Como as estrelas se formam?

Tamanho: px
Começar a partir da página:

Download "Como as estrelas se formam?"

Transcrição

1 EAD - Astrofísica Geral 2013 Home Informações Gerais Cronograma do Curso Contato Inscrições Como as estrelas se formam? Nada no Universo existe para sempre, talvez nem mesmo o próprio Universo. Todas as estrelas que vemos hoje um dia se formaram, vão evoluir e posteriormente desaparecer. Muitas já desapareceram sem que nem ao menos ficassemos sabendo. Inúmeras outras estrelas vão surgir. O início: o colapso gravitacional em uma nuvem molecular gigante As estrelas se formam no interior de nuvens moleculares gigantes, densas e muito frias. Estas estrelas recentemente formadas são muito difíceis de serem observadas devido à grande presença de poeira interestelar nas regiões em que elas são geradas. É por esta razão que ainda temos dúvidas sobre o processo real que leva à formação de uma estrela. O início do processo de formação de uma estrela A imagem ao lado mostra a nebulosa de reflexão NGC 1999 (o objeto brilhante abaixo e a esquerda do centro), que contém a estela V380 Orionis, e está situada na constelação Orion. O que podemos observar nessa imagem? A área ai mostrada está localizada a cerca de 2 graus ao sul da nebulosa de Orion. Nesta região existe uma gigantesca nuvem molecular, conhecida como "Orion A", que continua gerando novas estrelas. Na parte superior da imagem vemos um aglomerado formado por estrelas jovens e brilhantes, o aglomerado L1641N, que ilumina uma região formada por densos amontoados de matéria escura. Nesta região estudos feitos na região espectral do infravermelho revelaram a presença de mais de 50 estrelas em formação. A região mostrada nessa imagem é uma das mais fascinantes que conhecemos para o estudo de formação de estrelas. Ela é riquíssima, mostrando uma enorme variedade de pequenas nebulosas de reflexão, objetos Herbig-Haro e jatos estelares distribuidos por toda a imagem na forma de várias manchas nebulosas. Se existem regiões do meio interestelar que se caracterizam por permitirem grande formação de estrelas, quais são as condições físicas que as tornam tão especiais? Dissemos que uma nuvem molecular gigante colapsa e forma estrelas. Mas, porque ela colapsa? Sabemos que, por algumas razões físicas externas a ela e que até hoje não são completamente compreendidas, uma determinada região de uma nuvem molecular gigante em algum momento começa a contrair sob a ação de sua própria gravidade. file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 1/11

