1977 e A-103/1977 O KLM informou pronto para a decolagem e recebeu instruções para a saída por instrumentos após a decolagem. Após receber e cotejar a autorização de tráfego a tripulação do KLM informou que estava iniciando a decolagem. Nesse momento o controlador da torre solicitou ao KLM que aguardasse para decolar pois o Boeing 747 da PANAM estava taxiando pela pista. Essa mensagem, porém, não chegou à cabine do KLM pois junto com ela aconteceu uma outra transmissão emitida pela aeronave da PANAM informando que ainda estava na pista. As duas transmissões se anularam, causando um ruído no rádio do KLM que durou cerca de 3,74 segundos. 50

51 1705:44.8 KLM 1705:53.4 APP 1706:09.6 KLM 1706:17.9 APP 1706:23.6 RDO :25.6 APP 1706:29.6 RDO-2 Uh, the KLM four eight zero five is now ready for takeoff uh and we re waiting for our ATC clearance. (Uh, o KLM 4805 está agora pronto para a decolagem uh e estamos aguardando a nossa autorização de tráfego.) KLM eight seven zero five uh you are cleared to the papa beacon climb to and maintain flight level niner zero right turn after takeoff proceed with heading zero four zero until intercepting the three two five radial from Las Palmas VOR. (KLM 8705 uh está autorizado para papa beacon subir e manter nível de vôo 90...curve a direita após a decolagem e prossiga na proa 040 até interceptar a radial 325 do VOR de Las Palmas.) Ah roger sir we re cleared to the Papa beacon flight level niner zero, right turn out zero four zero until intercepting the three two five and we re now (at take-off). (Ah, ciente senhor, estamos autorizados para o papa beacon nível de vôo 90, curva a direita 040 até interceptar a 325 e estamos agora decolando) Ok standby for take off, I will call you. (Ok aguarde para decolagem, Eu chamarei você) And we re still taxing down the runway, the Clipper one seven three six. (e ainda estamos taxiando pela pista, o PANAM 1736) Roger alpha one seven three six report the runway clear. (ciente alpha 1736 informe a pista livre.) Okay we ll report when we re clear (OK, nós informaremos quando estivermos livres) Quadro 11 - Comunicações momentos antes do acidente. As conversações em vermelho não chegaram à cabine do KLM devido a sobremodulação. A mensagem em verde, porém, foi identificada no CVR do KLM durante as investigações. Fonte: CIAIAC A-102/1977 e A-103/1977 O Boeing 747 da KLM iniciou o procedimento de decolagem a cerca de 100 metros antes do impacto e se chocou com o Boeing 747 da PANAM às 1706:47.44 GMT causando a morte de 644 pessoas. 51

52 Decolagem do KLM Taxiway C-4 PANAM 1736 Taxiway C-3 KLM 4805 Foto 8 - Local do choque entre as aeronaves. Pode-se observar que o Boeing 747 da KLM passou por cima do Boing 747 da PANAM e parou próximo à taxiway C-3. Fonte: CIAIAC A-102/1977 e A-103/1977 Foto 9 - Foto tirada minutos após o choque entre as aeronaves em Tenerife. Fonte: A Investigação Aeronáutica realizada pelo CIAIAC determinou os fatores que contribuíram para o acidente (CIAIAC A-102/1977 e A-103/1977): 1. Estado de tensão crescente ao ir se acumulando problemas para o comandante. Ele sabia que se não decolasse em um período relativamente 52

53 breve de tempo poderia ter que interromper o vôo, ocasionando transtorno para sua companhia e para os passageiros por ser a Holanda muito restrita na aplicação das normas referentes a limitação da atividade aérea. 2. A Meteorologia peculiar de Tenerife. 3. Efetuar-se duas transmissões ao mesmo tempo. O standby for take-off... I will call you da TWR coincidiu com o we are still taking down the runway do PANAM. 4. Linguagem inadequada. Quando o co piloto do KLM repete a autorização do ATC finaliza com we are now at take-off, porque o controlador, a quem não se havia solicitado permissão para decolar e por conseguinte não entende que a aeronave está decolando. O ok da torre que antecede o standby for take-off é um elemento incorreto e irrelevante neste caso em que o inicio da decolagem teve inicio 6 segundos e meio antes. 5. O PANAM não ter abandonado a pista pela terceira interseção. Com efeito, este deveria ter consultado a torre se a terceira a que se referia era a C-3 ou a C Inusitado congestionamento de tráfego que obrigou a Torre a efetuar manobras de taxiamento potencialmente perigosas. Analisando o relatório da autoridade espanhola sobre a conclusão das causas do acidente, pode-se verificar a presença de todos os fatores discutidos neste trabalho e relaciona-los com ao menos 4 dos 6 itens designados como fatores contribuintes. O item 4 do relatório sita o fator Linguagem Inadequada durante as transmissões entre controlador e piloto. O uso adequado da fraseologia não foi observado pelo piloto do KLM e, portanto, este não se fez compreender pelo controlador da torre. Segundo Lasswell o conhecimento e a utilização adequada do código são fatores extremamente importantes para a correta interpretação da mensagem. Observa-se também que em vários momentos o controlador teve dificuldades em se comunicar corretamente com os pilotos, como em 1702:08.4: Affirmative, taxi in to the runway and ah- leave the runway third, third to your left, third onde houve dificuldade de informar a posição da taxiway que deveria ser usada e em 1703:47.6: er seven one three six report leaving the runway quando o controlador troca os números do vôo da PANAM 1736 por O erro mais grave contudo ocorreu em 1706:09.6:...and we re now at take-off onde o piloto informa que estava em processo de (at take-off) decolagem quando na realidade o 53

54 termo também pode ser utilizado para informar que a aeronave estava na posição de decolagem que foi de fato o que o controlador entendeu. O item 3 aponta o fato de ter havido duas transmissões ao mesmo tempo que se anularam, fazendo com que o receptor não tenha recebido a mensagem que deveria. Este seria o ruído proposto por Shannon e Weaver que resultou na anulação total de uma mensagem que poderia ter evitado o acidente. O item 5 também indica uma utilização deficiente do código e do conceito de feedback pois os pilotos da PANAM deveriam ter perguntado sobre as taxiways ao controlador utilizando-se dos seus respectivos designadores (C-3 e C-4) e não sua posição em relação à aeronave (primeira e terceira). Outra deficiência no uso do feedback acontece quando durante a corrida de decolagem do KLM o engenheiro de vôo percebeu que havia algo errado na comunicação e perguntou aos pilotos (Job, Air disaster, pg. 174): Did he not clear the runway, that Pan American? e os pilotos responderam enfaticamente: Yes, he did quando o PANAM efetivamente ainda não havia livrado a pista. O item 1 se refere à situação de estresse em que se encontrava o comandante do vôo da KLM. Este tinha a obrigação de não permitir que a tripulação trabalhasse mais horas do que previsto na legislação holandesa. É o Fator Social sugerido por Schramm. O Fator Cognitivo está presente na preocupação do comandante na possibilidade de ter de adiar a partida do vôo e consequentemente causar transtornos à companhia e aos passageiros. Esses fatores, Social e Cognitivo, juntos, desviaram a atenção do comandante da situação do vôo e do cenário em que este se encontrava, fazendo com que não entendesse corretamente o contexto das mensagens que recebia. A tripulação teve dificuldade em assimilar mesmo as mensagens que recebia de forma clara, como vemos em 1706:25.6: Roger alpha one seven three six report the runway clear quando o CVR do KLM registrou que este havia recebido a mensagem da torre para o PANAM mas provavelmente não a processou, por estarem muito concentrados ao procedimento crítico de decolagem em baixa visibilidade. Conclui-se com este acidente que se tivesse havido assertividade nas comunicações entre piloto e controlador, centenas de pessoas não teriam perdido suas vidas prematuramente e bilhões de dólares teriam sido economizados. Mas a questão que deve ser avaliada é o porquê dos pilotos e controladores, em quem são investidos altos recursos em treinamento e capacitação, não conseguiram impedir 54

55 que acidentes trágicos ocorressem, apenas observando regras simples de comunicação? Por que se deixaram influenciar por elementos há muito estudados e descritos em várias publicações relacionadas ao assunto? E, principalmente, como evitar que erros como esses continuem ocorrendo e venham a causar mais um acidente? Para que se possa encontrar soluções para os problemas de comunicação que ameaçam a segurança de vôo é preciso, primeiramente, quantificar e qualificar esse problemas e às suas relações com o meio aeronáutico. 55

56 3. PROBLEMAS DE COMUNICAÇÃO Steven Cushing publicou um estudo (Fatal Words, Communication Clashes and Aircraft Crashes, 1997) onde descreve 15 tipos de problemas relacionados à comunicação aeronáutica radiofônica. A maior parte dos casos por ele estudados têm origem nas comunicações realizadas dentro dos Estados Unidos, onde a informalidade e o uso de linguagem coloquial nas comunicações é uma constante, e inclui exemplos do universo da aviação geral, executiva e linha aérea. O trabalho de Cushing foi dividido em tipos de problemas de comunicação: aqueles baseados na linguagem, onde a forma da construção da mensagem é o fator determinante para a compreensão da mesma (código), aqueles não baseados na linguagem, onde fatores individuais como a fadiga influenciam na percepção correta da mensagem (fatores sociais e cognitivos) e os problemas gerais, que são aqueles relacionados a fatores externos, como um rádio defeituoso, que impede a mensagem de ser claramente recebida (ruído). 3.1 PROBLEMAS BASEADOS EM LINGUAGEM Ambigüidade O acidente no aeroporto Los Rodeos, Tenerife, em 1977 resultou em parte de um mal entendido na expressão at takeoff que foi usado pela tripulação para indicar que eles estavam no processo de decolagem, mas foi entendido pela torre de controle como se eles estivessem aguardando a autorização de decolagem, o que levou o controlador a não mandar que abortassem o processo de decolagem. O mal entendido é resultado também do fato da autorização de vôo que informava ao piloto o que fazer após a decolagem, ter sido recebida quando a aeronave já estava na cabeceira, o que não significava uma autorização de decolagem. O uso de expressões não ambíguas para a autorização de vôo e de 56

57 decolagem teria possibilitado ao controlador tomar alguma medida que pudesse evitar a colisão ou prevenir a corrida de decolagem em primeiro lugar. O acidente no aeroporto John Wayne Orange County, Santa Ana, Califórnia, em 17 de Fevereiro de 1981, também resultou em parte de um mal entendido relacionado ao verbo hold, que significa na aviação pare de fazer o que está fazendo, mas que pode significar no idioma Inglês comum continue fazendo o que está fazendo. Tower Tower AC 931 Tower AC 931 Tower AC 336 captain Tower AC 336 Tower Tower Air California 336, you re cleared to land (AC 336, você está autorizado a pousar) Air California 931, let s do it taxi into position and hold, be ready (AC 931, vamos lá, alinhar e manter, esteja preparado para decolagem) Nine thirty one s ready (931 está pronto) Air Cal 931 traffic clearing at the end, clear for takeoff sir, Boeing seven thirty seven a mile and a half final. (AC931 tráfego livrando a pista, livre decolagem senhor, Boeing 737 a uma milha e meia na aproximação final) In sight we re rolling (avistando, estamos iniciando a decolagem) OK Air Cal 336, go around 336, go around (Ok AC 336, arremeta 336, arremeta) Can we hold, ask him if we can hold (Podemos manter?, pergunte a ele se podemos manter) Air Cal 931 if you can just go ahead and hold (AC 931se você puder continuar e manter) Can we land Tower? (Podemos pousar torre?) Behind you Air Cal 931 just abort (Atrás de você AC 931, apenas aborte a decolagem) Air Cal 336, please go around sir traffic is going to abort on the departure 57

58 AC 336 captain (AC 336, por favor arremeta senhor, o tráfego irá abortar a decolagem) Gear up - AIRCRAFT LANDS WITH GEAR RETRACTED (Recolher trem de pouso) AERONAVE POUSA COM TREM DE POUSO RECOLHIDO Quadro 12 Trancrição do acidente de Santa Ana em Fonte: Fatal Words, 1997 A ambigüidade do verbo hold também contribuiu para o acidente em John Wayne. O significado técnico do termo hold" em fraseologia aeronáutica sempre significa pare o que está fazendo e, portanto, em uma situação de pouso, arremeta. Mas no Inglês diário também pode significar continue fazendo o que está fazendo e, no exemplo, pouse em tal situação. O primeiro oficial do Air California 336 parece ter interpretado exatamente desta última maneira, quando ele solicita permissão para pouso em resposta à instrução do comandante dentro da cabine, questionando sobre permissão para esperar. O comandante e o primeiro oficial, inadvertidamente, mudaram a comunicação do jargão técnico que eles deveriam estar falando para o dialeto coloquial, que eles falam mais freqüentemente, um fenômeno que é descrito como Troca de Código. A confusão resultante levou o Air California 336 a pousar com o trem de pouso recolhido, tendo finalmente decidido arremeter, mas muito tarde para efetuar a manobra. Isso resultou em 34 feridos, 4 deles classificados como sérios, e a completa destruição da aeronave por impacto e fogo posterior. Ë claro que o acidente poderia ter sido evitado se o piloto tivesse simplesmente seguido as instruções do controlador e arremetido logo que foi instruído a fazer isso Homofonia A confusão induzida por ambigüidade no acidente em John Wayne é composta pelo fato de duas das aeronaves em questão terem um indicativo de chamada bem pouco distinto. A aeronave Air California three thirty six sendo instruída a arremeter to go around e a aeronave Air Call nine thirty one sendo 58

59 instruída a prosseguir to go ahead, apenas 5 segundos após. Isso ilustra o fenômeno indutor de confusão da Homofonia, que consiste em diferentes palavras ou frases com o som exatamente igual ou quase igual. Um piloto reportou que 10 anos mais cedo, quando ele estava praticando pousos curtos em avião pequeno, o instrutor disse Last of Power, significando reduzir toda a potência para marcha lenta para efetuar o arredondamento. Entretanto o piloto achou que o instrutor tinha tido Blast of Power (rajada de potência), temendo uma iminente perda de sustentação. O resultado foi confusão e um pouso bem mais longo. Um piloto que foi observado no radar estando bem mais alto do que deveria em um procedimento e voando na direção errada, se desviou por ter entendido mal uma autorização para um fixo chamado MASPETH na área metropolitana de Nova York. O controlador informou ao piloto a MASPETH Climb que significa execute a subida na proa da posição MASPETH e o piloto entendeu a mensagem como uma autorização para realizar uma subida agressiva ou a massive climb, o que resultou no mesmo subindo acima do esperado e não prosseguindo na direção do fixo MASPETH. Contribuiu para o incidente o fato do piloto não ser familiarizado com a área geográfica do local. Em um outro caso, uma grande aeronave de companhia aérea A pousou na pista 22 L e foi informada a taxiar e aguardar antes da 22 R. Esperando antes da 22 R, o comandante perguntou ao controlador Podemos cruzar? e o mesmo respondeu Hold Short ou mantenha posição antes da pista. A aeronave da companhia A cruzou a pista de decolagem com a aeronave da companhia aérea B iniciando sua corrida de decolagem. Consequentemente, a aeronave A livrou a interseção 30 segundos antes da aeronave B atingir a mesma interseção, sem nenhuma ação evasiva por nenhuma das duas. Quando questionado porque ele cruzou a pista, o comandante explicou que ele tinha ouvido Oh, sure! (É claro!) Algumas confusões também estão relacionadas ao som das palavras to e two. O controlador autoriza a aeronave a descer para two four zero zero (2.400 pés). O piloto coteja Ok. Four zero zero pois entendeu o controlador dizer to four zero zero e então desce para 400 pés ao invés de pés. 59

60 3.1.3 Pontuação e Entonação Tipos similares de confusão podem ocorrer a partir de erros de pontuação e na entonação das palavras na linguagem falada. Em um exemplo real com conseqüências potencialmente desastrosas, enquanto checando um piloto de um avião pequeno, um experiente instrutor de vôo reportou ter percebido que o aluno aplicava muita potência pouco antes do pouso. Ele pensou ter dito Back on the Power (reduza a manete de potência), mas ele foi interpretado pelo piloto como tendo dito Back on, the Power (cuidado! Faça algo! A potência!) o que só é diferenciado na pronúncia pelo posicionamento da pausa e onde o on é destacado Referência Incerta Algumas vezes a ambigüidade surge de uma referência incerta, na qual há um grau de indeterminação quanto a quem ou o quê é mencionado na expressão por um pronome. O pronome it (que se refere a algo ou a uma situação) no exemplo His wife is a pilot, but He doesn t know anything about it pode estar se referindo ao estado ou experiência de ser um piloto e o marido não tem habilidades em pilotar aeronaves (Sua esposa é piloto mas ele não sabe nada sobre pilotar) ou ao fato de sua mulher ser uma piloto mas ele acha que ela é uma aeromoça ou vendedora viajante (Sua esposa é piloto mas ele não sabe o que ela faz). Nos dois exemplos The pilot was late for the flight, which caused much comment e He was vetoed sixteen bills, all of which have been sustained a incerteza surge devido a diferença entre a gramática escrita padrão e o uso da linguagem coloquial. De acordo com a gramática, o pronome relativo which (o qual ou os quais) deve ter um nome a ele relacionado anteriormente como seu antecedente. Então foi o vôo que causou o comentário (O piloto estava atrasado para o vôo o qual causou muitos comentários) e dezesseis faturas foram mantidas, (ele vetou 16 faturas as quais todas foram mantidas) já que são a única expressão nominal que apareceu na sentença. No uso atual, entretanto, foi o atraso do piloto que foi entendido como o causador do comentário e a proibição das faturas é que foi mantida, mesmo que o atraso e a proibição não apareçam explicitamente como frases nominais. Este tipo 60

61 de problema entre a gramática e a linguagem coloquial pode ser especialmente problemática para pessoas que aprenderam o Inglês como segunda língua quando adultos, como fazem muitos pilotos e controladores. A incerteza sobre a referência dos pronomes em tais sentenças pode levar a confusão sobre qual significado a sentença deveria expressar. Uma de duas aeronaves militares em uma rota por instrumentos apresentou um problema mecânico e solicitou We need a clearance back to base Ou Nós precisamos de uma autorização de volta à base. O controlador então emitiu uma autorização IFR para a qual a aeronave respondeu We are in a left turn and we are climbing to ou Nós estamos em curva à esquerda e subindo para pés. O controlador interpretou we (nós) como sendo as duas aeronaves retornando à base quando de fato somente a aeronave líder queria retornar, um mal entendido resultante da incerteza em relação ao pronome we. A outra aeronave continuou o vôo de acordo com a autorização IFR original e completou a rota militar pelo espaço aéreo de dois centros de controle. Em um outro caso, a incerteza sobre a referência do substantivo things (coisas), contribuiu diretamente ao acidente do vôo 401 da Eastern Airlines ocorrido em Miami em 29 de dezembro de EAL 401 Tower EAL 401 EAL 401 Ah, Tower this is Eastern, ah four zero one, it looks like we re gonna have to circle, we don t have a light on our nose gear yet. (Ah, torre aqui é o EAL401, parece que teremos que circular. Nós ainda não temos a luz verde na indicação no trem de pouso.) Eastern four oh one heavy, roger, pull up, climb straight ahead to two thousand, go back to approach control, one twenty eight six. (EAL 401, afirmativo, arremeta, suba em frente para pés e chame o controle de aproximação) Okay, going up to two thousand, one twenty eight six. (ok, subindo para pés e contatcar controle) All right, ah, approach control, Eastern four zero one, we re right over the airport here and climbing to two thousand feet, in fact, we ve just reached two thousand feet and we ve got to get a green light on our nose gear. 61

62 MIA Approach Control EAL 401 Second officer MIA Approach Control EAL 401 MIA Approach Control (Certo, ah, controle de aproximação aqui é o EAL401, estamos sobre o aeroporto e subindo para pés, na verdade acabamos de atingir pés e temos que conseguir luz verde na indicação do nosso trem de pouso de nariz) Eastern four oh one, turn left heading three zero zero. EAL 401, curve a direita proa 300) Eastern four oh one ll go ah, out west just a little further if we can here and, ah, see if we can get this light to come on here. (EAL 401 iremos para oeste um pouco mais se pudermos e vamos ver se a gente consegue uma luz verde aqui) I can t see it, it s pitch dark and I throw the little light, I get, ah, nothing. (não consigo ver, está escuro e agarrei a pequena luz, não consigo nada) Eastern, ah, four oh one how are things comin along out there? (EAL 401, como vão as coisas por aí?) OK we d like to turn around and come, come back in. (Ok, gostaríamos de dar mais uma volta) Eastern four oh one turn left heading one eight zero. - AIRCRAFT CRASHES INTO THE EVERGLADES (EAL 401, curve a esquerda proa 180) AERONAVE CAI NOS EVERGLADES Quadro 13 Transcrição do acidente da Eastern Airlines em Miami em Fonte: Fatal Words, 1997 O controlador de aproximação usou a palavra things para se referir a aparente descida da aeronave observada no radar, e gostaria de conferir a indicação com a tripulação, mas a tripulação parece ter percebido isso como uma preocupação do controlador em relação ao problema do trem de pouso, sobre o qual haviam informado antes. Eles não estavam cientes da descida da aeronave e quando responderam OK o controlador erroneamente concluiu que a descida estava sob 62