2 Os astrofísicos acreditam que vários processos podem dar início a esta contração de parte da nuvem molecular. Por exemplo: duas nuvens moleculares que colidem: neste caso, o processo de colisão faria com que, em certas regiões, a densidade de partículas de gás aumentasse o suficiente para que a força da gravidade entre elas iniciasse o processo de contração gravitacional. Lembre-se que a força da gravidade varia com o inverso do quadrado da distância entre os objetos: quanto menor a distância entre eles maior é a intensidade dessa força. Se as nuvens colidem, as partículas de gás e poeira ficam mais próximas umas das outras e, portanto, a ação da força gravitacional entre elas aumenta. veremos mais tarde que os braços espirais da nossa Galáxia são percorridos por perturbações chamadas ondas de densidade. Estas perturbações, ao passarem pelas regiões dos braços espirais da Galáxia onde estão as nuvens moleculares gigantes, provocam a sua compressão. Comprimindo o gás, a distância entre as partículas diminui, o que significa que a força de atração gravitacional entre elas aumenta. Isto poderia ser o início do processo de contração gravitacional de algumas partes destas nuvens. a explosão de uma estrela ou seja, a formação de uma supernova, próximo a uma nuvem molecular gigante. Quando uma estrela explode, uma quantidade enorme de gás é lançada no espaço interestelar com altas velocidades. Se há uma nuvem molecular na região onde esta explosão acontece, vemos um processo de colisão entre nuvens gasosas semelhante ao descrito acima. instabilidades gravitacionais/magnéticas nas regiões de maior densidade destas nuvens poderiam dar início ao colapso de uma região de uma nuvem molecular gigante. todos os processos descritos acima atuando juntos, com maior ou menor intensidade, poderiam também dar início ao colapso de parte da nuvem molecular gigante. Na verdade as ações que fazem iniciar o processo de contração de uma parte de uma nuvem molecular gigante ainda não são completamente compreendidas. O que sabemos é que, a partir de uma ação externa que atua sobre a nuvem molecular gigante, suas regiões mais densas começam a se contrair sob a ação de sua própria gravidade. Durante este processo, a região da nuvem molecular gigante que está contraindo não o faz de modo inteiro, dando origem a um único objeto. Na verdade, após o início deste processo de contração gravitacional, esta parte da nuvem molecular gigante que iniciou a contração fragmenta-se em pequenas nuvens. Cada uma destas pequenas nuvens possue massa suficiente para formar uma estrela. São estas pequenas nuvens que continuam a colapsar formando os objetos que chamamos de protoestrelas. Esta também é a razão pela qual sempre são formados grupos de estrelas e não estrelas isoladas. Durante todo o processo de contração gravitacional que partes da nuvem molecular gigante estão sofrendo há a liberação de energia potencial gravitacional. Metade desta energia liberada aquece a nuvem molecular enquanto que a outra metade da energia é irradiada para fora dela sob a forma de radiação térmica. As protoestrelas O colapso inicial de parte de uma nuvem molecular gigante ocorre rapidamente durante um período de cerca de 1000 anos. Sabemos, a partir da segunda lei de Newton, que a força gravitacional entre duas partículas com massa é inversamente proporcional ao quadrado da distância entre elas. Em forma matemática escrevemos que F gravitacional ~1/ distância 2 file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 2/11

3 Consequentemente, na região central de uma protoestrela a ação da gravidade é muito maior do que na periferia dela uma vez, que próximo ao seu centro, a distância entre as partículas é muito menor, o que faz com que a força de atração gravitacional F que existe entre as partículas do gás seja maior. Se a ação da gravidade é mais forte na região central da protoestrela esta região contrai mais rapidamente. Em razão disso mais energia será liberada na região central da protoestrela fazendo com que o centro se torne mais quente do que as suas regiões mais externas. Alem disso, à medida que a esfera gasosa contrai seu raio diminui, o que significa que as partículas de gás ficam cada vez mais próximas. Com isso aumentam os processos de colisão entre as partículas do gás, o que provoca o aumento de sua temperatura. Uma equação básica da física de gases, a "lei do gás perfeito", nos diz que a pressão está relacionada com a temperatura da seguinte forma: PV = NRT onde P é a pressão e T é a temperatura do gás. Por esta equação podemos ver que o aumento da temperatura provoca o aumento da pressão interna na protoestrela. Temos então duas forças atuando em sentidos contrários nesta esfera gasosa que está contraindo: uma força de pressão interna que quer fazer o gás se expandir e uma força gravitacional que continua a fazer a esfera se contrair, diminuindo o seu raio cada vez mais. Em algum momento a pressão exercida para fora pelas partículas do gás que forma a esfera gasosa consegue equilibrar, aproximadamente, o puxão exercido para dentro pela força gravitacional que procura comprimir cada vez mais o gás. A esta condição de equilíbrio damos o nome de equilíbrio hidrostático. O equilíbrio hidrostático é um princípio fundamental para a existência de uma estrela. Somente quando ele é atingido é que podemos dizer que uma estrela foi formada. Podemos definir uma estrela como sendo uma esfera gasosa, em equilíbrio hidrostático, capaz de produzir e liberar sua própria energia. A protoestrela ainda é muito fria. Sua baixa temperatura faz com que ela só emita no infravermelho. No entanto, ela é muito grande e, portanto, tem uma alta luminosidade ficando localizada no canto superior direito do diagrama H-R. Ao mesmo tempo que a esfera gasosa contrai dando origem a uma protoestrela, um disco de matéria é formado à sua volta. Este disco de gás e poeira irá acompanhar a vida da estrela durante muito tempo e acredita-se que ele seja a origem dos sistemas planetários tais como o Sistema Solar. A imagem ao lado mostra a estrela HR 4976 com o seu proeminente disco. Ela foi obtida por astrônomos da NASA usando o telescópio de 10 metros do Keck Observatory. A estrela HR4976 é uma estrela tipo Sol, com cerca de 10 milhões de anos de idade, localizada na constelação Centaurus a 220 anos-luz da Terra. Ela já é uma estrela adulta jovem e não uma protoestrela mas esta imagem nos mostrar que a suposição de que ocorre a formação de um disco em volta de uma protoestrela é correta. O diâmetro aparente do disco de poeira que está em torno desta estrela é de 200 unidades astronômicas. Esta é uma das mais claras evidências que temos hoje da formação de um sistema planetário em torno de uma estrela. Os "Glóbulos Gasosos que Evaporam" (EEG) Se uma parte de uma nuvem molecular gigante colapsa formando uma protoestrela que continua a capturar matéria gasosa da nuvem, por que a estrela não aumenta a sua massa cada vez mais, incorporando toda a matéria existente na nuvem original? Este problema intrigou os astrofísicos durante muito tempo mas já é bem compreendido. A imagem abaixo mostra uma imensa coluna de gás hidrogênio molecular e poeira que faz parte da nebulosa Águia, também conhecida como M16. Localizada a cerca de 6500 anosluz de nós, na constelação Serpens, M16 é um verdadeiro "berçário" de estrelas, uma incubadora de estrelas recém formadas. Estas estrelas estão imersas nas estruturas parecidas com dedos localizadas no topo da nebulosa. Cada uma destas estruturas é maior do que o nosso Sistema Solar inteiro! Ocorre que estes imensos pilares estão sendo lentamente destruídos pela radiação ultravioleta emitida pelas estrelas quentes vizinhas a eles (lembre-se que estas nuvens são nuvens moleculares e a radiação ultravioleta destrói moléculas). A este processo de destruição do gás da nuvem molecular por meio da radiação ultravioleta das estrelas damos o nome de fotoevaporação. À medida que isso ocorre pequenos glóbulos de gás bastante densos, chamados "EEG" (Evaporating Gaseous Globules - Glóbulos Gasosos que Evaporam), e que estão imersos bem dentro da nuvem, são revelados. Dentro de alguns desses EEGs estão estrelas "embriônicas". Estas estrelas, ainda em formação, capturam de modo contínuo o gás da grande nuvem molecular que as envolve, sempre aumentando suas massas. No entanto, quando os EEGs são revelados, as estrelas que estão no seu interior param abruptamente de crescer uma vez que, agora, ficaram separadas dos grandes "reservatórios" de gás da nuvem molecular. Esta é uma das razões porque a massa das estrelas é limitada. Os próprios EEGs também não conseguem sobreviver à fotoevaporação produzida pela radiação ultravioleta emitida pelas estrelas quentes vizinhas e também são evaporados. Como resultado, a estrela aparece. file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 3/11

4 A imagem em preto e branco abaixo revela melhor a presença dos EEGs na nebulosa M16. file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 4/11

5 Processos deste tipo ocorrem em todo o espaço. A imagem abaixo mostra o "berçário" estelar existente na nebulosa Trifid, também conhecida como M20. A nebulosa Trifid está localizada a cerca de 9000 anos-luz de nós, na constelação Sagittarius. Esta imagem, obtida pelo Hubble Space Telescope, mostra uma pequena parte da nuvem molecular densa que forma a nebulosa M20. Esta nuvem está a cerca de 8 anos-luz da estrela central da nebulosa (localizada fora da imagem na parte de cima). A radiação proveniente desta estrela está destruindo a nuvem molecular. O "dedo" que parece sair do topo da imagem é um claro exemplo de um EEG. A despeito da radiação ultravioleta incidente, este EEG ainda sobrevive por ser formado por gás muito denso mas em alguns milhares de anos ele terá evaporado e revelará a estrela que está no seu interior (sabemos que você está curioso com o feixe que se projeta desta região para o lado esquerdo superior da imagem. Isto é um jato de matéria com um comprimento de 3/4 de ano-luz e que foi emitido por uma estrela muito jovem que está "enterrada" dentro desta nuvem). file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 5/11