63 controle. A aeronave prosseguir descendo sem a ciência dos pilotos que estavam entretidos com a lâmpada do trem de pouso que, na verdade, estava queimada. Durante todo o tempo o trem de pouso estava abaixado. A queda no Everglades resultou em 101 mortes Inferência Implícita Quando se fala de inferência implícita, um ouvinte conclui um significado de uma sentença que não está claramente explícita em suas palavras ou gramática. Podemos citar alguns exemplos para demonstrar essa situação: Com certeza os passageiros são honestos, mas eu não deixaria minha carteira largada na poltrona. Se analisarmos a primeira parte da frase, a mesma faz uma menção favorável aos passageiros e a segunda, simplesmente não se refere aos mesmos. Mas as duas partes juntas deixam uma imagem bem clara de pensamentos distintos sobre os passageiros. No exemplo O vôo foi simplesmente maravilhoso! O co-piloto ficou acordado o tempo inteiro! ambas as sentenças fazem afirmações positivas, mas o efeito das duas juntas é completamente negativo. Em ambos os casos verificamos que o significado da justaposição das duas sentenças é o oposto ou completamente diferente do significado de cada uma individualmente. Tipicamente nestes casos, o significado derivado da justaposição das sentenças é pejorativo, assim como nos exemplos citados, apesar das sentenças individuais não o serem. Inferências implícitas podem às vezes ser induzidas através do uso de uma simples palavra, especialmente se essa palavra apresentar uma pressuposição, um aspecto do significado que impede o questionamento na forma Sim ou Não de ter uma resposta na forma Sim ou Não. Por exemplo, respondendo a questão O piloto ainda está bêbado? com Sim ou Não igualmente coloca a pessoa que responde em uma condição implícita de admitir que o piloto estivesse bebendo. Se respondermos a questão Estão todos os tripulantes presentes? com Não, todos os tripulantes não estão presentes. ainda deixa a impressão de que a frase alguns tripulantes estão presentes está correta (não se pode saber se todos ou somente alguns tripulantes estão presentes); uma inferência implícita que só pode ser contrariada por algo do tipo Não. De fato, nenhum tripulante está presente. 63

64 No cenário da aviação perigosas inferências podem ser desenhadas a partir do uso de palavras como expect (espere) e anticipate (antecipe) devido a ausência de duração de tempo e a indefinição que estas palavras apresentam. Em um exemplo um comandante reportou ter atingido pés após ter tomado o controle do avião de um confuso primeiro oficial que estava subindo acima da altitude autorizada de pés. O comandante sugeriu que a razão do primeiro oficial ter confundido a autorização foi o fato de o controlador ter solicitado a proa 320, e informar à aeronave para esperar (expect) a altitude pés, o que significa que esta seria a próxima autorização a ser emitida Não Familiaridade com a Terminologia Inferências perigosas também podem surgir através do uso de nomenclaturas não familiares ao destinatário (Fator Código). Pode se perceber isso na seguinte conversação entre piloto e controlador: Controle de Aproximação Nós temos as luzes REIL (Runway End Identifier Lights 5 ) acessas; você tem a pista à vista? Piloto (após tempo de Como vocês chamam a diferença entre as luzes reais hesitação) e as de imitação? Quadro 14 Transcrição do incidente envolvendo terminologia. Fonte: Fatal Words, 1997 Devido ao fato de o piloto não estar familiarizado com a abreviatura REIL, o mesmo induziu que o controlador teria dito real (real, verdadeira) ao invés de REIL. Outro piloto foi questionado na altitude que estava mantendo quando ele mal interpretou a autorização Resume your own navigation (Reassuma sua navegação) como se estivesse sob sua responsabilidade tanto a direção de sua navegação como sua altitude. Na verdade, a instrução não cancela uma altitude de restrição previamente dada, apenas restaura ao piloto o seu controle com a navegação lateral planejada. 5 REIL: Luzes identificadoras de fim da pista. 64

65 3.1.7 Repetição (ou cotejamento) Problemas de vários tipos podem ser evitados através da repetição, que pode ser categorizada em diversas dimensões: correta ou incorreta, completa ou parcial, literal ou conceitual, espontânea ou obrigatória e eficiente ou ineficiente. Uma repetição correta é aquela que reproduz substancialmente o que foi dito anteriormente em todas suas características relevantes; já uma incorreta, falha em reproduzir algumas informações essenciais para a comunicação. Uma repetição completa reproduz toda a fala anterior; já a parcial, somente parte dela. Uma repetição literal repete as palavras ditas anteriormente, não importando seu significado; já uma repetição conceitual repete seu significado, não importando as palavras usadas. Uma repetição espontânea surge da iniciativa própria de quem fala, baseada no seu julgamento da situação presente; já a obrigatória é requerida por convenção ou lei. Uma repetição eficiente tem sucesso em transmitir seu recado, em causar impacto no ouvinte; já a ineficiente, não atinge seu objetivo. No caso do KLM 4805 em Tenerife o piloto, ao cotejar a autorização de vôo, o faz literalmente e corretamente, ou seja, com as mesmas palavras, porém parcialmente e não conceitualmente, pois o mesmo parece ter mal-entendido que juntamente com a autorização de vôo havia uma autorização para decolagem, quando na verdade o controlador só estava transmitindo uma autorização que teria validade somente após a aeronave decolar. No caso do Air Callifornia 336 em Santa Ana, a correta, literal e completa repetição da instrução de arremetida dada pelo controlador em: OK Air Cal 336, go around 336, go around é espontânea, refletindo o desejo do mesmo de enfatizar a urgência da situação, no entanto, a mesma é ineficiente em convencer o piloto a iniciar a arremetida imediatamente. Os cotejamentos, repetições especiais em que uma instrução é repetida de maneira completa, apresentam grande importância no controle de tráfego aéreo tanto na sua presença como na sua ausência. Eles são necessários após todas as instruções e autorizações de um controlador, como uma maneira de confirmar que a mesma foi recebida e entendida. Uma instrução pode ser reportada como recebida de algumas maneiras, por exemplo: 65

66 ATC Descend to twenty one thousand feet (Desça para vinte e um mil pés) Pilot one Cleared to descend to twenty one thousand feet (autorizado descer para vinte e um mil pés) Pilot two Roger, Flight Level 210 (ciente, nível de vôo dois um zero) Quadro 15 Exemplos de cotejamento. Fonte: Fatal Words, 1997 Entretanto, estes requerimentos têm sido mais violados do que cumpridos, conforme demonstrado por algumas respostas dos pilotos às instruções dadas. Uma aeronave instruída a manter restrições de velocidade na subida, reporta: Roger (Ciente), ao invés de cotejar toda a instrução. Outra aeronave reportou na freqüência do Centro: Center, (Flight) with you... (Centro, [vôo] na sua escuta...) sem ter reportado sua altitude atual e altitude instruída pelo Centro anterior. Em outros casos, algumas aeronaves não informam nem mesmo seus indicativos de chamada em diversas situações, como em mudanças de altitude ou de freqüência, cotejamento de autorização de vôo, etc. Em uma instrução dada pelo controlador em relação à mudança do código do transponder Squawk 1735 (ajuste o código transponder para 1735) um piloto respondeu Squawkin (ajustando) e outro Awright (certo), não fornecendo ao controlador informação suficiente de que os mesmos, apesar de recebido a mensagem, a tinham entendido. Algumas vezes perigosas quase colisões acontecem resultantes de cotejamentos parciais ao invés de cotejamentos completos, como podemos observar no diálogo abaixo. Controlador autoriza a aeronave A a descer para o nível de vôo 280 Controlador autoriza a aeronave B a subir para o nível de vôo 270 Controlador instrui a aeronave A, proa 240 graus Piloto A reporta Roger, 240 (Ciente, 240) Controlador Observa a aeronave A descer através da altitude da aeronave B, passando pela altitude de pés e questiona o piloto A 66

67 Piloto A questiona que ele havia sido autorizado ao nível 240 e que ele reportou o recebimento Quadro 16 Exemplo de erro de cotejamento. Fonte: Fatal Words, 1997 Podemos perceber claramente que o cotejamento completo, neste caso, das palavras proa 240 ou nível de vôo 240, teriam solucionado o problema e eliminado o risco de um incidente como este. O erro no cotejamento às vezes vem seguido também pelo erro do controlador em perceber ou questionar o piloto sobre seu cotejamento parcial ou incorreto. Uma aeronave estava descendo para o nível de vôo FL240 e foi posteriormente autorizada a cruzar uma dada interseção a pés. O piloto reportou que No nível 240, aproximadamente, o controlador nos informou sobre um tráfego no nível 230 e disse ao mesmo que nós estaríamos descendo para o nível 240. Eu parei a descida na hora, ao redor do nível 236 e retornei ao 240 no momento em que o controlador informou A altitude é 240. E o piloto disse Nós pensamos que tínhamos sido autorizados a pés. O piloto observou que, quando o co-piloto respondeu a autorização para pés, o controlador não fez nenhuma objeção. Provavelmente o controlador queria que estivéssemos a pés na interseção, mas quando cotejamos ele não nos corrigiu. Em outro caso, o primeiro oficial cotejou a instrução completa e corretamente, mas o controlador falhou em tornar clara que a instrução era para velocidade e não para nível de vôo. ATC Pilot ATC Mantain two eight oh (Mantenha 280) Ok, cleared to maitain two eight oh (Plane states to climb) (Ok,Autorizado a manter 280) - (A aeronave começa a subir) Return to 230. That 280 was for airspeed. (Retorne ao 230. Aquele 280 era para velocidade) Quadro 17 Exemplo de cotejamento inadequado. Fonte: Fatal Words,

68 A língua Inglesa, apesar de ser profissionalmente requerida mundialmente, é em muitos casos, língua estrangeira para muitos pilotos. Nesses casos, mesmo a repetição completa não é suficiente pois o entendimento da mensagem foi errôneo. Em um incidente, uma aeronave militar norte-americana, em manobra em solo estrangeiro, foi autorizada pelo controlador Runway 26, holding position (pista 26, mantenha posição). O piloto, não inexplicavelmente, entendeu essa autorização como Cleared to runway 26, hold in position (autorizado a pista 26, aguarde na posição de decolagem), mas encontrou-se de frente a uma aeronave na final que teve de arremeter. No acidente que ocorreu com uma aeronave da AVIANCA vôo 052 em New York em 25 de janeiro de 1990, o comandante pede ao co-piloto, em espanhol, para informar ao controlador que eles encontravam-se em uma situação de emergência de combustível. O co-piloto, porém, informa somente, em Inglês, que o combustível está acabando ( running out of fuel ). Depois, ele avisa ao comandante que já deixou claro que a aeronave está em emergência para o controlador, apesar de não ter sido isso que ele realmente disse ao controlador. Pilot to Co-pilot Co-pilot to Controller Pilot to Co-pilot Co-pilot to Pilot Co-pilot to Controller Pilot to Co-pilot Co-pilot to Controller Tell them we are in an emergency (Avise a eles que estamos em emergência) We re running out of fuel (Estamos ficando sem combustível) Digale que estamos en emergencia (Diga que estamos em emergência) Si, señor, ya le dije (Sim, senho, já lhes disse) We ll try once again. We re running out of fuel (Vamos tentar mais uma vez, Nós estamos ficando sem combustível) Advise the controller that we don t have fuel (Avise ao controlador que nós não temos combustível) Climb and maintain 3000 and, ah, we re running out of fuel, sir (Subir e manter 3000 pés, ah, estamos ficando sem combustível, senhor) 68

69 Controller to Copilot Co-pilot to Controller Is that fine with you and your fuel? (Está tudo bem com vocês e seu combustível?) I guess so. Thank you very much - AIRCRAFT RUNS OUT OF FUEL AND CRASHES (Eu acho que sim, Muito obrigado) AERONAVE FICA SEM COMBUSTÍVEL E CAI Quadro 18 Trancrição do acidente de New York em Fonte: Fatal Words, 1997 Neste caso, houve ineficiência em convencer o controlador do apropriado grau de urgência. O problema é provavelmente composto pelo fato da linguagem usada ser uma variante técnica de uma língua que não é a língua nativa do piloto, deixando-o duplamente fora do contexto onde ele se sente familiarizado. A aeronave caiu após o término do combustível, resultando em 73 mortes das 159 pessoas a bordo, inclusive 3 tripulantes na cabine. A necessidade de se realizar cotejamentos completos pode ajudar na prevenção de desentendimentos na comunicação somente quando ambos os locutores forem completamente conhecedores das particularidades da língua que eles estão falando e estiverem completamente engajados no seu papel como interlocutores (Fator Código e Fator Social). Falantes de linguagens nas quais preposições explícitas se apresentam menos importantes do que na língua Inglesa podem ter mais probabilidade de omitir algumas palavras caso o perigo de se cometer este erro não for chamado a atenção em treinamento específico. Também pode acontecer da natureza rotineira de muita comunicação na aviação, e a repetição em particular, induzir a um grau de ritualização, onde afirmações e situações acabam por perder seu impacto cognitivo e os participantes acabam por cair em um padrão de simplesmente fazer as coisas mecanicamente. Em um diálogo entre piloto e controlador, antes do início de um tráfego visual, o controlador pergunta ao piloto se ele tem a pista à vista. O piloto responde que sim e o controlador o instrui então a curvar para 360 graus. O piloto intuitivamente ao começar a curva, começa a descer acreditando estar autorizado à aproximação visual. Isso ocorre devido à familiaridade com o procedimento de aproximação, levando o piloto a interpretar mal uma autorização, ouvindo mais do que realmente 69

70 foi dito pelo controlador. Essas ocorrências sugerem que a padronização da terminologia e dos protocolos, apesar de necessárias, podem também ser negativas além de um determinado ponto, e que maneiras devem ser encontradas para manter o interesse significativo entre os participantes do processo de comunicação ar-solo. 3.2 PROBLEMAS NÃO BASEADOS EM LINGUAGEM Problemas com Números Apesar de normalmente ser tido como um elemento mais preciso de se transmitir, o uso dos números é de fato fonte de muitos mal-entendidos, quando, por exemplo, a companhia aérea ABC libera vôos como ABC 123B, 123C, etc., ou quando o Air DP 8 e o Air DP 88 estão na mesma freqüência, sendo controlados pelo mesmo controlador a poucas milhas de distância. Em outros casos, a pista 20 é algumas vezes confundida com a pista 02, ou o vôo 925 copia a autorização endereçada ao vôo 529. Ou one six thousand (16.000) é cotejado como six thousand (6.000) e o controlador falha em perceber o erro. Os números 5 e 9 five e nine também se confundem em Inglês devido à sua homofonia. Um piloto reportou estar em uma descida a partir de pés quando ouviu uma ou duas aeronaves na aproximação com o mesmo número de vôo, inclusive uma delas respondeu uma instrução endereçada à aeronave dele, com seu número de vôo. O primeiro oficial tentou chamar o controle e verificar a altitude autorizada, mas devido ao tráfego rádio das outras aeronaves com o mesmo número de vôo, ele não conseguiu contato. Diante destas dificuldades e confusões, torna-se imperativo desenvolver um sistema de indicativos de chamada mais claro, a prova de falhas, principalmente quando aeronaves de indicativos similares encontrarem-se no mesmo espaço aéreo. Uma aeronave de companhia aérea internacional estava se direcionado para os Estados Unidos e foi transferida para outro Centro de Controle após o piloto cotejar a seguinte autorização e o primeiro oficial selecionar a altitude para pés. 70

71 Cleared to descend to two zero zero, cross two zero Miles south of XYZ at two two zero. (Autorizado a descer para pés, cruze 20 milhas antes de XYZ a pés). O piloto estabeleceu o primeiro contato com o outro centro informando Leaving two two zero for two zero zero. (Livrando pés para pés), ao que o controlador questionou Were you cleared to two zero zero? (Você foi autorizado para pés?). O Centro questionou dizendo que a autorização tinha sido dada apenas até o pés, mas a tripulação entendeu que poderia prosseguir até o pés. Os pilotos disseram que não foram informados para manter o nível de pés. Outro problema freqüente acontece envolvendo mal entendidos em relação a autorizações para one zero thousand e one one thousand. Isso geralmente acontece devido à semelhança entre as palavras, o que causa confusão. Controller ABC Pilot Controller ABC Pilot Controller At the forty DME descend to one zero thousand feet (a 40 DME, desça para um zero mil pés) Roger, at the forty DME descend to one one thousand feet (Ciente, a 40 DME descer para um um mil pés) ABC where are you going? Your assigned altitude was one zero thousand! (ABC onde você está indo? A altitude instruída foi um zero mil!) XYZ Approach, we understood our clearance was to one one thousand, we read back one one thousand (Controle XYZ, nós entendemos que nossa autorização foi para um um mil, nós cotejamos um um mil...) Negative, ABC! Turn right to zero nine zero degrees and descend immediately to one zero thousand. You have traffic at one one thousand, twelve o clock, -- miles (Negativo, ABC! Curve a direita zero nove zero graus e desça imediatamente para um zero mil. Você tem tráfego a um um mil, 12 horas...milhas) Quadro 19 Exemplo de problemas com números. Fonte: Fatal Words,

72 Uma possível solução para este problema seria a adoção da fraseologia ten thousand e eleven thousand, ao invés de one zero thousand ou one one thousand. O cotejamento de um piloto em relação a sua altitude de vôo foi correto, com exceção a sua freqüência de saída que ele cotejou como 318.4, ao invés da correta Após a decolagem o Controle de saída ficou impossibilitado de manter contato com a aeronave, já que a mesma estava em outra freqüência. Os cotejamentos às vezes podem ser ineficientes na correção da confusão entre os números. Em resposta a uma autorização para a proa 210, o piloto cotejou curva à esquerda, proa 310. E o controlador não percebendo o erro, respondeu cotejamento correto. Isso pode ser entendido, na parte do controlador, como uma forma de ouvir aquilo que ele deseja, já que ele já sabe o que ele disse ao piloto e o que ele quer ouvir. Provavelmente a pior confusão relacionada a números é aquela que confunde os diversos parâmetros de vôo. Approach Left 360, descend to 3.000, follow river Control (Esquerda 360, desça para pés, siga o rio) Copilot Understand a left 360 and descend to 3.000? (Entendido esquerda 360 e descer para pés?) Approach Affirm, following traffic ten o clock, six miles. (Afirmativo, siga trafego 10 horas, 6 milhas) Copilot Roger, looking for the traffic and we re doing a left 360 to follow (Ciente, procurando o tráfego e estamos fazendo um 360 a esquerda) Approach What are you doing? (O que você está fazendo?) Copilot A left 360 to follow traffic as instructed! (Um 360 pela esquerda para seguir o trafego, conforme instruído!) Approach Climb to now, role out heading 360 for vectors to follow traffic (Suba para pés agora, curve a direita proa 360 para vetoração) Quadro 20 Confusão relacionada a números e parâmetros. Fonte: Fatal Words,

73 Neste caso a confusão aconteceu em relação à proa 360, instruída pelo controlador e entendida pelo piloto como um 360 (giro de 360 graus) pela esquerda. O ajuste de altímetro também é particularmente uma fonte de confusões que merece atenção especial. Uma aeronave que iniciou um procedimento ILS em um aeroporto europeu, o qual forneceu o ajuste de altímetro QNH de 992 Hpa. A tripulação estava acostumada à política dos controladores europeus de fornecer à tripulações americanas ajustes de altímetros em polegadas de mercúrio (Pol.Hg), então, interpretou o ajuste dado como 29,92 pol. Hg ao invés de 992 Hpa. Uma aeronave próxima recebeu a informação no seu equipamento que eles estavam a pés até que o controle os informou que eles estavam a pés e que o altímetro era 992 Hpa. Quase instintivamente, nós inserimos 992 Hpa no altímetro do co-piloto e a atual altitude mostrada foi 1450 FT uma diferença de 550 FT comentou o piloto. A abreviatura de freqüência de rádio, omitindo o primeiro dígito já é algo comum, como por exemplo, ao invés de uma freqüência ser transmitida como a mesma é referenciada apenas por Portanto, deve-se tomar cuidado em estabelecer um padrão nesta fraseologia em particular, caso algum dia também se torne comum abreviar o ajuste de altímetro transmitido para uma aeronave estrangeira, para que 986 Hpa não seja confundido por Pol. Hg Problemas de Complacência O uso ou o mau uso do equipamento rádio também é outra fonte perigosa de erros na comunicação. A má comunicação pode surgir de pequenos momentos onde o piloto perde a recepção por um ou dois minutos, quando seu fone de ouvido cai no exato momento em que o Centro de Controle estava lhe dando alguma instrução, enquanto o outro piloto estava na freqüência do ATIS e, portanto, fora da freqüência do Centro. Pode acontecer também quando inadvertidamente o piloto abaixa o volume do seu VHF ao fazer o cheque de VOR e só percebe o fato quando tenta chamar o Centro e não recebe resposta e após verificar o volume, é informado pelo Centro que já havia sido tentado o contato várias vezes. O não uso do equipamento rádio é outro agente causador de incidentes. Um piloto pousou uma aeronave sem autorização e depois informou que simplesmente esqueceu-se de chamar a Torre de Controle. 73

74 Algumas vezes, o rádio não pode ser usado, pois alguém inadvertidamente o bloqueou. De fato, um stuck mike, como é chamado quando o gatilho do microfone fica preso, pode interromper todas as comunicações por um período de horas, até que o piloto perceba que a luz indicativa de transmissão está continuamente acessa. Outro problema freqüentemente encontrado nos aeroportos movimentados, é a chamada contínua de uma aeronave atrás da outra, às vezes, duas ao mesmo tempo, bloqueando alguma transmissão (sobremodulação). Essa confusão poderia ser evitada se cada piloto antes de efetuar sua transmissão, parasse para ouvir, evitando atropelar alguma outra transmissão. O rádio pode também ser sintonizado na freqüência incorreta, impedindo os pilotos de receberem as instruções dos controladores. Um piloto, na final do seu procedimento de aproximação, estranhou o fato do Controle de Aproximação não o ter transferido para a Torre de Controle nem ter lhe dado a autorização de pouso. O piloto tentou chamar o Controle para esclarecimentos mas estava com a freqüência errada e se encontrava na fase crítica da final para pouso. Sem contato com o mesmo, iniciou um procedimento de arremetida quando observou outra aeronave na posição de decolagem. Depois, foi informado que a Torre de Controle estava tentando estabelecer comunicação com o mesmo e não entendia porque ele não cumpria as instruções Distração ou Fadiga Além de todos os problemas já mencionados anteriormente, a perda de comunicação ou a distorção na comunicação pode ser provocada por problemas de distração e fadiga (Fator Cognitivo). Nas palavras de um controlador, ao reportar uma autorização mal interpretada, o mesmo justifica: Eu não sei o que aconteceu! Possivelmente eu disse dez mil vezes e escrevi onze mil, mas depois do dia que tive, tudo parece ser possível!. Um piloto acabou passando o nível de vôo autorizado em 400 ou 500 pés e atribuiu a causa ao seu dia anterior, onde tinha levado um amigo ao hospital, foi para a cama tarde, dormiu mal, acordou cansado, vôo longo e preocupação. As distrações podem evitar que um controlador perceba o erro de cotejamento de um piloto, assim como podem levar um piloto ou um controlador a 74

75 cometer um erro. Uma aeronave foi instruída a subir para pés e atingiu pés, quando foi questionada pelo controle de tráfego. O motivo da distração foi a pergunta de um passageiro ao atingir a altitude de pés. Uma tripulação envolvida na conversa de cabine se esqueceu de passar para a freqüência da Torre de Controle, conforme instruída pelo Controle de Aproximação. A primeira vez que perceberam que pousaram sem autorização, foi quando o Controle de Solo informou que a Torre tinha autorizado o pouso deles. Para evitar distrações para a tripulação nas fases críticas de vôo, as autoridades aeronáuticas determinam que abaixo de pés, no mínimo, nenhuma conversa deve ser travada se não for de caráter operacional. Nesta fase, chamada de sterile cockpit não deve haver interferência desnecessária nem mesmo da tripulação de cabine (FAR , 2009). A distração também pode levar a decolagens sem autorização, como por exemplo, quando o co-piloto está tão envolvido na verificação do checklist e se esquece de pedir a autorização. Algumas vezes, um desastre é evitado quando um controlador efetivamente chama a atenção de uma tripulação distraída. Em um dos casos observados, onde o co-piloto estava voando, o Centro de Controle informou que eles estavam fora do curso, na aerovia errada. Depois, enquanto estavam efetuando a correção, o Centro informou que estavam acima da altitude autorizada Impaciência A efetividade da comunicação também pode ser enfraquecida pela impaciência (Fator Social e Fator Cognitivo). Um comandante reportou ter ouvido no rádio, durante uma noite escura e com tempestades, com uma pilha de aeronaves voando a oeste de Chicago O Hare, um controlador de aproximação exaustivo transmitindo continuamente: Global 25, cleared ILS, report the outer marker; universal 762, descend to eight thousand, report leaving nine (Gloal 25, autorizado ILS, reporte o marcador externo, universl 762, desça para oito mil, reporte livrando nove). De repente uma voz impaciente o interrompe: What s our expected approach time? ir we hang around here much longer, we ll have to go to Minneapoliss (Qual é a nossa hora estimada de aproximação? Se ficarmos aqui por muito mais tempo teremos que ir para Mineápolis). O controlador responde, sem parar para respirar: 75

76 Roger, cleared to Minneapolis; Universal 762, you are now cleared for the ILS. (Ciente, autorizado para Mineápolis, Universal 762, você está autorizado ILS). Essa autorização tão rápida dada pelo controlador após a solicitação do piloto não seria necessária, se ambos piloto e o controlador não estivessem tão impacientes. Impaciência pode ser perigosa em seu próprio aspecto, além de seus efeitos na comunicação Obstinação ou Não Cooperação Em um incidente, um piloto de uma aeronave pequena foi autorizado a subir para pés após decolagem e foi observado passando por pés, quando então o controlador questionou sua altitude autorizada. Ele justificou que apesar da baixa altitude autorizada, seu plano de vôo tinha sido preenchido par pés e que ele estava subindo para aquela altitude (Fator Social e Fator Cognitivo) Irresponsabilidade e Conflito Brincadeiras e piadas na aviação já foram causas de incidentes graves, e não seria diferente quando se trata de comunicação. Um piloto reportou que lhe pregaram uma peça em um de seus vôos. Durante uma subida autorizada para pés, o piloto solicitou subir para pés utilizando, por engano, a freqüência da companhia e recebeu a resposta suba e mantenha pés. Mais tarde o piloto relatou: Quando percebemos que transmitimos na freqüência errada, rapidamente mudamos para a freqüência do Controle de Saída e solicitamos confirmação para subir a pés. O controlador informou que deveríamos manter pés, mas já que estávamos passando a altitude de pés poderíamos subir para pés. Eu nunca consegui descobrir quem foi que respondeu àquela transmissão. Igualmente preocupante são os incidentes que ocorrem devido a conflitos entre a tripulação ou tripulações. Um controlador pediu a um piloto de uma empresa aérea para contatar um outro vôo de uma grande empresa de carga aérea e informalo que o Centro de Controle inadvertidamente esqueceu de transferir a aeronave de 76

77 setor e mudar a freqüência de chamada. No relatório do controlador, o mesmo informa que não conseguiu contato na nova freqüência com a aeronave de carga pois o piloto não repassou a mensagem. Ao ser questionado o motivo, o piloto disse ao controlador que se recusava a passar informações para pilotos daquela empresa em particular. 3.3 PROLBEMAS GERAIS Mensagem não Enviada Durante uma descida o controlador esqueceu de informar ao piloto que a restrição de velocidade não era mais necessária em uma posição específica. O piloto passou àquela posição com velocidade reduzida. Em outro caso o controlador não informou um tráfego essencial próximo ao aeroporto, durante a decolagem de uma aeronave. O comandante mostrou ao co-piloto o tráfego e questionou o controlador. Este informou que havia esquecido de informar a existência do mesmo. A aeronave passou a 150 pés abaixo e ligeiramente atrás de sua aeronave Mensagem Enviada mas não Recebida Após um evento de quase colisão, um controlador reportou ao tocar a fita verificamos que o piloto interpretou minha informação de tráfego como uma autorização, embora eu não tenha ouvido ou confirmado isso. Controller Pilot Controller You have crossing traffic at ft, two o clock, ten miles. (você tem tráfego cruzando a pés, duas horas, 10 milhas) What s his altitude? (Qual a altitude dele?) He is at ft 77

78 (Ele está a pés) Pilot Roger, we are out of for (Ciente, estamos de para 6.000) Controller No Response - (Sem Resposta) Pilot We just had an airplane go by our nose (Nós temos uma aeronave passando bem no nosso nariz) Controller Roger, that s the traffic I called you at (Ciente, Esse é o tráfego que eu informei a 6.000) Pilot He sure was!!! (com certeza era!!!) Quadro 21 Exemplo de mensagem não recebida. Fonte: Fatal Words, Mensagem Enviada e Recebida, mas não Entendida Confusões acontecem muito do fato de alguns VOR s possuírem o mesmo nome do aeroporto, mas não estarem na mesma posição. Um controlador solicitou ao piloto Cruze 35 milhas de ABC a pés e mais tarde Cruze 30 milhas sudoeste de ABC a pés. O Controlador em questão estava se referindo ao aeroporto ABC e o piloto cumpriu as restrições, porém baseado no VOR ABC e não no aeroporto. O piloto reportou O VOR ABC não está na mesma posição do Aeroporto ABC. Esta foi uma autorização imprópria se essa era a intenção dele Mensagem Enviada, Recebida e Entendida mas Esquecida Um piloto que foi autorizado a passar o VOR no nível 250 e manter declarou que havia cotejado nível 240. Mais tarde, porém, a gravação mostrou que o piloto havia cotejado VOR at 250 ou VOR no nível 250. Um outro piloto reportou que havia recebido autorização no solo para manter 250 kt até ser instruído a acelerar. Porém, ao cruzarmos pés a aeronave acelerou para 310 kt. O controle de saída questionou nossa velocidade e imediatamente 78

79 reduzimos para 250 kt. O piloto observa nós temos acelerado ao passar por pés por há muito tempo e sugere parece que esse novo procedimento em alguns aeroportos, de manter 250 kt até autorizado a acelerar, seria de boa prática ser relembrado pelo controle de saída antes de livrarmos a freqüência. 3.4 EXEMPLOS NACIONAIS Embora os eventos descritos estejam, em grande parte, disponíveis na publicação de segurança de vôo CALLBACK, publicado por um departamento da NASA chamado ASRS, existem relatórios nacionais que devem ser apresentados, com o intuito de mostrar que o problema nas comunicações é global e não está relacionado somente ao uso da língua inglesa. Estes relatórios foram transcritos na íntegra e foram escritos por comandantes de companhias aéreas brasileiras durante o ano de Todos têm em comum a ocorrência de erros de comunicação, como aqueles já descritos, que contribuíram para a ocorrência de incidentes leves. Os dados sobre data, matrícula, número de vôo, órgão de controle, nome de companhias aéreas e pessoal foram omitidos afim de assegurar legalmente total sigilo à pessoas e instituições. Durante a solicitação da autorização do vôo o controle de solo de (...) autorizou a SID (A) (RDL194º), após o acionamento, e durante o taxi a SID foi trocada para (B) (RDL 210º), após o alinhamento, antes da autorização para decolagem, foi novamente trocada para (C) (RDL 225º), após a decolagem (15:11 Horário Brasília), após 02 DME iniciamos curva à direita para interceptar a RDL 225º, cruzando aproximadamente 2000ft fomos autorizados a chamar a freqüência do APP, fizemos 02 chamadas, sem resposta na terceira chamada, já estabilizando na RDL 225º o controle solicitou que fizéssemos curva à esquerda para livrar 02 tráficos à direita aproximadamente 15nm, e mantivéssemos a RDL 210º por 100nm e depois aproássemos o fixo da aerovia. Não houve risco de colisão, pois executamos imediatamente as ordens do controle. Eu ia solicitar ao controle de (...) explicações do motivo de tantas trocas de SID's e proa, mas ouvi na freqüência que acabara de decolar um helicóptero para atendimento SAR à uma aeronave que havia se 79

80 acidentado em uma área próxima, não fiz a reclamação por achar que sobrecarregaria o órgão de controle com mais esta informação, mas acho que a coordenação entre o solo, a torre e o APP (...) deveria ser mais "AFINADO", apesar do problema da aeronave acidentada, em último caso se a coordenação entre os órgãos fosse prejudicada pelo atendimento ASR, as operações de DEP deveriam ser suspensas até a normalização da situação. Aproveito ainda este relatório para informar que durante a aproximação para pouso em (...) que as freqüências VHF do Controle de Aproximação (...) estavam transmitindo INTRECORTADAS, mesmo as alternadas, o fato também foi reportado por várias aeronaves, 02 aeronaves estavam em procedimento de arremetida, pois não conseguiram copiar as devidas autorizações, ficamos aproximadamente 2 minutos sem contato radio, chamei então a torre (...) no VHF 2 e informei nossa posição e nível, tendo recebido deste órgão de controle mais uma freqüência alternativa, que também estava ruim. Estava em procedimento de descida quando o ACC (...) me solicitou que fizesse uma órbita c/ afastamento de 2 minutos na posição PUGNI. Questionei o ACC sobre quanto tempo de espera iríamos fazer. E o mesmo me solicitou que o informasse quanto tempo tínhamos de combustível EXTRA. Foi dito ao mesmo que nosso combustível EXTRA era de 15 minutos. Na perna de afastamento fui instruído pelo ACC a aproar o VOR de (...) e chamar o APP (...). Ao chamar o mesmo fui questionado das minhas intenções, tendo em vista que a cabeceira em, uso era a 34 e estava abaixo dos mínimos para aproximação GPS (VOR fora de serviço). E as outras aeronaves que estavam aproximando e pousando estavam operando na pista 16 com vento de cauda de 6 a 10 nós. Solicitei ao mesmo aproximar para a 16 e avaliar a situação na aproximação final. Logo em seguida o APP me questionou sobre minha autonomia e pessoas a bordo, neste momento tínhamos 4500kg de combustível. E foi informado ao APP 01:55 de autonomia alternado SBGR que era o previsto no despacho do vôo. Fui autorizado a aproximar para a pista 16. Quando próximo ao externo observei vento de cauda de 17 nós. Questionei o APP sobre o teto na 34, o mesmo me informou que tinha melhorado e que o teto era de 500 pés. Solicitei descontinuar a aproximação e prosseguir para o GPS da 34. Fui vetorado e autorizado a aproar o CF364. Efetuei o procedimento normalmente e pousei sem 80

81 nenhum problema. Após o pouso observei carros de bombeiro na lateral da pista, e ao livrar perguntei a torre se tinha alguma aeronave em emergência. Para minha surpresa a resposta foi "o senhor que estava em emergência de combustível". Foi informado ao mesmo que em momento algum declarei emergência de combustível a nenhum órgão de controle. Após o corte de motores liguei imediatamente para o CCOA e falei com o Cmte. (...) sobre o acontecido. Chamei os mecânicos (...) e (...) e o gerente da base para olharem o combustível remanescente. Que era de 4.000Kg. Ao passar a posição SAGAZ, fomos transferidos para o Centro (...) e fomos instruídos a chamar na freqüência 127. (...) e alternando 126. (...) e assim o fizemos com sucesso em 127. (...). Permanecemos na mesma ate o TOD. Quando pedimos para a descida o centro me informou para transferir para 126. (...). Ao fazer a chamada inicial o centro pediu para descer ate FL230 e perguntou se estávamos na escuta do centro pois o mesmo tinha efetuado diversas chamadas na freqüência e inclusive em ( Antes da descida ate fiquei fora pelo período que estava obtendo o ATIS campinas) e não tinha contato conosco e também perguntou que proa estávamos mantendo se tinha autorizado voar CPN! Achei muito estranho pois ninguém tinha nos pedido momento algum para voar Campinas e muito menos estabeleceram contato na freqüência que estávamos em cruzeiro, tanto que ao pedir descida o centro respondeu a chamada na hora e me pediu para trocar a freqüência. Ai então fomos informados para interromper a descida no FL230 devido trafego e perguntou de novo que proa estávamos mantendo e eu disse que voava proa de (...) e fomos re-autorizados o FL 130 e então o controle perguntou qual proa voava de novo e eu disse (...) e o mesmo disse que era para estarmos na proa do VOR CAMPINAS pois o mesmo já tinha autorizado diversas vezes o VOR Campinas. Ninguém tinha autorizado proa alguma, e sim indagado proas que estávamos mantendo. No perfil da subida, sem informação de tráfego essencial, recebemos instrução do Controle (...) para livrar 6.000ft, subir ao FL340, empregando RAZÃO MÁXIMA até o cruzamento do FL120. Para tal acionamos o EXPEDITE SW. Quando estávamos cruzando o FL 75, com razão de subida superior a 5.000ft/min e aumentando, recebemos nova instrução para mantermos o FL 80. Selecionamos V/S SW = ZERO, 81

82 porém devido à grande razão de subida passamos do FL80. O AP foi desligado e retornamos em MANUAL FLT para o FL 80. Chegamos próximos do FL90 e reportamos ao controle, que apenas cotejou CIENTE. Fora o desconforto causado pela manobra, não houve maiores conseqüências, porém a instrução recebida causou preocupação instantânea, foi evidente a impossibilidade de cumprimento da mesma. No meu procedimento normal de subida fui restrito ao FL240, aonde cumpri. Questionei a possibilidade de ascender o mais breve possível ao meu nível de cruzeiro FL360, por duas ou três vezes aonde o mesmo sem razão informou que pelo meu questionamento "seria reportado". Mais uma vez educadamente questionei o porque deste estranho comportamento e não obtive resposta. Escrevo para alertá-los de uma situação que vem ocorrendo com freqüência em (...). Os órgãos de controle de tráfego aéreo de (...) vêm sistematicamente modificando instruções de subida durante taxi ou até mesmo após a decolagem. Esta prática traz um aumento desnecessário na carga de trabalho do cockpit. Entendo que o órgão ATC tem que gerenciar chegadas e saídas, porém a falta de antecipação e eficácia do mesmo está trazendo um fator indutor de erro, grande potencial danoso. Semana passada, após decolar de (...), no primeiro contato com o APP, o mesmo cancelou nossa subida e instruiu a execução de outra saída completamente diferente...não havia nenhum tráfego que justificasse tal medida. Durante a subida inicial, na SID (...), a torre (...)transferiu para o Controle (...). Na freqüência indicada não foi obtido resposta. Retornemos para a freqüência da torre, que indicou a mesma freqüência anterior. Tentou-se efetuar contato com várias freqüências indicadas na carta Jeppesen e não foi obtido êxito. Finalmente, questionado a torre, que por fim indicou uma freqüência diferente na qual foi possível efetuar contato com o controle. No total, transcorreram aproximadamente 4 a 5 min até que se estabeleceu contato com o controle, em um ambiente de tráfego aéreo bastante intenso. Venho reportar uma situação com potencial de risco durante a execução da STAR (...). Efetuávamos o vôo (...) quando, por vota de 22:00 UTC fomos instruídos pelo 82

83 APP (...) na freqüência 129, (...) a abandonarmos a STAR numa proa fornecida pelo controlador. Como não recebemos o limite desta proa, solicitei o mesmo ao APP, que me respondeu para aguardar e passou a se comunicar com outra aeronave. Minutos depois, ainda sem termos recebido o limite a proa em que voávamos, fomos instruídos a efetuar curva pela direita e retornar à STAR. Continuamos na STAR até próximo à posição UGONO, quando o APP iniciou nova vetoração e novamente não recebemos o limite da proa. Mais uma vez solicitei e fui instruído a aguardar, somente após duas indagações é que recebemos nosso limite. Este segundo evento foi também na freqüência 129. (...) e por volta de 22:02 UTC. Fica claro que ao retirar a aeronave da STAR (que já possui um procedimento definido em caso de falha de comunicações) e não fornecer o limite da autorização para a nova proa o controlador aumenta de forma desnecessária o nível de risco da situação Informo que no referido dia não fomos instruídos e não recebemos qualquer comunicação do setor (...) para passar a escuta do ACC (...). Quando interrogamos o setor (...) se podia descer, o controlador, embaraçadamente e surpreso com o questionamento, pediu para que comunicasse com ACC (...) a que fizemos prontamente. Confirmo que não recebemos nenhuma instrução para transferir para o ACC (...) e não recebemos nenhuma chamada em 121.5mhz. Devo acrescentar ainda que em nenhum momento as nossas comunicações foram interrompidas ao ponto que configurasse uma aplicação dos procedimentos de falha de comunicações. Recebemos e transmitimos normalmente sem nenhum problema. Venho através desde relatar o fato ocorrido no aeroporto Internacional de (...). Estávamos fazendo o trecho do vôo (...) decolando de (...) para pouso em Recife. Ao atingirmos o ponto de espera da pista 10, foi nos instruído que após a decolagem do F100 da (...) estaríamos livres para alinhar e manter posição, tal instrução foi cotejada e seguida conforme. Ficamos mais de 2 minutos alinhados e sem instrução nenhuma da torre de controle ate que uma aeronave citation (não me recordo da matricula) reportou estar passando o marcador externo para pouso na pista 10. A torre questiona se o citation esta visual com outra aeronave que seguia para pouso na pista auxiliar, e o piloto confirma o contato visual e recebe autorização de pouso na pista 10. Neste momento alerto a torre que estávamos alinhados na pista 10, e a torre não entende a mensagem e pede para confirmar e novamente alerto Torre o 83