6 Os objetos Herbig-Haro Já vimos que quando uma protoestrela se forma permanece à sua volta um disco de poeira e gás. Este disco é formado à medida que mais material da nebulosa que circunda a estrela é atraido gravitacionalmente por ela. A matéria deste disco gradualmente espirala na direção da estrela, caindo continuamente sobre sua superfície, ainda em formação, e aumentando sua massa. No entanto, parte dessa matéria que está sendo acrescentada à protoestrela também é lançada para fora dela sob a forma de jatos. Estes jatos são perpendiculares ao disco de poeira e possuem direções opostas, se estendendo por milhares de anos-luz no espaço interestelar. Os jatos de matéria lançados pelas protoestrelas têm altas velocidades, próximas a 300 quilômetros por segundo, e mergulham na nebulosa circundante produzindo fortes ondas de choque que aquecem o gás e o fazem brilhar. A esses jatos de matéria brilhantes que se movem na nossa direção e que foram emitidos por protoestrelas jovens enterradas em glóbulos de matéria escura damos o nome de objetos Herbig-Haro, em homenagem aos astrônomos George Herbig e Guillermo Haro, que realizaram vários trabalhos precursores sobre estes jatos nos anos de Vemos então que "objetos Herbig-Haro" podem ser formados quando uma estrela jovem lança jatos de matéria de volta no espaço interestelar. file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 6/11

7 A imagem abaixo mostra três objetos Herbig-Haro. Na parte superior esquerda vemos o objeto protoestelar chamado Herbig-Haro 30, ou HH30. A imagem nos mostra o disco de poeira, visto de borda, que cerca a estrela recentemente formada. A protoestrela está escondida nas partes mais densas deste disco. Embora o jato de matéria emitido pela protoestrela permaneça confinado a um estreito feixe, ele se estende por bilhões de quilômetros no espaço. Esta protoestrela está localizada na constelação Taurus, a 450 anos-luz de nós. Na parte superior direita vemos uma protoestrela situada a 1500 anos-luz de nós, na vizinhança da constelação Orion. O jato emitido pela protoestrela ou seja, o objeto Herbig-Haro 34 (HH34), possui a característica de não ter uma estrutura contínua. Ele é formado por amontoados de matéria. Acredita-se que "bolhas" de gás quente estão sendo ejetadas pela protoestrela, como se fossem disparos de uma metralhadora. A imagem da parte de baixo mostra o objeto Herbig-Haro HH47 situado a 1500 anos-luz de nós, na borda da nebulosa Gum. Este jato possui 4,8 trilhões de quilômetros de comprimento e a sua estrutura complicada parece indicar que a estrela que o gera (escondida dentro da nuvem, próxima à borda esquerda da imagem) está oscilando, possivelmente devido a perturbações causadas por uma estrela companheira. file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 7/11

8 A imagem abaixo, obtida pelo Hubble Space telescope, nos mostra também um excelente exemplo de objeto Herbig-Haro. Aqui vemos o objeto Herbig-Haro HH32 situado a cerca de 1000 anos-luz da Terra. Os extensos jatos e ventos de alta velocidade emitidos pela estrela brilhante "limparam" recentemente a poeira e os resíduos de gás que existiam na região central e que envolviam estas estrelas. Como conseqüência a estrela jovem ficou inteiramente exposta, podendo ser observada diretamente. O jato que vemos na parte superior da imagem (cor verde e branca), cujo ponto mais afastado está a cerca de 200 unidades astronômicas da estrela que o originou, está apontando na nossa direção enquanto que o jato oposto (de mesma cor) na parte de baixo está localizado no lado mais distante da estrela e é muito mais fraco por causa de alguma poeira que ainda circunda a estrela. Resumindo, para formar uma estrela como o Sol a parte da nuvem molecular gigante que colapsa deveria ter as seguintes características: raio massa da nuvem temperatura densidade R ~ 2 x 10 5 R sol (cerca de 10 vezes o raio atual do Sistema Solar) ~2 x quilogramas T = 50 K ~10 8 partículas por centímetro cúbico file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 8/11

9 fonte de energia tempo de colapso gravidade 1000 anos Note que, por ter uma temperatura de apenas 50 K, esta nuvem não é visível e toda a sua radiação é emitida no infravermelho. As estrelas da pré-seqüência principal Na verdade, no início da vida de uma estrela não é atingido um estado de equilíbrio hidrostático perfeito e sim um estágio de quaseequilíbrio. Quando um estado de quase-equilíbrio é estabelecido em uma esfera gasosa, a contração gravitacional diminui bastante de intensidade mas não para. A estrela continua a contrair, só que muito mais lentamente, e é ainda este processo de contração que fornece a energia gravitacional capaz de gerar sua luminosidade. Onde ficam estas estrelas no diagrama H-R? Durante toda esta fase a estrela fica localizada em uma região acima da seqüência principal do diagrama H-R. Elas estão evoluindo para se tornarem estrelas da seqüência principal e, por isso, são classificadas como estrelas da pré-seqüência principal. O diagrama abaixo mostra estrelas pré-seqüência principal que lentamente se aproximam da seqüência principal do diagrama H-R. Com a contínua contração do gás as temperaturas na região central da estrela alcançam valores bastante altos. Com uma temperatura central da ordem de 10 milhões de Kelvins as estrelas da pré-seqüência principal já podem iniciar alguns processos de queima nuclear, embora esta não seja, de modo algum, a principal fonte de energia da estrela. Uma temperatura desta ordem já permite que algumas reações de fusão nuclear ocorram envolvendo elementos mais leves como o deutério, o lítio, o berílio, etc. O lítio já sofre reações nucleares quando a temperatura é de 3 x 10 6 K e o berílio quando ela atinge 4 x 10 6 K. Note, entretanto, que estas reações nucleares cessam tão logo estes elementos tenham sido consumidos pois a temperatura interna da estrela ainda não é suficiente para iniciar a queima nuclear que transforma o hidrogênio em hélio, reação esta que precisa de uma temperatura da ordem de 10 7 Kelvins. file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 9/11

10 É importante já ficar bem claro que as reações de fusão nuclear possuem uma forte dependência com a temperatura. Elas precisam que a temperatura seja muito alta para que possam ocorrer. Isto faz com que as reações nucleares se concentrem fortemente na região mais central da estrela. Ao contrário das reações nucleares, a contração gravitacional libera energia potencial gravitacional por todo o corpo da estrela. Uma vez que as reações nucleares começaram na região central, a estrela tem agora que se reajustar para levar em conta esta nova fonte de energia. Então, como é produzida a energia nas estrelas da pré-seqüência principal? Estas estrelas ainda estão contraindo, embora muito lentamente. Como conseqüência disso, a temperatura da sua região central vai aumentando gradativamente. O gás que está nesta região vai se tornando bem mais aquecido do que aquele mais próximo à superfície. Forma-se então, nesta região central, bolhas de gás muito aquecido que se deslocam na direção da superfície. São essas bolhas o principal processo de transporte de energia entre as regiões mais centrais da estrela e a sua superfície. Este processo é chamado de convecção e é, em todos os aspectos, semelhante àquele que vemos quando aquecemos uma panela de água. Durante este estágio, as estrelas pré-seqüência principal passam por uma fase de grande atividade. Elas ainda estão cercadas por material pertencente à nuvem inicial que colapsou. Este material forma um disco protoestelar em torno da estrela e grande parte deste material continuamente espirala, caindo na superfície da estrela. Além disso, como estas estrelas têm a sua energia transportada do interior mais profundo para a superfície por meio de bolhas de gás aquecido, elas ejetam muito material no espaço interestelar. Este material é lançado para fora da estrela sob a forma de jatos de alta velocidade ou ventos muito fortes. As estrelas pré-seqüência principal com massa menor do que 2 massas solares são chamadas de estrelas T-Tauri. Aquelas com massa maior do que este valor são as chamadas estrelas HAEBE. A imagem abaixo, obtida pelo Hubble Space Telescope, mostra a jovem estrela HK Tauri rodeada por um disco de poeira e gás, visto de borda. A luz proveniente da estrela, que está escondida nele, ilumina as superfícies inferior e superior do disco, que tem o diâmetro de 210 unidades astronômicas. Para estudar estes sistemas disco + estrela, os astrônomos fazem simulações em computadores. Na imagem da direita vemos uma simulação feita que se ajusta com a imagem obtida pelo Hubble Space Telescope. Segundo este modelo, o disco deve ter uma massa correspondente a 1/10 da massa de Júpiter e uma espessura menor do que 10% do seu raio. Esta outra imagem mostra vários exemplos de estrelas da pré-seqüência principal com discos de poeira e gás claramente visíveis à sua volta. file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 10/11