84 (...) esta alinhado na pista 10, após essa mensagem o controlador com voz de sustado informa para o citation arremeter de imediato. Pela informação do TCAS a aeronave passou a 200 pés sobre a nossa aeronave. Depois da arremetida da aeronave fomos instruídos a decolar sem nenhum comentário adicional. Origem: Alinhados e autorizados a decolar da pista 13 de (...), acompanhava-mos a transmissão de outra aeronave na freqüência da torre o PT-(...) que parecia desconhecer a sua própria posição em relação a pista. Não recebíamos o trafego em nosso sistema TCAS e percebemos que a torre também estava desconfortável com as informações transmitidas pelo PT-(...). Diante desta situação, julgamos inseguro iniciar a decolagem e informamos a torre que permaneceríamos parados até a identificação "real" da posição do trafego. Logo após, a torre identificou o posição da aeronave, que informava estar no setor norte do aeroporto e na verdade estava no setor sul, ligeiramente a esquerda da rampa de decolagem. Informo deficiência nas freqüências 127.(...) (principal) e 126.(...) (alternada) do ACC (...). Várias aeronaves (inclusive nós) reportaram ao ACC um forte apito acompanhado as transmissões do controlador, tornando impossível por diversas vezes o entendimento das mensagens do mesmo. As semelhanças com os relatórios da ASRS são incríveis e mostram que o problema existe há muito tempo e deve ser tratado de forma direta. Embora algumas soluções estejam sendo desenvolvidas devem melhorar o processo de comunicação entre pilotos e controladores, estes não irão resolver o problema em definitivo, permitindo ainda que erros possam ocorrer devido a própria natureza da comunicação via rádio. 84

85 3. AS SOLUÇÕES A comunicação via rádio carece de elementos que permitam aos interlocutores avaliarem o significado implícito nas mensagens trocadas. A interação interpessoal é de grande ajuda na identificação das intenções dos agentes, principalmente o contato visual entre eles. A natureza agraciou à espécie humana a capacidade de perceber a intenção do seu interlocutor através dos seus gestos e expressões. Como sugere Weil e Tompakow (2003). Página 77, o indivíduo:...reage, inconscientemente que seja, à informação inconscientemente recebida. Mas a discerniu, de alguma forma!. A entonação de voz também ajuda ao receptor a perceber a função da mensagem (surpresa, dúvida, urgência). As expressões faciais permitem ao emissor avaliar como a mensagem chegou ao receptor, fazendo a função de um feedback primário. Esses elementos, contudo, não podem ser aplicados na comunicação via rádio ou, quando podem (entonação de voz), não devem constituir o meio primário na avaliação da qualidade de entendimento do significado da mensagem na comunicação aeronáutica. A busca de soluções para tornar a comunicação o mais eficiente possível pode ser encontrada em três campos distintos: no Fator Código, que tem origem no conhecimento das regras de tráfego aéreo e na utilização da fraseologia padrão, no Fator Ruído, que é representado pelo canal de transmissão da mensagem, como rádio ou satélite e no Fator Social e Cognitivo, que é traduzido pelo estado psicológico individual dos agentes comunicativos em um determinado tempo. Os Fatores Sociais e Cognitivos são de controle inviável devido a sua natureza temporal e individual, quase impossíveis de serem submetidos a uma avaliação contínua. O Fator Ruído pode ser controlado utilizando-se de tecnologia na melhoria da eficácia das transmissões. O Fator Código é o único fator que pode ser controlado e administrado constantemente, porém, este controle deve ser baseado em uma regulamentação sólida e em treinamento intensivo afim de garantir sua eficiência. Várias soluções foram implementadas em anos recentes com o intuito de diminuir os erros na comunicação radiofônica aeronáutica e vários outros estão sendo objeto de estudo, regulamentação ou implementação. Analisar estas soluções e avaliar sua eficácia é essencial para que se possa obter um cenário 85

86 realista das dificuldades encontradas para melhorar o segurança da aviação no contexto da comunicação via rádio. 3.1 FRASEOLOGIA AERONÁUTICA O Surgimento da Fraseologia A maioria dos códigos utilizados na aviação ainda hoje têm origem nas marinhas de guerra. Vários termos hoje utilizados provêem do seu uso em embarcações navais, como nós, proa e través. No início da aviação não havia uma forma definida de se falar ao rádio. A experiência individual determinava quais regras seriam utilizadas na comunicação. As regras de tráfego aéreo tão pouco eram específicas, sendo que cada país criava a sua própria. Como a aviação permitia alcançar outros países em questão de horas (em 1927 Charles Lindenbergh cruzou o Oceano Atlântico em um vôo dos Estados Unidos a França em 33 horas e 31 minutos) era mister criar regras padronizadas entre os países afim de facilitar as operações aeronáuticas. No ano de 1946 em Dublin foi realizado a Conferência Internacional sobre a Organização de Serviço de Rota do Atlântico Norte onde foi formado o Comitê sobre Controle de Tráfego Aéreo. Deste encontro surgiu o primeiro PANS-ATC, que tinha como objetivo criar regras a serem seguidas por pilotos e prestadores de serviços de apoio. Ao longo do tempo este documento foi sendo atualizado onde regras foram alteradas e outras novas, incluídas. A edição foi renomeada PANS-ATM em 2001 com o intuito de incluir regras relativas a segurança no gerenciamento do fluxo de tráfego aéreo. A fraseologia proposta pela ICAO está contida nos procedimentos encontrados no Anexo 10 Telecomunicações Aeronáuticas, Volume II, Procedimentos de Comunicação e no PANS-ATM chamado de Doc Com o objetivo de juntar informações de ambos os manuais, a ICAO elaborou o Manual de Radiotelefonia ou o Doc O conjunto de regras estabelecidos no Doc 4444 inclui procedimentos específicos a serem usados na atividade aérea por todos aqueles que participam do 86

87 processo, seja embarcado na aeronave ou exercendo funções no solo. Tem como principal função normatizar e regulamentar as operações aéreas tanto no ar como no solo. O capitulo 12 do Doc 4444 é dedicado exclusivamente à padronização dos procedimentos de comunicação radiofônica aeronáutica fornecendo regras, exemplos e termos técnicos, objetivando a eficiência operacional e a segurança de vôo. A preocupação com possíveis problemas relacionados ao erro de comunicação, ou a má utilização do código, principalmente em língua inglesa, aparece já no início do capítulo quando se trata de circunstâncias onde não cabe o uso da fraseologia padrão (DOC 4444, 2001, p.12-1): (...)É esperado que pilotos, controladores e operadores de solo usem linguagem simples, o qual deve ser a mais clara e concisa quanto possível, afim de evitar possíveis confusões às pessoas utilizando outra língua que não a sua língua pátria. Ilustração 5 - Exemplo do quadro explicativo da fraseologia aeronáutica. Fonte: ICAO DOC 4444 Capitulo 12.3 Já o Doc 9432 tem como objetivo normatizar o uso da fraseologia, fornecer conceitos e exemplos, explicar técnicas de operação de equipamentos de rádio, estabelecer pronúncias de linguagens específicas e criar padrões de comunicação. O Doc 9432 inicia seu prefácio enfatizando a importância da clareza nas comunicações aeronáuticas (Doc 9432, 2007, p iii): A fraseologia ICAO foi desenvolvida para promover uma comunicação eficiente, clara, concisa e sem ambigüidades, e uma atenção constante deve ser dada ao correto uso da fraseologia ICAO em todas as circunstancias em que forem aplicáveis. Entretanto, não é possível prever uma fraseologia que cubra todas as situações possíveis de acontecer, 87

88 portanto, os exemplos contidos neste manual não são exaustivos, mas meramente representativos da fraseologia de uso comum. O texto prossegue dando ênfase a mesma situação que o Doc 4444 em relação ao uso correto da linguagem quando não técnica: Os usuários poderão achar necessário agregar à fraseologia o uso de linguagem simples. Sendo assim, deve-se usar os mesmos princípios que governam o desenvolvimento da fraseologia, que são a comunicação clara, concisa e sem ambigüidades. O documento segue explicando da necessidade de se observar certos princípios quando se utilizando da comunicação aeronáutica quando utilizando uma língua estrangeira: É necessária proficiência suficiente na língua que está sendo usada. Em adição ao correto uso da fraseologia e da adequada proficiência lingüistica, também é importante ter em mente que a língua que está sendo usada na radiotelefonia freqüentemente não é a primeira língua do emissor ou recebedor da comunicação. Ter consciência das dificuldades especiais encontradas por falantes de uma segunda língua contribuem para uma comunicação mais segura. As transmissões devem ser feitas devagar e de forma clara. Declarações diretas as quais evitam o uso de expressões idiomáticas são mais fáceis de entender do que declarações indiretas, uso de expressões coloquiais ou gírias. Sob o ponto de vista dos modelos da comunicação, o foco do Doc 4444 e do Doc 9432 é basicamente o Fator Código. Concluí-se então que os perigos potenciais envolvidos no processo de comunicação via rádio, relativos à utilização do código, há muito são conhecidos. Ambos os documentos enfatizam a necessidade de se conhecer os códigos envolvidos, seja ele a fraseologia e termos técnicos, a língua que será utilizada ou a técnica utilizada na comunicação em si. Utilizando-se exemplos práticos, se um piloto e um controlador dominam a fraseologia perfeitamente, se comunicando na sua língua pátria mas não se comunicam de forma clara, falando rápido e de forma despretensiosa, as chances de haver um erro no entendimento da mensagem aumentam consideravelmente. 88

89 Ilustração 6 - Técnica de transmissão via rádio para assegurar recepção satisfatória. Fonte: Doc 9432 Capitulo A criação de uma fraseologia específica para o meio aeronáutico advém da preocupação em garantir o bom entendimento das mensagens trocadas entre interlocutores. Os Estados Unidos, porém, preferiram adotar um modelo menos rígido e mais informal nas comunicações aeronáuticas. Esse tipo de postura, contudo, se mostrou mais danoso à segurança de vôo e encontra-se em fase de mudança Padronização em Foco Os documentos americanos que regulamentam o uso das comunicações aeronáuticas podem ser encontrados no AIM Section 2 Radio Communication 89

90 Phraseology and Techniques e na FAA Order JO S Air Trafic Control. O AIM é similar ao PANS/ATM da ICAO embora sua formatação e conteúdo sejam relativamente diferentes. Este documento possui, descrito na sua seção 2, as técnicas a serem adotadas durante as comunicações aeronáuticas. No capítulo General pode-se observar que há uma preocupação em se destacar a necessidade da brevidade quando se utilizando do rádio bem como dos perigos de uma comunicação mal feita: Comunicação por rádio é um elo crítico no sistema ATC. (...) O fator mais importante na comunicação entre piloto e controlador é o entendimento. (...) É importante ser breve e os contatos devem ser os mais curtos possíveis, mas os controladores necessitam saber o que você quer saber antes de executar apropriadamente suas funções. E você, piloto, deve saber exatamente o que o controlador quer que você faça. Como uma fraseologia concisa nem sempre é adequada, use qualquer palavra necessária para fazer sua mensagem chegar ao destino corretamente. O tipo de matrícula utilizado nas aeronaves americanas é uma preocupação a parte. Devido o grande número de aeronaves e do sistema de letras e números os quais as aeronave são identificadas, a matrícula das aeronaves são fonte de preocupação especial do órgão ATC (AIM 4-2-4, 1): O uso inapropriado da chamada da matrícula pode resultar em pilotos executando uma autorização ATC destinada à outra aeronave. Matrículas nunca devem ser abreviadas em um contato inicial ou em qualquer momento quando uma aeronave possuir uma matrícula similar em números, letras ou sonoridade. Os órgãos de tráfego aéreo dentro do espaço aéreo americano sempre foram mais tolerante com o uso de linguagem não padrão. Porém, devido ao grande número de incidentes envolvendo erros na comunicação, o FAA vem sendo pressionado pelo NTSB a criar medidas afim de corrigir problemas decorrentes do excesso de tolerância nas comunicações como, por exemplo, certas autorizações que ficam implícitas nas mensagens emitidas pelo órgão ATC quando usando linguagem não técnica. Nas recentes versões atualizadas do AIM tais medidas já podem ser identificadas (AIM 4-2-1, letra c): Fraseologia de qualidade aumenta a segurança e é a marca de um bom piloto profissional. Jargões, conversas e gírias não têm lugar nas comunicações ATC. 90

91 Em 2000 O NTSB, preocupado com o aumento do número de runway incursions, recomendou ao FAA, através do documento A a: Criar uma emenda na Ordem ATC requerendo o uso da fraseologia padrão utilizada pela ICAO (grifo nosso) em operações de solo e periodicamente enfatizar aos controladores da necessidade do uso dessa fraseologia e para falar a uma velocidade razoável quando se comunicando com as tripulações de todos os vôos, especialmente aquelas cuja língua primária não seja o inglês. (...) O FAA reportou posteriormente que criaria um grupo de trabalho para revisar a fraseologia existente. Na carta de recomendação A de 2000 enviado ao FAA, o NTSB solicita o para que trabalhe em uma comissão no sentido de: Criar uma emenda na Ordem ATC requerendo que, quando uma aeronave necessite cruzar várias pistas, o controlador ATC forneça explicitamente instruções de cruzamento para cada pista após o cruzamento da anterior. O conteúdo de um memorando enviado ao congresso americano em outubro de 2000 pelo Secretário de Transporte dos Estados Unidos, no item Preocupações com erros de comunicação na fraseologia mostra como os Estados Unidos estão preocupados em melhorar a padronização da fraseologia utilizada em seu espaço aéreo: Membros do FAA, a ALPA, e a ATA concordam que, enquanto a proficiência em língua inglesa pode ser um problema para pilotos estrangeiros, uma maior preocupação é dada ao uso da fraseologia não padrão nas comunicações em terra e no ar. Essas diferenças podem causar confusões que podem levar a quase incidentes. A ICAO desenvolveu uma fraseologia padrão para uso no controle de tráfego aéreo. Contudo existem nações, incluído os Estados Unidos, que decidiram adotar um modelo de fraseologia diferente. Por exemplo, a fraseologia padrão ICAO para uma aeronave alinhar na pista e manter posição é line up and wait. Entretanto, os controladores americanos usam a fraseologia taxi into position and hold. Essa fraseologia pode não ser familiar a pilotos estrangeiros chegando aos Estados Unidos. O NTSB reconhece os riscos do uso da fraseologia não padrão pelo controle de tráfego aéreo e em 6 de julho de 2000 recomendou ao FAA eu solicite aos 91

92 controladores a usar o padrão de fraseologia ICAO para operações no solo. O memorando segue esclarecendo que o FAA aceita a informação das autoridades aeronáuticas estrangeiras de que seus pilotos possuem proficiência necessária na língua inglesa para exercer a função dentro dos Estados Unidos e que não verifica essas informações. O texto prossegue informando o esforço do FAA junto com o NAV CANADA, EUROCONTROL e ICAO, de criar um grupo de estudos para elaborar um teste de proficiência lingüística para pilotos, controladores e operadores de solo. Outra recomendação do NTSB que mostra sua preocupação com a qualidade das comunicações aeronáuticas e a possibilidade de erro de entendimento entre controlador e pilotos é a A de 2007, onde é solicitado que se: Proíba ao controlador a dar autorização de decolagem durante o táxi da aeronave para sua pista de decolagem até que a mesma tenha cruzado TODAS as intersecções com outras pistas. As autoridades européias propõe uma visão mais conservadora para esta questão, já que, já que muitos países com idiomas diferentes participam do consorcio do Eurocontrol. Na introdução do manual de radiofonia, se enfatiza a relação entre uma comunicação deficiente e um acidente aéreo (CAP 413, p.37): Radiotelefonia é o meio pelo qual pilotos e pessoal de solo se comunicam. Usado de forma apropriada, a informação e instrução transmitida são de vital importância na operação segura da aeronave. Entretanto, o uso de fraseologia e procedimentos não padrão pode causar confusão. Incidentes e acidentes ocorreram onde fatores contribuintes foi a confusão causada pelo uso de fraseologia não padrão. A importância do uso correto e preciso da fraseologia padrão não pode ser super enfatizada (Grifo da fonte). Porém, mesmo com um foco mais rígido na padronização, ainda ocorrem problemas dentro do espaço aéreo europeu. A Ilustração 5 mostra os 7 tipos de erros utilizados para pesquisa dentro do espaço ATM. O fator mistakes ou erros é o fator que mais contribuiu para incidentes de comunicação no espaço ATM nos anos de 2007 e O Eurocontrol define o fator erro como: 92

93 Motivação psicológica latente, associação errônea de informação, carga de trabalho, informação não detectada, falha no monitoramento, Confusão ou insuficiente conhecimento da informação, julgamento, planejamento, tomada de decisão, condição mental e conjecturas. Ilustração 7 - Comparação dos Fatores Contribuintes para incidentes em comunicação no espaço ATM do Eurocontrol, entre os anos de 2007 e Fonte: EVAIR Summary Report Todos essas condições associadas ao Fator Erro podem ser atribuídas aos Fatores Sociais e Cognitivos que foi tratado no capitulo 2 deste estudo. Apesar da regulamentação, esses fatores ainda têm uma influência muito grande no número de incidentes envolvendo comunicação. 93

94 Ilustração 8 - Países afiliados ao Eurocontrol em Fonte: Observa-se que há uma tendência de se adotar regras mais rígidas na execução da fraseologia com o intuito de se tentar diminuir o crescente número de erros que ocorrem durante os processos de comunicação aeronáutica como os já descritos no capítulo 3 deste estudo. Porém, como ficou demostrado nos acidentes e incidentes citados nos capítulos 2 e 3, as regras, por si só, não bastaram para evitar que acidentes e incidentes ocorressem por erros na comunicação. Fez-se necessário implementar outras práticas com o intuito de melhorar a eficiência das comunicações e, consequentemente, a segurança de vôo. 94

95 3.2 A ICAO E O LEVEL 4 Em 1951, a ICAO recomendou o uso do inglês na aviação civil. Quando fez esta recomendação os Estados Unidos lideravam o mundo pois não conheceram o estrago da guerra em seu território. Potência econômica e política, os Estados Unidos eram o maior produtor de aviões. Nada mais natural do que recomendar o inglês como língua internacional. Porém, naquele momento, a ICAO fez apenas uma simples recomendação ao invés de ter estabelecido uma regra o que tornaria o aprendizado do inglês obrigatório para todos os pilotos, que seriam submetidos a exames, além de serem obrigados a dominar essa língua. O estudo da língua inglesa, porém, ainda é uma matéria meramente opcional na formação dos pilotos (grifo nosso). Além de conhecer os termos e regulamentos da fraseologia aeronáutica, pilotos e controladores devem dominar o Inglês Técnico e o Inglês Comum, ambos necessários para a eficiência da comunicação aeronáutica, como ilustra Mackay & Mountford (1978, p4): (...) A linguagem utilizada no controle de trafego aéreo internacional pode ser considerado especial, no sentido de que o repertório necessário para o controlador é estritamente limitado e pode ser determinado com situacional, como aquele necessário a um garçom ou recepcionista. Entretanto, esse repertório restrito não é uma linguagem, assim como um livro de frases para turistas não é uma gramática. Conhecer uma linguagem restrita não permitirá ao emissor se comunicar de forma eficiente em um ambiente diferente daquele em que este está inserido. (grifo nosso) Seguindo o conceito de Mackay, em um estudo realizado pra o FAA, Marjo Mitsutomi e Kathleen O Brian (Mitsutomi, 2003), categorizam os 3 códigos que devem ser dominados pelos pilotos e controladores de tráfego aéreo no exercício de suas funções e como se relacionan durante a comunicação (Ilustração 5): 1. Fraseologia ATC 2. Inglês Técnico ou English for Specific Purposes (ESP) 3. Inglês Comum ou English for General Purposes (EGP) 95

96 Ilustração 9 - Modelo de comunicação da língua inglesa na aviação. Fonte: Marjo Mitsutomi e Kathleen O Brian, Marjo Mitsutomi propõe que manter a fraseologia padrão é preferível ao uso do inglês comum (EGP), entretanto, podem ocorrer situações em que o inglês técnico (ESP) não é suficiente para passar a informação claramente. O problema com a comunicação global na aviação é que a habilidade de pilotos e controladores no uso do inglês comum varia consideravelmente. Alguns somente decoram as frases ATC previstas nos manuais enquanto outros se comunicam confortavelmente em qualquer situação. Esta enorme discrepância nas habilidades em língua inglesa pelos aeronautas é a razão de preocupação das autoridades aeronáuticas em todo o mundo, principalmente a ICAO, (Mitsutomi, 2003). É seguro dizer que todos no cockpit e na torre dominam pelo menos o básico das comunicações ATC como parte do seu treinamento. O que não é seguro assumir, entretanto, é que essas mesmas pessoas possuem habilidade básica em conversação no inglês comum, já que esse quesito não está regulamentado em muitas instituições de treinamento.(grifo nosso) Em 1998 a ICAO, preocupada com o grande número de acidentes e incidentes onde a deficiência no uso da língua inglesa foi fator contribuinte, solicitou a criação de um estudo para implantar um teste de proficiência lingüista para pilotos e controladores. Em 2003 a ICAO criou emendas aos Anexo 1 Personnel Licensing, Anexo 6 Operation of Aircraft, Anexo 10 Aeronautical Telecommunications e Anexo 11 Air Traffic Services afim de determinar que nos 96