11 Uma estrela ao chegar à fase de pré-seqüência principal teria as seguintes características: idade raio temperatura da região central temperatura da superfície fonte de energia 10 milhões de anos R ~1,33 R sol T região central = K T superfície = 4500 K início do ciclo de reações nucleares com elementos leves Copyright DAED Observatório Nacional file:///r:/dae3/web/ead_2013/site/conteudo/cap16-formando-estrelas/formando.html 11/11

A VIA LÁCTEA, NOSSA GALÁXIA

A VIA LÁCTEA, NOSSA GALÁXIA A VIA LÁCTEA, NOSSA GALÁXIA A Via Láctea é uma faixa de luz tênue e esbranquiçada que percorre todo o céu, formando um anel à nossa volta. É conhecida desde a antiguidade. Somente com o uso do telescópio

Leia mais

Formação estelar e Estágios finais da evolução estelar

Formação estelar e Estágios finais da evolução estelar Elementos de Astronomia Formação estelar e Estágios finais da evolução estelar Rogemar A. Riffel Formação estelar - Estrelas se formam dentro de concentrações relativamente densas de gás e poeira interestelar

Leia mais

FSC1057: Introdução à Astrofísica. A Via Láctea. Rogemar A. Riffel

FSC1057: Introdução à Astrofísica. A Via Láctea. Rogemar A. Riffel FSC1057: Introdução à Astrofísica A Via Láctea Rogemar A. Riffel Breve histórico Via Láctea: Caminho esbranquiçado como Leite; Galileo (Sec. XVII): multitude de estrelas; Herschel (XVIII): Sistema achatado

Leia mais

Aula 08 Sistema Solar

Aula 08 Sistema Solar Aula 08 Sistema Solar Hipótese de Laplace: como surgiu o sistema solar a partir da Nebulosa primordial. (1), (2) A conservação do momento angular requer que uma nuvem em rotação e em contração, deve girar

Leia mais

Estrelas EIXO PRINCIPAL O SOL

Estrelas EIXO PRINCIPAL O SOL Estrelas EIXO PRINCIPAL O SOL O Sol, nossa fonte de luz e de vida, é a estrela mais próxima de nós e a que melhor conhecemos. O Sol é uma estrela comum. Basicamente, é uma enorme esfera de gás incandescente,

Leia mais

Galáxias. Prof. Miriani G. Pastoriza http://www.if.ufrgs.br/~mgp/

Galáxias. Prof. Miriani G. Pastoriza http://www.if.ufrgs.br/~mgp/ Galáxias Prof. Miriani G. Pastoriza http://www.if.ufrgs.br/~mgp/ Definição de gálaxia As galáxias são gigantescos sistemas formados por bilhões de estrelas e de matéria interestelar. O diâmetro típico

Leia mais

E por mais que o homem se torne importante, ele não é nada comparado às estrelas [Caroline Herschel] Paulo Roberto -

E por mais que o homem se torne importante, ele não é nada comparado às estrelas [Caroline Herschel] Paulo Roberto - E por mais que o homem se torne importante, ele não é nada comparado às estrelas [Caroline Herschel] Paulo Roberto - www.laboratoriodopaulo.blogspot.com As constelações Ao longo da história, a humanidade

Leia mais

6ª série / 7º ano U. E 05

6ª série / 7º ano U. E 05 6ª série / 7º ano U. E 05 O sistema solar Cada um dos planetas do sistema solar é constituído basicamente dos mesmos elementos e substâncias químicas, embora cada planeta tenha características próprias.

Leia mais

Propriedades Planetas Sol Mercúrio Vênus Terra. O Sistema Solar. Introdução à Astronomia Fundamental. O Sistema Solar

Propriedades Planetas Sol Mercúrio Vênus Terra. O Sistema Solar. Introdução à Astronomia Fundamental. O Sistema Solar Introdução à Astronomia Fundamental Distribuição de Massa Sol: 99.85% Planetas: 0.135% Cometas: 0.01%? Satélites: 0.00005% Asteroides e Planetas Menores: 0.0000002%? Meteoróides: 0.0000001%? Meio Interplanetário:

Leia mais

Observatórios Virtuais Fundamentos de Astronomia Cap. 13 (C. Oliveira & V. Jatenco-Pereira) Capítulo 13 ESTRELAS VARIÁVEIS

Observatórios Virtuais Fundamentos de Astronomia Cap. 13 (C. Oliveira & V. Jatenco-Pereira) Capítulo 13 ESTRELAS VARIÁVEIS 145 Capítulo 13 ESTRELAS VARIÁVEIS Nós dedicaremos esse capítulo ao estudo das estrelas variáveis, estrelas tais que sua luminosidade varia com o tempo por meio de uma relação bem definida, e que se situam

Leia mais

Evolução Estelar: Nascimento, vida e morte das estrelas

Evolução Estelar: Nascimento, vida e morte das estrelas Evolução Estelar: Nascimento, vida e morte das estrelas John R. Percy International Astronomical Union Universidad de Toronto, Canada Evolução das estrelas Nebulosa do Anel, uma estrela moribunda. Fonte:

Leia mais

Introdução à Astrofísica. O Sol. Rogemar A. Riffel

Introdução à Astrofísica. O Sol. Rogemar A. Riffel Introdução à Astrofísica O Sol Rogemar A. Riffel Dados gerais Raio: 6.96x10 8 m ~100 x R Terra Massa: 1,99 x 10 30 kg ~ 300000 x M Terra Temperatura superficial: 6000 K Distância média à Terra:149 597

Leia mais

ESCOLA SALESIANA DE MANIQUE TESTE DE AVALIAÇÃO DE CIÊNCIAS FÍSICO-QUÍMICAS ANO LECTIVO 2010/2011

ESCOLA SALESIANA DE MANIQUE TESTE DE AVALIAÇÃO DE CIÊNCIAS FÍSICO-QUÍMICAS ANO LECTIVO 2010/2011 ESCOLA SALESIANA DE MANIQUE TESTE DE AVALIAÇÃO DE CIÊNCIAS FÍSICO-QUÍMICAS ANO LECTIVO 2010/2011 Nome: 7.º Ano Turma Nº: Encarregado de Educação: Classificação: Professor: 1. Observe a figura seguinte,

Leia mais

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Estrelas. Prof. Tibério B. Vale

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Estrelas. Prof. Tibério B. Vale Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia Estrelas Prof. Tibério B. Vale Propriedades Estrelas são esferas autogravitantes de gás ionizado, cuja fonte de

Leia mais

C5. Formação e evolução estelar

C5. Formação e evolução estelar AST434: C5-1/68 AST434: Planetas e Estrelas C5. Formação e evolução estelar Mário João P. F. G. Monteiro Mestrado em Desenvolvimento Curricular pela Astronomia Mestrado em Física e Química em Contexto

Leia mais

Elementos e fatores climáticos

Elementos e fatores climáticos Elementos e fatores climáticos O entendimento e a caracterização do clima de um lugar dependem do estudo do comportamento do tempo durante pelo menos 30 anos: das variações da temperatura e da umidade,

Leia mais

Astor João Schönell Júnior

Astor João Schönell Júnior Astor João Schönell Júnior As galáxias são classificadas morfologicamente (Hubble Sequence): -Espirais -Elípticas -Irregulares - Galáxias SO As galáxias espirais consistem em um disco com braços espirais

Leia mais

Departamento de Astronomia - Universidade Federal do Rio Grande do Sul

Departamento de Astronomia - Universidade Federal do Rio Grande do Sul Departamento de Astronomia - Universidade Federal do Rio Grande do Sul FIS02010-A - FUNDAMENTOS DE ASTRONOMIA E ASTROFÍSICA A 3.a PROVA - 2012/1 - Turma C NOME: I.Nas questões de 1 a 20, escolhe a alternativa