97 próximos cinco anos, pilotos e controladores deveriam demonstrar pelo menos o nível 4 6 ou level 4 no uso de fraseologia ICAO e de Inglês comum. Em 2004 foi publicado o Manual de Requisitos para Implementação de Proficiência Lingüistica da ICAO onde consta todos as informações necessárias sobre a necessidade do teste, como deve ser aplicado, conceitos a serem observados, entre outros. A preocupação das autoridades com relação ao nível de conhecimento da língua inglesa de pilotos e controladores se justifica. Um artigo da Times On Line de 2008 revela um incidente grave próximo ao aeroporto de Heathrow em Londres onde um Boeing 737 polonês quase colidiu com outra aeronave porque seus pilotos não falavam inglês e não conseguiam entender instruções básicas dos controladores. Um outro artigo do Independent On Line de 2000, registra a indignação dos pilotos franceses com a determinação de que eles falassem apenas inglês quando operando em aeroportos internacionais como o Charles de Gaulle. O sindicato dos pilotos insistia no direito dos pilotos franceses continuarem falando francês. Pilotos de outros países reclamam que, em aeroportos congestionados como o Charles de Gaulle, é essencial a compreensão de todas as conversações com os controladores, incluindo aquelas conduzidas por outras aeronaves. Uma variedade de notícias relacionadas a problemas causados por deficiente domínio da língua inglesa pode ser facilmente encontradas em pesquisas na Internet: Agosto de 2006: Um piloto russo voando em uma empresa aérea indiana não compreendeu as instruções em inglês data pelo ATC e cruzou a trajetória de outra aeronave quase causando uma colisão sobre Mumbai. (http://www.dnaindia.com/report.asp?newsid= ) Agosto de 2006: Inglês deficiente é possível causa de um erro competido pelo piloto da empresa aérea de vôos fretados Turkish ao ter pousado erroneamente em uma base aérea na Polônia ao invés do aeroporto civil, distante alguns quilômetros da base. (http://www.poznan-life.com/news/news/18-turkish_pilot_lands_at_wrong_airport) 6 Level 4: A ICAO criou 6 níveis para avaliar a proficiência lingüistica, sendo o nível 6 - expert, nível 5 - avançado, nível 4 - operacional, nível 3 - pré-operacional, nível 2 - elementar e nível 1 - pré-elementar. 97

98 Junho de 2007: Menos de 10% dos pilotos chineses alcançam os requisitos de proficiência lingüistica em língua inglesa exigidos pela ICAO. A empresa aérea informou que vai encorajar seus pilotos a melhorar suas habilidades lingüisticas. (http://www.reuters.com/article/oddlyenoughnews/iduskua ) Junho de 2008: Controladores do aeroporto de Heathrow não conseguiram entender duas chamadas de emergência feitas por uma aeronave da Italian Airliner que transportava 104 passageiros devido a pronúncia ruim dos pilotos. (http://www.guardian.co.uk/business/2006/jun/08/theairlineindustry.travelnews) Tais fatos demonstram que, apesar da língua inglesa ser considerada oficialmente a língua utilizada na aviação desde 1951, pouco controle tem se dispensado a este fator até o documento de 2003 que exige o teste de proficiência. Os países, porém, possuem autoridade para informar diferenças a ICAO e postergar esta data, caso desejem. Esta lista, com seus respectivos planos de implementação pode ser consultado no site da ICAO (http://www.icao.int/fsix/lp.cfm). No Brasil a ANAC estipulou que todos os pilotos que desejarem fazer qualquer vôo internacional deverão atingir, pelo menos, nível 4 no teste de proficiência lingüistica até a data de 5 de março de NAVEGAÇÃO E COMUNICAÇÃO DO FUTURO (CNS/ATM) Em 1983 a ICAO estabeleceu um comitê especial para tratar do Futuro Sistema de Navegação Aérea ou FANS. O papel deste comitê era o de identificar e estudar novas tecnologias que poderiam ajudar a desenvolver os sistemas de comunicação e navegação aérea para uso global na aviação civil. O conceito desenvolvido por este comitê veio a ser chamado de conceito CNS/ATM cujo objetivo é tornar o eficiente uso do espaço aéreo. O sistema CNS/ATM se baseia em um sistema de comunicação global, um sistema de navegação global e um sistema automático e dependente de vigilância (ADS). O sistema ATM é o resultado destes sistemas integrados sendo usados para propiciar uma variedade de serviços de tráfego aéreo. 98

99 A Boeing e Airbus construíram uma aplicação FANS para funcionar no já existente sistema ACARS. Este conjunto de avionics 7 veio a ser chamado de FANS-1/A. O FAA utiliza a tecnologia FANS-1/A nos espaços aéreos oceânicos do Pacífico e Atlântico e deve ser implementado em todo espaço aéreo continental americano até Na Europa as maiores empresas aéreas estão adaptando suas aeronaves para operação FANS-1/A embora essa tecnologia esteja sendo utilizada somente no espaço aéreo oceânico. O sistema de conexão entre aeronave e estação de terra ou satélite é chamado de data link. Provedores ATS fazem parte do sistema de tráfego de dados, porém, o grosso deste tráfego é, em grande parte, feito pelos provedores comerciais de serviços de comunicação como SITA e AIRINC 8 trabalham com uma rede com configuração diferente. Ilustração 10 - Modelo simplificado de comunicação no conceito FANS-1/A. Fonte: ATC Data Link News, Avionics: Termo utilizado para referenciar a eletrônica embarcada em aeronaves como equipamentos de rádio, receptores de satélites, radar, etc. 8 SITA e AIRINC: São empresas privadas que prestam serviços de comunicação e dados via satélite ou rádio, para empresas de aviação mediante um contrato de prestação de serviços. 99

100 Atualmente os dois tipos de aplicativos em uso são o ADS e o CPDLC. Ambos podem trabalhar conjuntamente ou de forma independente. Ambos permitem a troca de mensagens entre piloto e ATC. Ambos também permitem o monitoramento remoto da aeronave pelo ATC, sem intervenção dos pilotos. A grande diferença é que o CPDLC possui mais sistemas de segurança enquanto o ADS, em certos casos, permite o acesso remoto sem a necessidade da autorização da tripulação, por exemplo. No modelo simplificado da ilustração 6, a aeronave pode se conectar com o órgão ATC através de rádio VHF ou SATCOM, utilizando a SITA ou AIRINC como provedores de acesso. Na aeronave existem equipamentos que servirão de interface entre o piloto e o controlador que, na ilustração 7 está representado como o ATSU. Através deste sistema, o piloto não precisa se comunicar por voz com o órgão ATC e vice versa. Toda a comunicação é feita via data link 9 entre os equipamentos da aeronave e do órgão ATC. A comunicação, dessa forma, se torna mais eficiente, eliminando o ruído, melhorando o código e diminuindo significativamente a possibilidade de confusão, já que os textos utilizados na troca de mensagens são padronizados. Uma Aeronave Airbus 330 possui 3 módulos que são utilizados durante as comunicações via ADS ou CPDC. O ATSU, onde se seleciona o órgão ATS que se quer conectar e as mensagens que se pretende enviar, o DCDU que funciona como interface entre as comunicações entre piloto e controlador e o Sistema de Alerta que irá informar ao piloto a chegada de mensagens. 9 Data Link: Fluxo de dados entre aeronave e a estação de solo e vice versa. 100

101 Ilustração 11 - Componentes FANS para o Airbus A330. Fonte: Autores Em um exemplo de como funciona o sistema a aeronave está conectada ao órgão ATC cujo código é KZAK (Oakland). O piloto inseriu este código no ATSU e solicitou a conexão minutos antes de entrar na área. A situação no DCDU ficará como o da ilustração 8. KZAK Ilustração 12 - DCDU mostra que o ADS/CPDLC está conectado ao órgão ATC Oakland. Fonte: Autores 101

102 A aeronave se encontra na jurisdição do controle de Oakland (KZAK). O controle envia uma mensagem solicitando que a aeronave reduza a velocidade para 250 knots. Um alerta sonoro tocará no cockpit e um aviso luminoso com os dizeres ATC MSG irá piscar por alguns segundos, avisando aos pilotos que o órgão ATC enviou uma mensagem, como mostra a ilustração 9. Alerta Visual Alerta Sonoro Ilustração 13 - Representação de alertas sonoros e visuais no cockpit avisando do recebimento de uma mensagem ADS/CPDLC. Fonte: Autores O piloto não pode obedecer à solicitação do controlador devido a problemas médicos a bordo, através da página inicial do ATSU ele escolhe a opção UNB DISPLAY que significa não posso cumprir, conforme ilustração 10. Nesta página aparecem várias opções pré definidas de justificativa tais como DUE TO WEAHTER ou devido a condições meteorológicas e DUE TO TECHNICAL ou devido a problemas técnicos. O piloto escolherá a opção DUE TO MEDICAL ou devido a problemas médicos a bordo (Ilustração 11) e está opção aparecerá no DCDU na cor azul, que é um indicativo de que a mensagem ainda não foi enviada (Ilustração 12). Ao pressionar a tecla referente a *SEND a mensagem será enviada, e a situação do DCDU será como na ilustração 13. Ao receber a mensagem o controlador analisará o que deve fazer e, se necessário, enviará uma outra solicitação à aeronave. Este procedimento acontecerá até que ambos, controlador e piloto, cheguem a um consenso, como se estivessem se comunicando via rádio. 102

103 Número de páginas disponíveis (primeira de duas) Opções de justificativa O piloto selecionou a página UNB DISPL Ilustração 14 - Exemplo do ATSU sendo usado para informar ao órgão ATC a impossibilidade de se cumprir uma solicitação (UNABLE). O Texto em azul é o que foi selecionado. Fonte: Autores O piloto selecionou a justificativa DUE TO MEDICAL Ilustração 15 - No ATSU a justificativa DUE TO MEDICAL está na cor azul e sem a seta apontando para a tecla correspondente, significando que foi selecionada. Fonte: Autores 103

104 Mensagem recebida de KZAK às 09:37Z REDUCE SPD TO 250KT A mensagem ainda não foi enviada. O piloto necessita apertar este botão. O piloto pode escolher entre Cancelar ou Enviar Ilustração 16 - Situação do DCDU antes do envio da resposta do piloto ao órgão ATC (texto em azul) informando o motivo do não cumprimento da redução de velocidade. Fonte: Autores UNABLE DUE TO MEDICAL A mensagem foi enviada Ilustração 17 - Situação do DCDU após o envio da resposta pelo piloto ao órgão ATC. Observa-se que a cor do texto mudou de azul para verde, significando que a mensagem foi enviada. Fonte: Autores O sistema é confiável e permite a vigilância da aeronave pelo controle sem necessidade de comunicação rádio entre piloto e controlador, embora essa forma de comunicação esteja disponível a qualquer momento caso seja necessário. O sistema permite o acompanhamento do vôo pelo controlador sem interferência do piloto, recebendo informações direto do computador de vôo da aeronave tais como horários previstos de sobrevôo, rota, velocidade e altitude. O projeto FANS será implementado gradativamente através de fases, com testes e homologações iniciados em CPDLC e ADS-1 estarão operando em 104

105 regiões remotas e oceânicas a partir de O cronograma prevê que até 2020 todo o espaço aéreo europeu e americano estejam operando completamente automatizados, inclusive com a possibilidade de interação direta do controlador nos computadores das aeronaves afim de atender ao conceito CNS/ATM de freeflight 10. No estágio atual, existem algumas deficiências que serão resolvidas com o tempo, como a impossibilidade de se manter uma comunicação instantânea, a necessidade de se atravessar espaços aéreos com e sem a tecnologia FANS e a impossibilidade, no momento, de se explorar todas as possibilidades tecnológicas já existentes nas aeronaves mais modernas. No momento o fator comunicação permanece uma preocupação, já que o FANS resolveria, em tese, somente problemas de comunicação relacionados ao vôo em rota em áreas remotas, geralmente efetuado com rádio HF, na fase de vôo que representa somente 9% das ocorrências de acidentes e incidentes aeronáuticos. As fases de decolagem e subida inicial e aproximação e pouso, onde o volume de comunicação é maior e mais crítico ainda não possui um sistema pronto para implementação a curto ou médio prazo. 3.4 TREINAMENTO E COMUNICAÇÃO Embora a comunicação seja parte integrante do profissional de aviação seja ele piloto ou controlador, no que se refere aos pilotos, não existe nenhum teste específico exigido para o controle do uso da fraseologia aeronáutica, do inglês e dos fatores influentes nos problemas de comunicação. A exceção é a prova de proficiência lingüistica da ICAO mas muitos países postergaram sua aplicação para pilotos e controladores. A fraseologia pode ser estudada por pilotos quando estes estiverem fazendo testes para obtenção das licenças, já que o conteúdo referente ao assunto se encontra, por exemplo, no AIM (FAA) ou na ICA (Brasil). Pilotos funcionários de empresas de transporte aéreo são obrigados a efetuar cursos de CRM regularmente. Nestes cursos o tema Comunicação é abordado repetidamente, 10 Free-Flight: Conceito que prevê vôos diretos entre origem e destino, sem a necessidade de se utilizar rotas específicas, sobrevoar auxílios rádio ou posições específicas. 105

106 porém no contexto de se manter uma consciência situacional (Situational Awareness 11 ) elevada e não na fraseologia especificamente. De fato, muitos dos acidentes e incidentes relacionados com erros de comunicação aconteceram devido a falha em se manter a devida SA. Uma comunicação efetiva é impossível sem que uma SA seja observada constantemente, seja de piloto para controlador, controlador para piloto e piloto para piloto. Até mesmo a comunicação deficiente entre controlador e controlador já contribuiu para acidentes aéreos graves. O caso mais conhecido ocorreu em 1976 em Zagreb, na antiga Iugoslávia, onde um dos controladores estava atrasado para assumir o turno e o controlador que deveria ser substituído não o esperou para a troca, deixando um assistente sozinho por 8 minutos no controle. Quando o controlador chegou para assumir o turno, o briefing que recebeu foi incompleto, e sua falha em conhecer a situação dos vôos naquele momento resultou na colisão entre duas aeronaves sobre Zagreb e na morte de 176 pessoas. Na década de 1970, após a análise de vários acidentes provocados exclusivamente por erro humano, quando a aeronave não possuía nenhuma falha, as autoridades aeronáuticas chegaram a conclusão que a comunicação no cockpit deveria ser melhorada afim da ajudar a evitar acidentes. Dessa forma nasceu a primeira geração de CRM (1) que visava criar uma interação entre pilotos, melhorar a comunicação no cockpit e estabelecer o conceito de consciência situacional. Ao observar que alguns acidentes, que poderiam ter sido evitados pelos comissários, ocorreram por falta de interação entre cabine e cockpit, criou-se a geração 2 e 3 do CRM (2), na década de 1980, que incluía os comissários de bordo e o conceito de gerenciamento de risco. A geração 4 e 5 do CRM (3) aparece da verificação de que existem problemas latentes na organização que poderão levar a um acidente em algum momento, quando as condições forem propícias, mesmo que a tripulação esteja devidamente treinada e preparada. São fatores como pressão da organização, tempo insuficiente, fadiga, entre outros, que devem ser identificados e corrigidos antes que causem um acidente. É o modelo preditivo, que tem o objetivo de se antecipar à possibilidade de um acidente e engloba mecânicos, despachantes operacionais de vôo, pessoal de rampa, etc. 11 Consciência Situacional ou SA: Na aviação é o ato de perceber continuamente o que acontece ao redor, prever acontecimentos baseado nessa percepção e executar tarefas baseado nessa projeção. 106

107 A geração 6 do CRM envolve o reconhecimento das ameaças e dos erros como parte integrante do dia-a-dia operacional das tripulações, que podem afetar a segurança de vôo. O modelo TEM foca simultaneamente o modelo operacional e o Fator Humano dentro deste ambiente normal de operações, tais como mau tempo, tráfego, passageiros indisciplinados, pressão operacional, entre outros. Em todos os modelos de CRM apresentados o maior enfoque é dado na comunicação. O conceito de CRM prega que, caso haja dúvidas sobre qualquer situação no vôo, esta deverá ser verbalizada, seja para o piloto, comissário, passageiro ou controlador. Dessa forma, cabe ao comandante da aeronave gerenciar o vôo de forma que todas as ocorrências sejam antecipadas, reconhecidas e resolvidas, entre elas e principalmente, problemas de comunicação. Comunicação é um fator muito importante para a segurança do vôo e seja uma habilidade altamente necessária aos tripulantes para um efetivo gerenciamento de vôo, as ameaças e erros discutidos em treinamento de CRM são muito genéricos e tratam desde erros de comunicação entre piloto e despachante até piloto e controlador. Não há um enfoque nos problemas específicos da comunicação radiofônica, tais como homofonia e erro de repetição, por exemplo. O piloto não é apresentado a esses fatores de forma explícita em nenhuma fase do seu treinamento. Instrutores de vôo e Examinadores credenciados também são obrigados a passar por treinamento específico relacionados a problema de instrução e avaliação como erro de halo ou erro de padrão 12 (ICA 121/1005, 2005). No Brasil, o curso de examinador de empresa aérea credenciado pela ANAC tem duração de duas semanas. Qualquer instrutor de vôo, mesmo que da aviação geral, deverá realizar um curso e se submeter a uma avaliação específica da ANAC para obter o certificado de instrutor. Nas empresas aéreas o instrutor também deve realizar treinamento em específico antes de assumir o cargo. O TAI é um treinamento que engloba a fraseologia aeronáutica em língua inglesa mas não tem como objetivo principal o estudo da comunicação. A função do TAI é preparar o piloto para as condições especiais dos vôos internacionais, tais como o manuseio de material aeronáutico, condições meteorológicas globais, diferenças nas regras e procedimentos estrangeiros e vários outros. Embora exista 12 Erro de halo ou erro de padrão: São falhas individuais que podem induzir o avaliador a conceder ao avaliado uma nota maior ou menor do que este realmente merece, em função de uma percepção errônea do avaliador. 107

108 um módulo de fraseologia no curso de TAI, em geral não faz parte destes cursos um estudo mais profundo sobre problemas relacionados à comunicação. As soluções apresentadas não conseguem resolver o problema da comunicação de forma eficaz. Embora haja várias publicações específicas sobre o assunto, o estudo destas publicações não é obrigatório, ficando a critério do piloto o acesso a elas, sem qualquer tipo de controle da autoridade aeronáutica. Fraseologia aeronáutica é, em geral, aprendida pelos pilotos na prática, e não em sala de aula. Um curso para pilotos com ênfase em problemas de comunicação e fraseologia aeronáutica seguido de uma avaliação se faz necessário para aumentar a segurança de vôo e a eficiência operacional. 108

109 4. TREINAMENTO EM COMUNICAÇÃO 4.1 EMPRESAS CERTIFICADAS RBHA 121 E CENTROS DE TREINAMENTO RBHA 142 No dia 22 de abril de 1931, por meio do decreto nº , assinado pelo então Presidente da República Getúlio Vargas, nasceu o Departamento de Aeronáutica Civil, na época subordinado diretamente ao Ministério da Viação e Obras Públicas. Naquele momento foi dado um passo importante para a estruturação do setor civil da aviação Brasileira. A Lei nº , que criou a Agência Nacional de Aviação Civil (ANAC), foi aprovada em 27 de setembro de A ANAC, no entanto, nasceu de fato em 20 de março de A ANAC tem sua origem nas competências do Departamento de Aviação Civil (DAC), que eram estabelecidas no art. 18 do Anexo I do Decreto nº 5.196, de 26 de agosto de 2004, que dispunha:...ao Departamento de Aviação Civil compete planejar, gerenciar e controlar as atividades relacionadas com a aviação civil. Portanto, em virtude dessa competência, o DAC qualificava-se como autoridade aeronáutica, exercendo, por via de conseqüência, as atividades relacionadas a essa função pelo Código Brasileiro de Aeronáutica (Lei nº 7.565, de 19 de dezembro de 1986). Notadamente a legislação aeronáutica esta melhor amparada para as empresas de grande porte que operam sobre as regras do RBHA 121. A despeito do que ocorre em outros países, em particular na América Latina, nossos regulamentos e legislações são, em parte, cópias fieis das leis e diretrizes de aviação Norte Americanas. Como exemplo o RBHA 36 adota na íntegra o FAR 36 do FAA. Hoje os centros de treinamento e escolas de aviação civil encontram-se em processo de intensa modificação de suas estruturas e diretrizes. Atualmente a ANAC esta empenhada em cada vez mais delegar muitas das atividades, que antes competiam a ela como órgão fiscalizador, para as empresas e centros de treinamento. Podemos exemplificar a prerrogativa que escolas de pilotagem possuem de aplicar exames teóricos de revalidação de habilitação de piloto privado 109

110 em suas próprias instalações conforme INFAC-60/121, facilitando muito o tramite burocrático de emissão de atualizações de habilitações para o usuário do sistema. Desde 05 de marco de 2009 todas as empresas que operam linhas internacionais devem manter tripulações certificadas e homologadas segundo a regra ICAO DOC 9835 na qual estabelece que todos os pilotos que exercerem suas atividades em vôos internacionais deverão ter averbada em seus Certificados de Habilitação Técnica a proficiência lingüística em inglês nível 4,5 ou 6. Sendo o Brasil um dos países membros da OACI, estabeleceu-se que tais pilotos comprovem proficiência lingüística, deverão demonstrar habilidade de falar e entender a linguagem utilizada em comunicações radiotelefônicas, através da realização de teste de inglês, segundo especificações do próprio DOC O CENÁRIO Os aspectos que envolvem a comunicação em língua inglesa são numerosos, mas o crescente desenvolvimento do mercado de aviação requer profissionais extremamente capacitados e preparados, possivelmente nao haverá tempo hábil para que as empresas invistam na capacitação de profissionais que não atinjam o nível mínimo exigido pela proficiência lingüistica (Level 4) visto as expectativas de crescimento do mercado aéreo para os próximos dez anos. Enquanto a ICAO preocupa-se com um nível mínimo de atendimento de proficiência no entendimento de mensagens, habilidade em se comunicar e conhecimentos de estruturas gramaticais, este trabalho está focado em eliminar as barreiras de linguagem entre piloto e controlador no que tange ao estabelecimento de protocolos verbais, homofonia, ambigüidade, cotejamento deficientes, uso errôneo de números e problemas com estresse, cansaço e impaciência. As barreiras de linguagem também existe entre nativos da língua e indivíduos com elevado grau de conhecimento desta. Com o crescente aumento do trafego aéreo internacional, os riscos de comunicação crescem na mesma proporção devido diferenças de cultura mesmo entre membros de mesma língua nativa. Exemplos da caracterização de um treinamento específico para a comunicação em língua inglesa estão prescritos no próprio anexo 1 da ICAO. Na 110

111 nota abaixo podemos destacar a previsibilidade da pronúncia e entendimento de certas palavras e expressões locais, como exemplo: American 903 fly on course to Jacareacanga VOR. Certamente qualquer piloto estrangeiro que tente pronunciar Jacareacanga não o fará corretamente (mesmo sendo um nativo da língua inglesa) daí a necessidade de se soletrar os 3 indicativos do VOR em questão JAC (Julliet Alfa Charlie VOR). Ora, se há na regra a previsibilidade de se soletrar palavras locais difíceis por que deve ser levantado estes termos? Existem dois motivos principais. O primeiro é que a documentação relacionada ao assunto existente para pilotos, não é cobrada em testes ou exames e, consequentemente, depende da motivação pessoal para ser estudado. Segundo, porque todas as recomendações da ICAO podem ser seguidas ou não pelos países signatários cujas modificações são publicadas em formas de diferenças em relação aos anexos. Tratando-se portanto de recomendações, no caso dos Estados Unidos, as regras utilizadas poderão ser diferentes. Regras FAA podem diferir das normas ICAO no aspecto da fraseologia. É muito comum o uso de gírias e jargões nas comunicações controlador piloto como nos exemplos: American 903 stop abeam sock ou (American 903 pare no través da meia), padrao ICAO: American 903 stop abeam wind indicator ou (American 903, pare no través da biruta); TAM 8091 line up and hold 13 runway 9 ou (TAM 8091 alinha e aguarde na pista 9), padrão ICAO: TAM 8091 line up and maintain runway 9 ou (TAM 8091, alinha e mantenha pista 9). 4.3 A PROPOSTA Foi observado que de nada serviria uma padronização da proficiência lingüistica de controladores de vôo e pilotos se não fossem trabalhados os aspectos que causam impactos nos problemas de comunicação. Um estudo apurado faz-se necessário para trazer à tona a crescente preocupação com a baixa padronização nas comunicações controlador piloto, em especial na América do Norte e Ásia. O Inglês é a língua universal no meio aeronáutico, recomendada pela própria ICAO. Distintamente de outras línguas a 13 Line up an hold: em inglês pode ser confundido com line up an roll ou (alinha e decole), justamente o contrário do que se espera. 111

112 estrutura da língua inglesa é particularmente simples se comparada ao Francês e Português, mas quando se trata de fraseologia ha um contra-senso: a constituição das palavras (mais curtas e com muitas vogais) permitem ao nativo uma agilidade de pronuncia impensável. Então, além dos problemas associados à comunicação propriamente dita, existem aqueles relacionados ao uso da língua não pátria, que, no caso da aviação, é o inglês. Baseado nos diversos incidentes mostrados neste estudo, se faz necessário que todos os pilotos detentores da licença de PLA e PC voando sob o RBHA 121 tenham treinamento disponibilizado pelas empresas especificamente sobre o de Problemas de Comunicação e Fraseologia Aeronáutica em Língua Inglesa. Este treinamento deve ser específicos para pilotos e dividido em dois segmentos: Nos elementos que interferem na comunicação aeronáutica e no uso da língua inglesa em comunicações aeronáuticas. 4.4 O DESENVOLVIMENTO O treinamento proposto por este estudo será denominado: CURSO DE COMUNICAÇÃO NA LÍNGUA INGLESA E FRASEOLOGIA e estará composto de três módulos sendo um módulo no formato de web aula, acessado de qualquer lugar via portabilidade da Internet e dois módulos de treinamento presencial. O módulo TAI já é obrigatório e devidamente ministrado pelas empresas aéreas regidas pelo RBHA 121 aos pilotos que realizam vôo internacional e será sempre presencial. O programa apresentado está em conformidade com os RBHA 142 e RBHA 121, respectivamente. O módulo presencial comunicação e fraseologia será aplicado a pilotos que realizam vôos internacionais. O módulo especial online será aplicado a todos os pilotos registrados em empresa aérea voando sob o RBHA Segmento de Currículo de Curso de Comunicação na Língua Inglesa e Fraseologia Modulo de Treinamento Especial Online: Inicial e Periódico Modulo de Treinamento Especial Presencial: Inicial 09:00 h 21:00 h 112

113 Modulo de Treinamento Especial de TAI: Inicial Compulsório Carga Horária total 56:00 h 86:00 h Quadro 22 Carga Horária Treinamento Especial em Comunicação e Fraseologia. Fonte: Autores Módulo de Treinamento Especial On-line Aplicabilidade: Este segmento de currículo de treinamento é destinado a operação de aeronaves regulamentadas sob o RBHA 121. Publico Alvo: Pilotos detentores de licenças de PLA e PC, devidamente registrados como funcionários de uma empresa RBHA 121. Objetivo: Proporcionar conhecimento teórico sobre os elementos presentes na comunicação e sua relação com os problemas e erros na comunicação aeronáutica, e também meios de identificar, evitar e corrigir esses erros. Duração: Curso online (via Web aula) com carga total de 9 horas e dois módulos de avaliação de 00:30 minutos cada. Ao final das avaliações deverá ser impresso um certificado digital de conclusão de curso. Este módulo deverá ser revalidado anualmente juntamente com a revalidação da CHT. Método: Método audio visual em computadores, uso de apresentações eletrônicas, textos interativos, fotos, vídeos e questionários. Padrão de avaliação: No modulo presencial haverá uma avaliação composta de 40 perguntas em dois blocos de 20 perguntas cada com peso 5 para cada bloco. No final da avaliação o piloto será capaz de demonstrar quais os modelos de comunicação, os fatores que interferem na comunicação, os tipos de problemas de comunicação, identificar e conhecer os documentos que regulam a comunicação aeronáutica, dominar técnicas que protejam o piloto dos problemas de comunicação. Material fornecido: Apostilas e Apresentações através de download na própria página da aula online. Modulo de Treinamento Especial Online 09:00 H Tópicos: Descrição dos Modelos de Comunicação 00:20 113

114 Descrição dos Elementos da Comunicação 00:20 Descrição dos Fatores que interferem na Comunicação 00:20 Descrição dos Tipos de problemas de Comunicação 01:00 Análise de casos relacionados ao tipo de Problema de Comunicação 01:00 Análise das armadilhas da Comunicação e suas defesas 00:30 03:30 h Apresentação e Estudo de Documentos Oficiais Estudo do Pilot Controller Glossary FAA 00:20 Estudo detalhado do AIM parte Fraseology 00:20 Estudo do DOC 4444 ATM/501 da ICAO 00:30 Estudo do DOC 9432 AN/925 Manual of Radiotelephony 00:30 Estudo do CAP 413 CAA Radiotelephony Manual 00:30 Estudo da ICA :20 02:30 h Resolução de Avaliação com 40 questões sobre o assunto 01:00 01:00 h Quadro 23 Carga Horária do Módulo Especial Online. Fonte: Autores Módulo de Treinamento Especial Presencial Aplicabilidade: Este segmento de currículo de treinamento e destinado a operação de aeronaves em vôos internacionais, alem de requerer como prérequisitos proficiência em língua inglesa ICAO nível 4, 5 ou 6, exige também treinamento específico de TAI (Tráfego Aéreo Internacional) que irá preparar o piloto para este modulo. Publico Alvo: Comandantes (detentores de licencas PLA) e co-pilotos (detentores de licenças PC) devidamente registrados como funcionários de uma empresa RBHA 121. Objetivo: Proporcionar conhecimentos teóricos, padronização e treinamento prático em laboratório de fraseologia, para vôos internacionais, como também 114

115 reciclagem e briefing de áreas específicas onde o dialeto local e diferenças ICAO estão presentes na operação. Duração: Curso presencial com carga horária de 21 horas baseado na comunicação em língua inglesa e fraseologia. Ao final das avaliações devera ser impresso um certificado digital de conclusão do curso. Método: Instrução convencional em sala de aula e apoio com método audio visual em apresentações eletrônicas, quadro branco e vídeos. Laboratório de Fraseologia: Empregam-se unidades individuais do tipo intercomunicação, sem fio, para trabalhos de radiotelefonia. Adicionalmente projeta-se em apresentação eletrônica a rota sobrevoada em tempo real. Padrão de avaliação: No modulo presencial haverá uma avaliação composta de 40 perguntas em dois blocos de 20 perguntas cada com peso 5 para cada bloco. No final da avaliação o aluno-piloto será capaz de demonstrar os principais problemas relacionados à comunicação em língua inglesa, suas características e peculiaridades, legislação e situações de risco. Material fornecido: Apostilas entregue em aula. Modulo de treinamento especial presencial 21:00 H Tópicos: Lingüistica na Aviação (fonética e semântica) 01:30 Teoria e Prática da Tradução 01:30 Técnicas de como ouvir e tomar nota 02:00 Leitura Dinâmica 01:00 06:00 h Inglês Técnico para aviação 02:00 Pronúncia em Inglês e Comunicação Aeronáutica 01:00 Fraseologia Aeronáutica - Laboratório 02:00 Inglês para Comissários 00:30 Inglês para Mecânicos 00:30 Inglês para ATC 00:30 Inglês para Passageiros 00:30 07:00 h Resolução de Avaliação com 40 questões sobre o assunto 01:00 115

116 01:00 h Quadro 24 Carga Horária Módulo Especial Presencial. Fonte: Autores O conteúdo destes módulos deverão ser atualizados a cada dois anos afim de melhorar constantemente o treinamento do grupo de pilotos. Tópicos poderão ser adicionados ou retirados na medida em que a eficácia do treinamento for sendo avaliada. Este treinamento não substituirá o treinamento de CRM. 116

117 6. CONCLUSÃO A comunicação aeronáutica é um elemento essencial na segurança de vôo. Entretanto, mesmo com aeronaves modernas e sistemas de navegação avançados, a fraseologia ainda é a mesma daquela utilizada há dezenas de anos. E continuará assim por algumas dezenas de anos, ainda. Face ao exposto, alguns pontos sobre as comunicações aeronáuticas entre piloto e controlador foram observados neste trabalho e devem ser devidamente destacados: Pilotos, no plano mundial, não possuem treinamento específico sobre comunicação e fraseologia como requisito de obtenção de quaisquer licença requerida; Não há legislação que recomende treinamento específico sobre comunicação e fraseologia, com carga horária definida e avaliação determinada; Embora a ICAO tenha determinado um exame de proficiência lingüistica para pilotos e controladores a partir de 2008, este exame, por si só, não resolve os problemas de comunicação entre piloto e controlador, além de não ter sido adotado por todos os países, ainda; Apesar de novas tecnologias disponíveis para melhorar as comunicações, nas fases críticas de vôo (decolagem e subida, aproximação e pouso) ainda serão baseadas na utilização de transmissão de voz em VHF; Cabe a pilotos e controladores estudar por vontade própria manuais e documentos sobre comunicação e fraseologia. Não há um teste regular a ser aplicado a esses profissionais, definido pelas autoridades reguladoras, em âmbito mundial; Cada autoridade determina uma padronização de fraseologia própria (FAA, ICAO, CAA) o que dificulta o domínio do uso do código por pilotos e controladores, causando confusão. Não existe um padrão de comunicação universal; Questões culturais e uso de expressões locais na fraseologia ainda não são objeto de uma regulamentação mais direta pelas autoridades aeronáuticas mundiais; 117

118 Pilotos e controladores influenciam na segurança quando no mau uso dos protocolos de comunicação e fraseologia, independe da licença do piloto e do tamanho no aeroporto; Ações locais ou regionais surtem pouco efeito já que o problema da comunicação é de caráter global e necessita de regulamentação ampla. Recomendação da ICAO para o uso da língua inglesa como linguagem internacional da aviação baseado somente em fatores culturais e econômicos, porém, sem a realização de um estudo específico dirigido; Devido a esses fatores, faz-se mister a criação de um plano para melhoria das comunicações aeronáuticas, a ser implementado nos próximos 5 anos, com abrangência mundial. Este estudo propõe a criação de um plano que aborde os seguintes tópicos: Inclusão da disciplina de Comunicação e Fraseologia já nos cursos de formação básico de formação de pilotos; Exigência de conhecimento de língua inglesa nos cursos de formação de Pilotos de Linha Aérea e de pilotos voando sob FAR 121 ou similar; Incorporação de questões referentes à comunicação nos exames para obtenção de qualquer licença de piloto; Criação de um protocolo de comunicação único a ser utilizado em qualquer região do mundo cujo conteúdo deverá ser obrigatoriamente incluído nos exames de obtenção de licença para pilotos; Obrigatoriedade de curso específico periódico, conforme proposto neste trabalho, para pilotos registrados em empresas aéreas sob FAR 121 ou similar; Erros no processo de comunicação ainda existem e ainda causam incidentes e quase acidentes. As novas tecnologias na área de comunicação ainda não estarão disponíveis para comunicação instantânea entre piloto e controlador nos próximos 20 anos. Embora a criação de normas de comunicação estejam sendo mais frequentes entre as autoridades reguladoras, a existencia de diversas padronizações diferentes torna o processo de assimilação para pilotos difícil e 118

119 confuso. Uma unificação de padronização e uma regulamentação mais específica ajudaria muito o processo de comunicação e, consequentemente, a segurança de vôo. Há muitos anos já se estabeleceu que a comunicação piloto-piloto, pilotocomissário e piloto-empresa é de extrema importância para a segurança. Esse tipo de comunicação vêm sendo enfatizado há anos nos treinamentos de CRM ministrados nas empresas aéreas de todo o mundo. São cursos exigidos por regulamentação mundial, definidos após análises de diversos acidentes aeronáuticos. Cabe agora aos órgãos reguladores criarem novas regras para tratar unicamente da comunicação piloto-controlador, ainda uma larga fonte de erros e confusões na aviação mundial, para que acidentes como o de Tenerife deixem de continuar sendo uma ameaça presente, e se tornem apenas uma sombra do passado. 119

120 BIBLIOGRAFIA SILVA, Bento Duarte da. Educação e Comunicação: Uma análise das implicações do discurso audiovisual em contexto pedagógico. 10. ed. Braga: Universidade do Minho, CUSHING, Steven. Fatal Words: Communication Clashes and Aircraf Crashes. Chicago: The University Of Chicago Press, p. BOCK, Ana Merces Bahia; FURTADO, Odair; TEIXEIRA, Maria de Lourdes Trassi. Psicologias: Uma introdução ao estudo da psicologia. 13. ed. São Paulo: Saraiva, p. JOB, Macarthur. Air Disaster: Lessons of the Jet Age. Victoria: Aerospace Publications, p. MATTELART, Armand; MATTELART, Michele. História Comunicação. São Paulo: Loyola, p. das Teorias da PIGNATARI, Décio. Informação. Linguagem. Comunicação. 25. ed. São Paulo: Ateliê, p. WEIL, Pierre; TOMPAKOW, Roland. O Corpo Fala: a linguagem silenciosa da comunicação não-verbal. 56. ed. Petrópolis: Vozes, p. CANADÁ. International Civil Aviation Organization. Air Traffic Management - Procedures for Air Navigation Services: DOC 4444 ATM/ ed. Montreal: ICAO, p. CANADÁ. International Civil Aviation Organization. Manual of Radiotelephony: DOC 9432 AN/ ed. Montreal: ICAO, p. 120

121 CANADA. International Civil Aviation Organization. Manual on the Implementation of ICAO Language Proficiency Requirements: Doc 9835/AN453. Montreal: ICAO, p. BRASIL. Departamento de Aviação Civil. (Org.). Requisitos para a realização de exames de proficiência e exames em rota: IAC121/1005. Rio de Janeiro: DAC, p. SAFETY REGULATION GROUP (United Kingdom). Radiotelephony Manual: CAP ed. London: CAA, p. UNITED SATES. Kamil Etern. Communications Related Incidentes in General Aviation dual Flight Training. California: Asrs-nasa, p. BOEING COMMERCIAL AIRPLANES GROUP (United Sates) (Org.). Statistical Summary of Commercial Jet Airplane Accidents: Worldwide Operations Seattle: Boeing, p. STEVEN CUSHING (United Sates). Pilot Air Traffic Control Communications: It is not (only) what you say, it s how you say it. Virginia: Flight Safety Foundation, v. AIRBUS INDUSTRY (França) (Org.). Humam Performance: Effective Pilot - Controller Communications. Blagnac: Airbus, p. AIRBUS INDUSTRY (França) (Org.). Humam Performance: Enhancing Situational Awareness. Blagnac: Airbus, p. AIRBUS INDUSTRY (França) (Org.). Human Performance: CRM Aspectis in Incidents and Accidents. Blagnac: Airbus, p. SCHRAMM, Wilbur. The Nature of Communication between Humans. Illinois: University Of Illinois Press, Urbana,

122 BELGICA. Eurocontrol (Org.). EVAIR Summary Report bulletin 02: Eurocontrol Voluntary ATM incident Reporting. Bruxelas: Eurocontrol, WANG AIGUO (China). Reassessing the position of Aviation English: from a special language to English for Specific Purposes. Civil Aviation University Of China: IBERICA, p. MACKAY, Ronald; MAOUNTFORD, Alan. English for Specific Purposes: A case study approach. London: Longman, p. MITSUTOMI, Marjo; O'BRIEN, Kathleen. The Critical Components of Aviation English. California: University Of Redlands, p. GRANT, Reg (Ed.). Flight: 100 Years of Aviation. New York: Smithsonian Institution, p. KLETZ, Trevor A. Learning from Accidents. 3. ed. London: Gulf Professional Publishing, p. A-102/1977 y A-103/1977 Accidente Ocurrido el 27 de Marzo de 1977 a las Aeronaves Boeing 747, Matrícula PH-BUF de K.L.M. y Aeronave Boeing 747, matrícula N736PA de PANAM en el Aeropuerto de los Rodeos, Tenerife (Islas Canarias) Comisión de Investigación de Accidentes e Incidentes de Aviación Civil 122

123 REFERÊNCIAS Relatorio de Accidente Ocurrido el 27 de Marzo de 1977 a las Aeronaves Boeing 747, Matrícula PH-BUF de K.L.M. y Aeronave Boeing 747, matrícula N736PA de PANAM en el Aeropuerto de los Rodeos, Tenerife (Islas Canarias) A-102/1977 y A- 103/1977. Comisión de Investigación de Accidentes e Incidentes de Aviación Civil FUNK & WAGNALLS, Britannica World Language: Edition of Standard Dictionary. Volume 1, Part I A to P, Chicago, HOLANDA, Aurélio Buarque de, Mini dicionário Aurélio, século XXI, quarta edição revista e ampliada, oitava impressão, Rio de Janeiro, Acessado em: 23/04/ Acessado em: 02/05/ Acessado em: 15/04/ Acessado em: 28/04/2009 e 06/05/2009 Acessado em: 15/05/ Acessado em: 15/05/

124 Acessado em: 07/04/2009 Acessado em: 15/04/2009 e 16/04/2009 Acessado em: 15/04/2009 Acessado em: 15/04/2009 e 16/04/2009 Acessado em: 28/04/2009 Acessado em: 27/03/2009 Acessado em: 27/03/2009 Acessado em: 05/05/2009 Acessado em: 05/05/2009 Acessado em: 15/04/2009 e 16/04/

125 GLOSSÁRIO Airway: Aerovia. Área controlada estabelecida em forma de corredor, equipada com auxílios rádio à navegação. Briefing: É um conjunto de informações passadas em uma reunião entre profissionais com o objetivo de atualizar os envolvidos com os procedimentos e acontecimentos que possam influenciar na atividade. Charlie: A letra C no alfabeto fonético usado nas comunicações via rádio. Chat: O termo se refere a possibilidade de se comunicar em tempo real com outros usuários da Internet através de utilização de textos. Checklist: Lista de verificações na qual o piloto lê e verifica se os equipamentos e sistemas da aeronave estão de acordo com a fase de vôo. Clipper: Termo usado pelos controladores para designar os aviões da PANAM. Cockpit: Cabinde de pilotagem das aeronaves. Código Morse: Sistema de representação de letras, números e sinais codificados na forma de um conjunto de pulsos elétricos curtos (ponto) ou longos (traço) enviado por um cabo através de um telégrafo Código Q: Código de três letras, sendo que o Q será sempre a primeira letra. Esse código foi originalmente desenvolvido em 1909 pelo governo britânico para facilitar a comunicação telegráfica entre os navios britânicos e estações costeiras. Atualmente ainda são usadas nas comunicações radio amadoras e mesmo aeronáuticas em alguns casos. Código SSR: Código a ser inserido no transponder que é fornecido pelo órgão de Controle de Tráfego Aéreo no início de cada vôo. Eurocontrol: Feedback: Realimentação ou retorno. Refere-se à análise de uma situação utilizando-se de perguntas específicas cujas respostas permitem receber informações sobre o que se quer saber. Feet: Medida de altitude usado na aviação que equivale a Internet: Rede remota internacional de ampla área geográfica, que proporciona transferência de arquivos e dados, juntamente com funções de correio eletrônico 125

126 para milhões de usuários ao redor do mundo. A Internet surgiu como um componente do sistema de defesa desenvolvido pelos Estados Unidos na época da Guerra Fria como o intuito de permitir que seus computadores militares se comunicassem de forma instantânea e descentralizada, mesmo se ocorresse um ataque nuclear em qualquer uma das centrais, os dados estariam preservados. As universidades gostaram do modelo e desenvolveram o que hoje conhecemos como sendo a Internet. Mike: A letra M no alfabeto fonético usado nas comunicações via rádio. Nó (Knot): Unidade de medida de velocidade comum na área aeronáutica e marítima. Um nó (1 kt) significa uma milha náutica por hora ou 1,852 quilômetros por hora. É incorreto utilizar o termo nó por hora. Proa: Frente da embarcação. Radial: Rumo magnético tomado a partir de um VOR. Rádio Beacon: Radiofarol. Rádio transmissor que serve de auxílio à navegação aérea e tem a função de indicar a direção da estação transmissora para as aeronaves equipadas com um receptor apropriado. Runway: Pista de pouso e decolagem. Runway Incursion: Squelch: Função do rádio que exclui sinais não desejados de baixa potência que possam estar presentes na freqüência próxima àquela selecionada. Funciona como um filtro que melhora a qualidade da recepção. Sobremodulação: Ato de falar ao mesmo tempo ou por cima de outra transmissão via rádio, anulando ou dificultando a recepção dessas transmissões. Taxiway: Pista de taxi ou de manobra que liga o pátio do aeroporto a pista de pouso. Transponder: Transmissor e receptor de radar secundário de bordo que, automaticamente, recebe sinais de rádio dos interrogadores de solo e que, seletivamente, responde com um pulso ou grupo de pulsos, somente àquelas interrogações realizadas no modo e código para os quais estiver ajustado. Través: Termo que significa a 90 graus. Que passa ao lado. ANEXO A Tabela de Código Morse 126

127 Ilustração 18 Tabela de Código Morse. Fonte: ANEXO B Posição de Impacto em Tenerife 127

128 Ilustração 19 Posição de impacto em Tenerife. Fonte: Relatório A-102/1977 ANEXO C Memorando ao FAA 128

Comunicação da informação a longas distâncias

Comunicação da informação a longas distâncias Comunicação da informação a longas distâncias População mundial versus sistema de comunicação Comunicação, informação e mensagem Comunicação - é o ato de enviar informação, mensagens, sinais de um local

Leia mais

COMUNICAÇÃO DE INFORMAÇÃO A LONGAS DISTÂNCIAS ONDAS ELETROMAGNÉTICAS E COMUNICAÇÃO

COMUNICAÇÃO DE INFORMAÇÃO A LONGAS DISTÂNCIAS ONDAS ELETROMAGNÉTICAS E COMUNICAÇÃO COMUNICAÇÃO DE INFORMAÇÃO A LONGAS DISTÂNCIAS À medida que uma onda se propaga, por mais intensa que seja a perturbação que lhe dá origem, uma parte da sua energia será absorvida pelo meio de propagação,

Leia mais

GPS (Global Positioning System) Sistema de Posicionamento Global

GPS (Global Positioning System) Sistema de Posicionamento Global GPS (Global Positioning System) Sistema de Posicionamento Global 1 Sistema de Posicionamento Global é um sistema de posicionamento por satélite que permite posicionar um corpo que se encontre à superfície

Leia mais

Telecomunicações. Prof. André Y. Kusumoto andre_unip@kusumoto.com.br

Telecomunicações. Prof. André Y. Kusumoto andre_unip@kusumoto.com.br Telecomunicações Prof. André Y. Kusumoto andre_unip@kusumoto.com.br Satélites Satélite é o elemento comum de interligação das estações terrenas, atuando como estação repetidora. Devido a sua altitude,

Leia mais

TECNOLOGIA DA INFORMAÇÃO

TECNOLOGIA DA INFORMAÇÃO TECNOLOGIA DA INFORMAÇÃO TELECOMUNICAÇÕES As telecomunicações referem -se à transmissão eletrônica de sinais para as comunicações, incluindo meios como telefone, rádio e televisão. As telecomunicações

Leia mais

Transição para o CNS/ATM

Transição para o CNS/ATM Transição para o CNS/ATM por Daniel Torelli Em nosso dia-a-dia é cada vez mais comum falarmos de CNS/ATM mesmo muitas vezes não sabendo o significado e como pode influenciar no cotidiano da aviação. A

Leia mais

Capítulo 2 Sistemas Rádio Móveis

Capítulo 2 Sistemas Rádio Móveis Capítulo 2 Sistemas Rádio Móveis 2.1. Histórico e Evolução dos Sistemas Sem Fio A comunicação rádio móvel teve início no final do século XIX [2], quando o cientista alemão H. G. Hertz demonstrou que as

Leia mais

Classe de espaço aéreo

Classe de espaço aéreo Curso n 7 Classe de espaço aéreo As classes de espaço aéreo são uma normalização dos serviços prestados nos espaços aéreos. Uma classe de espaço define os serviços que são prestados de acordo com o regime

Leia mais

Gestão de operações aeroportuárias: Controle do espaço aéreo e auxílios à navegação

Gestão de operações aeroportuárias: Controle do espaço aéreo e auxílios à navegação Gestão de operações aeroportuárias: Controle do espaço aéreo e auxílios à navegação Designação de Aerovias ROTAS CONTINENTAIS: São aerovias traçadas sobre o continente ligando pontos e/ou auxílios de

Leia mais

EVOLUÇÃO DA INFRAESTRUTURA AERONÁUTICA. Karl Martin Kühr Eduardo Tavares Pereira Thiago Fernando Gregolon

EVOLUÇÃO DA INFRAESTRUTURA AERONÁUTICA. Karl Martin Kühr Eduardo Tavares Pereira Thiago Fernando Gregolon EVOLUÇÃO DA INFRAESTRUTURA AERONÁUTICA Karl Martin Kühr Eduardo Tavares Pereira Thiago Fernando Gregolon FLORIANÓPOLIS 10/2012 2 Karl Martin Kühr Eduardo Tavares Pereira Thiago Fernando Gregolon EVOLUÇÃO

Leia mais

RDT Radiotransmissão

RDT Radiotransmissão MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS SÃO JOSÉ SANTA CATARINA RDT Radiotransmissão Prof. Ramon Mayor Martins,

Leia mais

Comunicação sem fio - antenas

Comunicação sem fio - antenas Comunicação sem fio - antenas Antena é um condutor elétrico ou um sistema de condutores Necessário para a transmissão e a recepção de sinais através do ar Na transmissão Antena converte energia elétrica

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Prof. Macêdo Firmino Meios de Transmissão Macêdo Firmino (IFRN) Redes de Computadores Abril de 2012 1 / 34 Pilha TCP/IP A B M 1 Aplicação Aplicação M 1 Cab M T 1 Transporte Transporte

Leia mais

O que são satélites? Existem 2 tipos de satélite, são os satélites naturais e satélites artificiais.

O que são satélites? Existem 2 tipos de satélite, são os satélites naturais e satélites artificiais. O que são satélites? Existem 2 tipos de satélite, são os satélites naturais e satélites artificiais. Satélites naturais são: a Lua que gravita em torno da Terra. Satélites artificiais são: dispositivos,

Leia mais

Posicionamento por Satélite. Tecnologia em Mecanização em Agricultura de Precisão Prof. Esp. Fernando Nicolau Mendonça

Posicionamento por Satélite. Tecnologia em Mecanização em Agricultura de Precisão Prof. Esp. Fernando Nicolau Mendonça Posicionamento por Satélite Tecnologia em Mecanização em Agricultura de Precisão Prof. Esp. Fernando Nicolau Mendonça O Sistema GPS - Características Básicas O sistema GPS é composto por três segmentos:

Leia mais

semitransparente, móvel em que fazemos a sintonia), preste atenção, pois se o radio é AM/FM ele possui dois capacitores em um (um do lado e outro do

semitransparente, móvel em que fazemos a sintonia), preste atenção, pois se o radio é AM/FM ele possui dois capacitores em um (um do lado e outro do Por volta de 1985, quando comecei a me interessar por aviação, busquei estar próximo dela de todas as formas possíveis. Páraquedismo, aeromodelismo, plastimodelismo e rádio escuta de aeronaves (naquela

Leia mais

Aeroportos e sistemas aeroportuários: introdução

Aeroportos e sistemas aeroportuários: introdução Aeroportos e sistemas aeroportuários: introdução Definições e Conceitos AERÓDROMO: Área definida sobre a terra ou água destinada à chegada, partida e movimentação de aeronaves; AERÓDROMO CONTROLADO: Aeródromo

Leia mais

Transmissão das Ondas Eletromagnéticas. Prof. Luiz Claudio

Transmissão das Ondas Eletromagnéticas. Prof. Luiz Claudio Transmissão das Ondas Eletromagnéticas Prof. Luiz Claudio Transmissão/Recebimento das ondas As antenas são dispositivos destinados a transmitir ou receber ondas de rádio. Quando ligadas a um transmissor

Leia mais

COMUNICAÇÕES VIA SATÉLITE. Prof. MSc. Sandro M Malta

COMUNICAÇÕES VIA SATÉLITE. Prof. MSc. Sandro M Malta COMUNICAÇÕES VIA SATÉLITE Prof. MSc. Sandro M Malta Satélite Definição É chamado de satélite todo objeto que gira em torno de outro objeto. Ele é classificado em dois tipos: satélite natural satélite artificial.

Leia mais

As tecnologias ao serviço da prevenção e segurança no contexto das pescas portuguesas

As tecnologias ao serviço da prevenção e segurança no contexto das pescas portuguesas As tecnologias ao serviço da prevenção e segurança no contexto das pescas portuguesas ZODPORT EQUIPAMENTOS, ASSISTÊNCIA E ENGENHARIA, S.A. EQUIPAMENTOS DE SEGURANÇA MARÍTIMA 1 ZODPORT 2 INTERNATIONAL MARITIME

Leia mais

Qual a diferença a entre serviço o de:

Qual a diferença a entre serviço o de: Qual a diferença a entre serviço o de: Radioamador (PY) e Faixa do Cidadão (PX) Equipe Regional de Radioescotismo - RS Finalidades Radioamadorismo (PY) Finalidades O Serviço de Radioamador modalidade de

Leia mais

Competência individual essencial

Competência individual essencial Competência individual essencial Introdução Objetivo Reflexão e aprofundamento sobre o processo básico da comunicação, a fim de que haja maior exatidão na compreensão do significado daquilo que se quer

Leia mais

G.P.S. SISTEMA DE POSICIONAMENTO GLOBAL

G.P.S. SISTEMA DE POSICIONAMENTO GLOBAL G.P.S. SISTEMA DE POSICIONAMENTO GLOBAL HISTÓRIA 23/08/1499 - navegador italiano Américo Vespúcio acreditava estar navegando pelas costas das Índias (Cristóvão Colombo). Almanaque livro que lista as posições

Leia mais

Comissão de Ciência e Tecnologia,

Comissão de Ciência e Tecnologia, Seminário de Rádio R Digital Comissão de Ciência e Tecnologia, Informática e Inovação Brasília 22 de novembro de 2007 Ronald Siqueira Barbosa O O pobre e o emergente de hoje são aqueles que no passado,

Leia mais

3.5 - RADIOAMADOR é a pessoa habilitada a executar o Serviço de Radioamador.

3.5 - RADIOAMADOR é a pessoa habilitada a executar o Serviço de Radioamador. NORMA DE ATIVAÇÃO E EXECUÇÃO DOS SERVIÇOS DA REDE NACIONAL DE EMERGÊNCIA DE RADIOAMADORES - RENER 1. INTRODUÇÃO 1.1 - A presente norma estabelece as condições de ativação e execução da Rede Nacional de

Leia mais

INTERNATIONAL VIRTUAL AVIATION ORGANISATION DIVISÃO BRASILEIRA DEPARTAMENTO DE TREINAMENTO. IVAO Brasil Academy. Versão 01 / Maio 2013

INTERNATIONAL VIRTUAL AVIATION ORGANISATION DIVISÃO BRASILEIRA DEPARTAMENTO DE TREINAMENTO. IVAO Brasil Academy. Versão 01 / Maio 2013 INTERNATIONAL VIRTUAL AVIATION ORGANISATION DIVISÃO BRASILEIRA DEPARTAMENTO DE TREINAMENTO Versão 01 / Maio 2013 NDB Radio Farol Não Direcional Autor: Desconhecido Padronizado por: Cmte. João Gabriel Faria

Leia mais

CURSO EFA NS CULTURA, LÍNGUA E COMUNICAÇÃO. CLC 5 Cultura, comunicação e média

CURSO EFA NS CULTURA, LÍNGUA E COMUNICAÇÃO. CLC 5 Cultura, comunicação e média CURSO EFA NS CULTURA, LÍNGUA E COMUNICAÇÃO CLC 5 Cultura, comunicação e média Formadora Sandra Santos O ser humano, sempre insatisfeito, sentiu sempre a necessidade de comunicar mais rápido, mais longe,

Leia mais

Conhecer meios de transmissão que utilizam cabos e fios. Componentes do processo de comunicação.

Conhecer meios de transmissão que utilizam cabos e fios. Componentes do processo de comunicação. Meios de transmissão Conhecer meios de transmissão que utilizam cabos e fios. Quando enviamos uma informação para um destino, ela vai por um canal de comunicação. Esse canal de comunicação tem um limite

Leia mais

Comunicação Empresarial e Processo Decisório. Prof. Ana Claudia Araujo Coelho

Comunicação Empresarial e Processo Decisório. Prof. Ana Claudia Araujo Coelho Prof. Ana Claudia Araujo Coelho Comunicar significa transmitir ideias, sentimentos ou experiências de uma pessoa para outra, tornar comum, participar, fazer saber, transmitir. ANDRADE (2008, p. 45) O resultado

Leia mais

COMUNICAÇÕES A LONGAS DISTÂNCIAS

COMUNICAÇÕES A LONGAS DISTÂNCIAS Física 11º Ano COMUNICAÇÕES A LONGAS DISTÂNCIAS MARÍLIA PERES TRANSMISSÃO DE INFORMAÇÃO Produziu p pela p primeira vez ondas eletromagnéticas em laboratório (1887) utilizando um circuito para produzir

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Redes Sem Fio Fabricio Breve Tipos de transmissão sem fio Rádio Infravermelho Laser Aplicações Em ambientes internos: Ideal para situações onde não é possível utilizar cabeamento

Leia mais

Satélite artificial e Satélite Natural

Satélite artificial e Satélite Natural Satélite artificial Satélite artificial e Satélite Natural Até à pouco tempo atrás, os satélites eram dispositivos exóticos e ultra-secretos. Foram usados primeiramente para fins militares, para actividades

Leia mais

Camada Física: Meios de transmissão não guiados

Camada Física: Meios de transmissão não guiados Alan Menk Santos alanmenk@hotmail.com www.sistemasul.com.br/menk Camada Física: Meios de transmissão não guiados Transmissão sem Fio Pessoas cada vez mais dependente das redes; Alguns especialistas afirmam

Leia mais

RFID Você vai usar! Jean Pierre Borges de Sousa jeansousa@inf.ufg.br

RFID Você vai usar! Jean Pierre Borges de Sousa jeansousa@inf.ufg.br RFID Você vai usar! Jean Pierre Borges de Sousa jeansousa@inf.ufg.br Graduado em Sistemas de Informação FASAM Mestrado em andamento em Ciência da Computação INF/UFG PRIMEIROS PASSOS Surgiu na Segunda Guerra

Leia mais

STC 5. Redes de Informação e Comunicação. Data: 18 de Agosto de 2010 Morada: Rua de São Marcos, 7 C Tel: 266519410 Fax: 266519410 Tlm: 927051540

STC 5. Redes de Informação e Comunicação. Data: 18 de Agosto de 2010 Morada: Rua de São Marcos, 7 C Tel: 266519410 Fax: 266519410 Tlm: 927051540 STC 5 Redes de Informação e Comunicação Data: 18 de Agosto de 2010 Morada: Rua de São Marcos, 7 C Tel: 266519410 Fax: 266519410 Tlm: 927051540 STC 5 Redes de Informação e comunicação STC 5 Redes de informação

Leia mais

Engenharia de tráfego aéreo

Engenharia de tráfego aéreo Fornecido pelo TryEngineering - Foco da lição A lição enfoca a engenharia por trás de sistemas de controle de tráfego aéreo. Equipes de estudantes exploram os princípios do radar e como são usados equipamentos

Leia mais

Sistema GNSS. (Global Navigation Satellite System)

Sistema GNSS. (Global Navigation Satellite System) Sistema GNSS (Global Navigation Satellite System) POSICIONAR UM OBJETO NADA MAIS É DO QUE LHE ATRIBUIR COORDENADAS O Sol, os planetas e as estrelas foram excelentes fontes de orientação, por muito tempo.

Leia mais

Tecnologia da Informação Apostila 02

Tecnologia da Informação Apostila 02 Parte 6 - Telecomunicações e Redes 1. Visão Geral dos Sistemas de Comunicações Comunicação => é a transmissão de um sinal, por um caminho, de um remetente para um destinatário. A mensagem (dados e informação)

Leia mais

Camada Física: Meios de transmissão não guiados

Camada Física: Meios de transmissão não guiados Alan Menk Santos alanmenk@hotmail.com www.sistemasul.com.br/menk Camada Física: Meios de transmissão não guiados Em 1945 o escritor Arthur Clarke calculou que um satélite em 35.800 km em órbita circular

Leia mais

Mude para digital. Sistema de rádio bidirecional digital profissional MOTOTRBO

Mude para digital. Sistema de rádio bidirecional digital profissional MOTOTRBO Sistema de rádio bidirecional digital profissional A solução de comunicação em rádios bidirecionais de próxima geração está aqui, com melhor desempenho, produtividade e preço e mais oportunidades para

Leia mais

Redes de Computadores

Redes de Computadores Introdução Redes de Computadores Marco Antonio Montebello Júnior marco.antonio@aes.edu.br Rede É um conjunto de computadores chamados de estações de trabalho que compartilham recursos de hardware (HD,

Leia mais

VSat em alto-mar Desafios e Perspectivas. SSPI VSat Day 30/11/2010 Márcio Esteves

VSat em alto-mar Desafios e Perspectivas. SSPI VSat Day 30/11/2010 Márcio Esteves VSat em alto-mar Desafios e Perspectivas SSPI VSat Day 30/11/2010 Márcio Esteves VSAT EM ALTO-MAR Breve introdução Navegar é uma operação arriscada e difícil. Até não muito tempo atrás a tripulação ficava

Leia mais

Tecnologias para pessoas com deficiência auditiva

Tecnologias para pessoas com deficiência auditiva Tecnologias para pessoas com deficiência auditiva ANTONIO BORGES TDD é a abreviatura de Telecommunications Device for the Deaf (Aparelho de telecomunicações para o surdo). O TDD é um sistema de comunicação

Leia mais

Universidade do Vale do Paraíba. Faculdade de Engenharia Arquitetura e Urbanismo. Engenharia Elétrica CNS/ATM. O Novo Conceito de Tráfego Aéreo

Universidade do Vale do Paraíba. Faculdade de Engenharia Arquitetura e Urbanismo. Engenharia Elétrica CNS/ATM. O Novo Conceito de Tráfego Aéreo Universidade do Vale do Paraíba Faculdade de Engenharia Arquitetura e Urbanismo Engenharia Elétrica CNS/ATM O Novo Conceito de Tráfego Aéreo Orientador: José Ricardo Abalde Guede Abner Lincoln Sobrinho

Leia mais

SOLUÇÃO DE TELEMETRIA PARA SANEAMENTO

SOLUÇÃO DE TELEMETRIA PARA SANEAMENTO SOLUÇÃO DE TELEMETRIA PARA SANEAMENTO Marcelo Pessoa Engenheiro de soluções para saneamento Introdução As indústrias buscam eficiência, aumento da qualidade e a redução de custos. Para alcançar isto investem

Leia mais

Sistemas Wireless: Comunicação via satélite. Prof. Armando Martins de Souza E-mail: armandomartins.souza@gmail.com

Sistemas Wireless: Comunicação via satélite. Prof. Armando Martins de Souza E-mail: armandomartins.souza@gmail.com Sistemas Wireless: satélite. Prof. Armando Martins de Souza E-mail: armandomartins.souza@gmail.com Satélite Aspectos Gerais Os satélites de comunicação: Surgiram na década de 60. Contendo características

Leia mais

Falcon Watch Sistema de Vigilância Remota RF-5400

Falcon Watch Sistema de Vigilância Remota RF-5400 comunicaçõesasseguradas Falcon Watch Sistema de Vigilância Remota RF-5400 Melhore os seus sentidos. Falcon Watch Vigilância Remota. Todo o dia. Toda a noite. A Harris sabe da necessidade de ter sistemas

Leia mais

CONSCIÊNCIA SITUACIONAL

CONSCIÊNCIA SITUACIONAL GRUPO DE TRANSPORTE ESPECIAL CONSCIÊNCIA SITUACIONAL CONSCIÊNCIA SITUACIONAL Objetivo Reconhecer a importância da manutenção da Consciência Situacional elevada como aspecto básico de CRM entendendo sua

Leia mais

RÁDIO DIGITAL Desafios e transformações desse novo veículo 16/09/2008. Érika Andréa de Melo Travassos * 1. Introdução

RÁDIO DIGITAL Desafios e transformações desse novo veículo 16/09/2008. Érika Andréa de Melo Travassos * 1. Introdução RÁDIO DIGITAL Desafios e transformações desse novo veículo 16/09/2008 Érika Andréa de Melo Travassos * 1. Introdução Quando o rádio foi criado, no século XIX, acreditava-se que era o fim das publicações

Leia mais

Camada Física. Bruno Silvério Costa

Camada Física. Bruno Silvério Costa Camada Física Bruno Silvério Costa Sinais Limitados por Largura de Banda (a) Um sinal digital e suas principais frequências de harmônicas. (b) (c) Sucessivas aproximações do sinal original. Sinais Limitados

Leia mais

RECEPTOR AM DSB. Transmissor. Circuito Receptor AM DSB - Profº Vitorino 1

RECEPTOR AM DSB. Transmissor. Circuito Receptor AM DSB - Profº Vitorino 1 RECEPTOR AM DSB Transmissor Circuito Receptor AM DSB - Profº Vitorino 1 O receptor super-heteródino O circuito demodulador que vimos anteriormente é apenas parte de um circuito mais sofisticado capaz de

Leia mais

Inspeção em Voo, você sabe como é feita e quem o Faz?

Inspeção em Voo, você sabe como é feita e quem o Faz? Inspeção em Voo, você sabe como é feita e quem o Faz? Para assegurar o perfeito funcionamento do Sistema de Controle do Espaço Aéreo Brasileiro (SISCEAB), é necessária a execução regular da chamada Inspeção

Leia mais

O Software ultrapassou o Hardware como chave para o sucesso de muitos sistemas baseados em computador (Pressman)

O Software ultrapassou o Hardware como chave para o sucesso de muitos sistemas baseados em computador (Pressman) O Software ultrapassou o Hardware como chave para o sucesso de muitos sistemas baseados em computador (Pressman) Mas, será que Software é sinônimo de Sucesso?? Crise do Software: Denver International Airport

Leia mais

Alessandro F. Cunha O que são sistemas embarcados?

Alessandro F. Cunha O que são sistemas embarcados? Alessandro F. Cunha O que são sistemas embarcados? 1. Introdução Alguma vez você já se deu conta que o microondas de sua casa tem uma capacidade computacional maior do que tinha o projeto Apolo, que levou

Leia mais

MÓDULO 4 Meios físicos de transmissão

MÓDULO 4 Meios físicos de transmissão MÓDULO 4 Meios físicos de transmissão Os meios físicos de transmissão são compostos pelos cabos coaxiais, par trançado, fibra óptica, transmissão a rádio, transmissão via satélite e são divididos em duas

Leia mais

TV Digital: Como serão as Antenas Transmissoras no novo Sistema?

TV Digital: Como serão as Antenas Transmissoras no novo Sistema? TV Digital: Como serão as Antenas Transmissoras no novo Sistema? Este tutorial apresenta conceitos básicos sobre antenas empregadas na transmissão de TV Digital que começam em 2 de dezembro de 2007 em

Leia mais

FÍSICA - 3 o ANO MÓDULO 31 ONDULATÓRIA

FÍSICA - 3 o ANO MÓDULO 31 ONDULATÓRIA FÍSICA - 3 o ANO MÓDULO 31 ONDULATÓRIA x = Como pode cair no enem (ENEM) Os radares comuns transmitem micro-ondas que refletem na água, gelo e outras partículas na atmosfera. Podem, assim,

Leia mais

Universidade Católica de Petrópolis Centro de Engenharia e Computação Introdução as Telecomunicações. Professor: Erasmus Couto de Miranda Aluno: Rgu:

Universidade Católica de Petrópolis Centro de Engenharia e Computação Introdução as Telecomunicações. Professor: Erasmus Couto de Miranda Aluno: Rgu: Universidade Católica de Petrópolis Centro de Engenharia e Computação Introdução as Telecomunicações Professor: Erasmus Couto de Miranda Aluno: Rgu: ATIVIDADE 1: REALIZAR PESQUISA A RESPEITO DO SEGUINTE

Leia mais

Introdução a Propagação Prof. Nilton Cesar de Oliveira Borges

Introdução a Propagação Prof. Nilton Cesar de Oliveira Borges Introdução a Propagação Prof. Nilton Cesar de Oliveira Borges Como a luz, uma onda de rádio, perderia-se no espaço, fora do nosso planeta, se não houvesse um fenômeno que provocasse sua curvatura para

Leia mais

CONTROLADOR CENTRAL P25 FASE 1 CAPACIDADE MÍNIMA PARA CONTROLAR 5 SITES

CONTROLADOR CENTRAL P25 FASE 1 CAPACIDADE MÍNIMA PARA CONTROLAR 5 SITES CONTROLADOR CENTRAL P25 FASE 1 CAPACIDADE MÍNIMA PARA CONTROLAR 5 SITES O sistema digital de radiocomunicação será constituído pelo Sítio Central, Centro de Despacho (COPOM) e Sítios de Repetição interligados

Leia mais

NOVAS APLICAÇÕES DO ISDB-T

NOVAS APLICAÇÕES DO ISDB-T ANEXO 5 NOVAS APLICAÇÕES DO ISDB-T Uma das vantagens mais marcantes do ISDB-T é a sua flexibilidade para acomodar uma grande variedade de aplicações. Aproveitando esta característica única do ISDB-T, vários

Leia mais

7. Referências Bibliográficas

7. Referências Bibliográficas 103 7. Referências Bibliográficas AERO MAGAZINE, Revista (2006). Carga Aérea em Alta no Brasil. Spring Editora., Ano 13, N 151., Revista (2008). Dívidas Ameaçam VarigLog. Spring Editora., Ano 14, N 166.,

Leia mais

INFORMES SETORIAL Aeronáutica fala sobre a segurança nos céus do Brasil

INFORMES SETORIAL Aeronáutica fala sobre a segurança nos céus do Brasil INFORMES SETORIAL Aeronáutica fala sobre a segurança nos céus do Brasil A reportagem exibida na semana passada mostrava algumas falhas na comunicação entre o avião monomotor em que estava o nosso repórter

Leia mais

INCURSÃO EM PISTA: UM PROBLEMA ATUAL E CRESCENTE

INCURSÃO EM PISTA: UM PROBLEMA ATUAL E CRESCENTE INCURSÃO EM PISTA: UM PROBLEMA ATUAL E CRESCENTE 1 FONSECA, Wilber Campos 2 BARCO, Juliana Alexandra P. de C Ms. Humberto César Machado. RESUMO: Com a elevada demanda no tráfego aéreo, o número de incursões

Leia mais

CARTOGRAFIA TEMÁTICA e GPS

CARTOGRAFIA TEMÁTICA e GPS CARTOGRAFIA TEMÁTICA e GPS Orientação e Forma Diversidade = A visibilidade é variável Ordem = As categorias se ordenam espontaneamente Proporcionalidade = relação de proporção visual Cores convencionais

Leia mais

Introdução aos Sistemas de Comunicação

Introdução aos Sistemas de Comunicação Introdução aos Sistemas de Comunicação Edmar José do Nascimento (Princípios de Comunicação) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia

Leia mais

SINCRONISMO USANDO GPS

SINCRONISMO USANDO GPS SINCRONISMO USANDO GPS Mario Piai Júnior Diretor Técnico da empresa TESC Sistemas de Controle Ltda mpiai@tesc.com.br Várias aplicações exigem que eventos, que acontecem fisicamente distantes entre si,

Leia mais

:: Telefonia pela Internet

:: Telefonia pela Internet :: Telefonia pela Internet http://www.projetoderedes.com.br/artigos/artigo_telefonia_pela_internet.php José Mauricio Santos Pinheiro em 13/03/2005 O uso da internet para comunicações de voz vem crescendo

Leia mais

ATIVIDADE 1. Definição de redes de computadores

ATIVIDADE 1. Definição de redes de computadores ATIVIDADE 1 Definição de redes de computadores As redes de computadores são criadas para permitir a troca de dados entre diversos dispositivos estações de trabalho, impressoras, redes externas etc. dentro

Leia mais

Universidade Federal de Juiz de Fora Faculdade de Comunicação Social

Universidade Federal de Juiz de Fora Faculdade de Comunicação Social Universidade Federal de Juiz de Fora Faculdade de Comunicação Social O SISTEMA DE RÁDIO DIGITAL: A MODERNIZAÇÃO DO M.C.M. MAIS POPULAR DO PLANETA Texto redigido para embasar apresentação de seminário na

Leia mais

b) A distância X, em km, entre o receptor R, no avião, e o ponto O.

b) A distância X, em km, entre o receptor R, no avião, e o ponto O. 1. (Fuvest 94) Dois carros, A e B, movem-se no mesmo sentido, em uma estrada reta, com velocidades constantes Va = 100 km/h e Vb = 80 km/h, respectivamente. a) Qual é, em módulo, a velocidade do carro

Leia mais

Dispositivos de entrada sem fio 1 INTRODUÇÃO

Dispositivos de entrada sem fio 1 INTRODUÇÃO Dispositivos de entrada sem fio 1 INTRODUÇÃO Nosso seminário vai apresentar uma tecnologia de entrada de dados sem fio, ou seja, os dados de entrada vao ser transmitidos sem a necessidade de meios fisicos

Leia mais

Modelo OSI. Prof. Alexandre Beletti Ferreira. Introdução

Modelo OSI. Prof. Alexandre Beletti Ferreira. Introdução Modelo OSI Prof. Alexandre Beletti Ferreira Introdução Crescimento das redes de computadores Muitas redes distintas International Organization for Standardization (ISO) Em 1984 surge o modelo OSI Padrões

Leia mais

SEMINÁRIO SOBRE SEGURANÇA E EFICÁCIA DE HELIPONTOS. Visão geral sobre a operação de helicópteros no espaço aéreo brasileiro

SEMINÁRIO SOBRE SEGURANÇA E EFICÁCIA DE HELIPONTOS. Visão geral sobre a operação de helicópteros no espaço aéreo brasileiro SEMINÁRIO SOBRE SEGURANÇA E EFICÁCIA DE HELIPONTOS Visão geral sobre a operação de helicópteros no espaço aéreo brasileiro ROTEIRO Operação em Plataformas Petrolíferas Corredores de Helicópteros Procedimentos

Leia mais

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com.br

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com.br - Aula 1- MODELO DE CAMADAS 1. INTRODUÇÃO A compreensão da arquitetura de redes de computadores envolve a compreensão do modelo de camadas. O desenvolvimento de uma arquitetura de redes é uma tarefa complexa,

Leia mais

NASCE A ERA DA COMUNICAÇÃO ELÉCTROMAGNÉTICA

NASCE A ERA DA COMUNICAÇÃO ELÉCTROMAGNÉTICA 1844 Demonstração pública bem sucedida do TELÉGRAFO, inventado por SAMUEL MORSE. Transmitida a mensagem What hath God wrought entreo Capitólio em Washington e Baltimore NASCE A ERA DA COMUNICAÇÃO ELÉCTROMAGNÉTICA

Leia mais

Redes Industriais. Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson

Redes Industriais. Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson Redes Industriais Centro de Formação Profissional Orlando Chiarini - CFP / OC Pouso Alegre MG Inst.: Anderson Capítulo 2 Meio Físicos A automação no meio produtivo Objetivos: Facilitar os processos produtivos

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Parte II: Camada Física Dezembro, 2012 Professor: Reinaldo Gomes reinaldo@computacao.ufcg.edu.br Meios de Transmissão 1 Meios de Transmissão Terminologia A transmissão de dados d

Leia mais

Telecomunicações. Prof. André Y. Kusumoto andre_unip@kusumoto.com.br

Telecomunicações. Prof. André Y. Kusumoto andre_unip@kusumoto.com.br Telecomunicações Prof. André Y. Kusumoto andre_unip@kusumoto.com.br Rede de Telefonia Fixa Telefonia pode ser considerada a área do conhecimento que trata da transmissão de voz através de uma rede de telecomunicações.

Leia mais

Bibliografia. Termos comuns em VoIp. Termos comuns em VoIp. Programa de Telecomunicações

Bibliografia. Termos comuns em VoIp. Termos comuns em VoIp. Programa de Telecomunicações Introdução a conceitos de hardware e software de computador. Introdução a sistemas operacionais: Microsoft Windows e Linux. Conceitos básicos e utilização de aplicativos para edição de textos, planilhas

Leia mais

Prof. Manuel A Rendón M

Prof. Manuel A Rendón M Prof. Manuel A Rendón M Tanenbaum Redes de Computadores Cap. 1 e 2 5ª. Edição Pearson Padronização de sistemas abertos à comunicação Modelo de Referência para Interconexão de Sistemas Abertos RM OSI Uma

Leia mais

2- Conceitos Básicos de Telecomunicações

2- Conceitos Básicos de Telecomunicações Introdução às Telecomunicações 2- Conceitos Básicos de Telecomunicações Elementos de um Sistemas de Telecomunicações Capítulo 2 - Conceitos Básicos de Telecomunicações 2 1 A Fonte Equipamento que origina

Leia mais

MÓDULO 15 - TRÁFEGO AÉREO Alexandre L. D. Bastos e Derick M. Baum

MÓDULO 15 - TRÁFEGO AÉREO Alexandre L. D. Bastos e Derick M. Baum MÓDULO 15 - TRÁFEGO AÉREO Alexandre L. D. Bastos e Derick M. Baum (versão: 17/05/2009) 1. INTRODUÇÃO A idéia que o céu é infinito e que existe liberdade ao se voar pode ter seu romantismo, porém, e cada

Leia mais

Introdução. O que é Comunicar?

Introdução. O que é Comunicar? O que é Comunicar? Transmissão de mensagens contendo informação Como definir informação? Existe uma teoria formal que define informação com base no grau de imprevisibilidade das mensagens; uma mensagem

Leia mais

OPERAÇÃO DE VANT ASPECTOS RELACIONADOS COM A SEGURANÇA OPERACIONAL

OPERAÇÃO DE VANT ASPECTOS RELACIONADOS COM A SEGURANÇA OPERACIONAL OPERAÇÃO DE VANT ASPECTOS RELACIONADOS COM A SEGURANÇA OPERACIONAL Luiz Munaretto - - - - - - - - - - Anais do 5º Simpósio de Segurança de Voo (SSV 2012) Direitos Reservados - Página 330 de 1112 - - -

Leia mais

UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO

UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS CENTRO DE ENGENHARIA E COMPUTAÇÃO 1ª Atividade: Introdução a Telecomunicações Petrópolis, RJ 2012 Rádio é um recurso tecnológico das telecomunicações utilizado para

Leia mais

Comunicação Comunicação é o ato de transmissão de informações de uma pessoa à outra. Emissor: Receptor: Meio de transmissão Sinal:

Comunicação Comunicação é o ato de transmissão de informações de uma pessoa à outra. Emissor: Receptor: Meio de transmissão Sinal: Redes - Comunicação Comunicação é o ato de transmissão de informações de uma pessoa à outra. Comunicação sempre foi, desde o início dos tempos, uma necessidade humana buscando aproximar comunidades distantes.

Leia mais

PROF.: PAULO GOMES MATÉRIA: STRS2 MOURA LACERDA

PROF.: PAULO GOMES MATÉRIA: STRS2 MOURA LACERDA PROF.: PAULO GOMES MATÉRIA: STRS2 MOURA LACERDA TV por satélite Quando a televisão por satélite chegou ao mercado, as parabólicas domésticas eram unidades metálicas bastante caras, que ocupavam um grande

Leia mais

Principais Iniciativas para Aumento da Segurança Operacional no Transporte Aéreo

Principais Iniciativas para Aumento da Segurança Operacional no Transporte Aéreo Principais Iniciativas para Aumento da Segurança Operacional no Transporte Aéreo Guilherme Conceição Rocha Instituto Tecnológico de Aeronáutica, Praça Marechal-do-Ar Eduardo Gomes, 50, Vila das Acácias,

Leia mais

Desmitificando as Interferências de radiodifusão FM em Comunicações Aeronáuticas Marcus Manhães manharider@yahoo.com.br 30/11/2006

Desmitificando as Interferências de radiodifusão FM em Comunicações Aeronáuticas Marcus Manhães manharider@yahoo.com.br 30/11/2006 Desmitificando as Interferências de radiodifusão FM em Comunicações Aeronáuticas Marcus Manhães manharider@yahoo.com.br 30/11/2006 Introdução Um argumento recorrente para o fechamento de rádios comunitárias

Leia mais

Fundamentos da Informática

Fundamentos da Informática 1 PROCESSAMENTO DE DADOS I - FUNDAMENTOS A) CONCEITO DE INFORMÁTICA - é a ciência que estuda o tratamento automático e racional da informação. B) PROCESSAMENTO DE DADOS 1) Conceito Processamento de dados

Leia mais

CAROLINE XAVIER FERNANDES RELATÓRIO TÉCNICO DE MEIOS DE TRANSMISSÃO. MEIOS DE TRANSMISSÃO Cabo Coaxial

CAROLINE XAVIER FERNANDES RELATÓRIO TÉCNICO DE MEIOS DE TRANSMISSÃO. MEIOS DE TRANSMISSÃO Cabo Coaxial Serviço Nacional de Aprendizagem Comercial E.E.P. Senac Pelotas Centro Histórico Programa Nacional de Acesso ao Ensino Técnico e Emprego Curso Técnico em Informática CAROLINE XAVIER FERNANDES RELATÓRIO

Leia mais

Módulo 3: Redes e Telecomunicações

Módulo 3: Redes e Telecomunicações Módulo 3: Redes e Telecomunicações Objetivos do Capítulo 1. Identificar os principais tipos de aplicações e o valor comercial da Internet e outras redes de Telecomunicações para as empresas. 2. Identificar

Leia mais

TEL: (5521) 21016320 AFTN: SBRJYGYC FAX: (21) 21016198 VEÍCULOS AÉREOS NÃO TRIPULADOS

TEL: (5521) 21016320 AFTN: SBRJYGYC FAX: (21) 21016198 VEÍCULOS AÉREOS NÃO TRIPULADOS BRASIL DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO SUBDEPARTAMENTO DE OPERAÇÕES AV GENERAL JUSTO, 160 2º AND. - CASTELO 20021-130-RIO DE JANEIRO RJ AIC N 21/10 23 SEP 2010 TEL: (5521) 21016320 AFTN: SBRJYGYC

Leia mais

Modelo de um Sistema de Transmissão

Modelo de um Sistema de Transmissão Modelo de um Sistema de Transmissão A finalidade dos sistemas de telecomunicações é a de transformar um ou mais pontos as informações provenientes de uma ou mais fontes. uma configuração típica temos:

Leia mais

RETIFICAÇÃO DO PREGÃO PRESENCIAL Nº 053/2014

RETIFICAÇÃO DO PREGÃO PRESENCIAL Nº 053/2014 Sabará, 11 de setembro de 2014 RETIFICAÇÃO DO PREGÃO PRESENCIAL Nº 053/2014 A Prefeitura Municipal de Sabará, por meio da Secretaria Municipal de Administração, resolve, por questões administrativas, retificar

Leia mais

BGAN. Transmissão global de voz e dados em banda larga. Banda larga para um planeta móvel

BGAN. Transmissão global de voz e dados em banda larga. Banda larga para um planeta móvel BGAN Transmissão global de voz e dados em banda larga Banda larga para um planeta móvel Broadband Global Area Network (BGAN) O firm das distâncias O serviço da Rede Global de Banda Larga da Inmarsat (BGAN)

Leia mais

Sensoriamento Remoto aplicado ao Monitoramento Ambiental

Sensoriamento Remoto aplicado ao Monitoramento Ambiental Disciplina: Monitoramento e Controle Ambiental Prof.: Oscar Luiz Monteiro de Farias Sensoriamento Remoto aplicado ao Monitoramento Ambiental Andrei Olak Alves 1 2 PROCESSAMENTO DE IMAGENS espectro visível

Leia mais

UMA FORÇA UNIVERSAL _ MOTOR DA CONECTIVIDADE GLOBAL

UMA FORÇA UNIVERSAL _ MOTOR DA CONECTIVIDADE GLOBAL UMA FORÇA UNIVERSAL _ MOTOR DA CONECTIVIDADE GLOBAL Baixe o App Inmarsat para saber mais. Onde você encontrar esse ícone, escaneie a imagem para ver conteúdo de vídeo. Operacional: 24 horas por dia, 7

Leia mais