Leia mais

Uma estrela-bebê de 10 mil anos

Uma estrela-bebê de 10 mil anos 1 Uma estrela-bebê de 10 mil anos Jane Gregorio-Hetem (IAG/USP) Email: jane@astro.iag.usp.br A versão original deste texto foi divulgada no CD-ROM da 48ª Reunião Anual da SBPC, na qual a conferência Estrelas

Leia mais

Astrofísica Geral. Tema 09: O Sol

Astrofísica Geral. Tema 09: O Sol ma 09: O Sol Outline 1 Características 2 Estrutura 3 Campo Magnético 4 Bibliografia 2 / 35 Outline 1 Características 2 Estrutura 3 Campo Magnético 4 Bibliografia 3 / 35 Video Video (sdo5 e colors) 4 /

Leia mais

CONHECENDO A FAMÍLIA DO SOL. META Apresentar as características dos corpos que constituem a família do Sol.

CONHECENDO A FAMÍLIA DO SOL. META Apresentar as características dos corpos que constituem a família do Sol. CONHECENDO A FAMÍLIA DO SOL Aula 2 META Apresentar as características dos corpos que constituem a família do Sol. OBJETIVOS Ao final desta aula, o aluno deverá: diferenciar os astros que compõem o Sistema

Leia mais

TONALIDADE X FREQUÊNICA

TONALIDADE X FREQUÊNICA Som, notas e tons TONALIDADE X FREQUÊNICA O violão é um instrumento musical e o seu objetivo é fazer música. Música é a organização de sons em padrões que o cérebro humano acha agradável (ou pelo menos

Leia mais

Estrelas Variáveis Cefeidas Como Indicadores de Distâncias

Estrelas Variáveis Cefeidas Como Indicadores de Distâncias 1 Estrelas Variáveis Cefeidas Como Indicadores de Distâncias Eduardo Brescansin de Amôres, Raquel Yumi Shida (IAG-USP) 1. INTRODUÇÃO O que aprenderei nesta atividade? Você aprenderá como os astrônomos

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

Uma vez que todos já conseguiram identificar no céu as constelações que estudamos até aqui, vamos viajar pelo nosso Sistema Solar.

Uma vez que todos já conseguiram identificar no céu as constelações que estudamos até aqui, vamos viajar pelo nosso Sistema Solar. Olá amiguinhos! Uma vez que todos já conseguiram identificar no céu as constelações que estudamos até aqui, vamos viajar pelo nosso Sistema Solar. Antes mesmo de existir o Sol, nesta mesma região existiam

Leia mais

TABELA PERIÓDICA Propriedades periódicas e aperiódicas

TABELA PERIÓDICA Propriedades periódicas e aperiódicas TABELA PERIÓDICA Propriedades periódicas e aperiódicas De um modo geral, muitas propriedades dos elementos químicos variam periodicamente com o aumento de seus números atômicos (portanto, ao longo dos

Leia mais

muito gás carbônico, gás de enxofre e monóxido de carbono. extremamente perigoso, pois ocupa o lugar do oxigênio no corpo. Conforme a concentração

muito gás carbônico, gás de enxofre e monóxido de carbono. extremamente perigoso, pois ocupa o lugar do oxigênio no corpo. Conforme a concentração A UU L AL A Respiração A poluição do ar é um dos problemas ambientais que mais preocupam os governos de vários países e a população em geral. A queima intensiva de combustíveis gasolina, óleo e carvão,

Leia mais

ÇÃO À ASTRONOMIA (AGA-210) Notas de aula INTRODUÇÃ. Estrelas: do nascimento à Seqüê. üência Principal. Enos Picazzio IAGUSP, Maio/2006

ÇÃO À ASTRONOMIA (AGA-210) Notas de aula INTRODUÇÃ. Estrelas: do nascimento à Seqüê. üência Principal. Enos Picazzio IAGUSP, Maio/2006 INTRODUÇÃ ÇÃO À ASTRONOMIA (AGA-210) Notas de aula Estrelas: do nascimento à Seqüê üência Principal Enos Picazzio IAGUSP, Maio/2006 De que são formadas as estrelas? Átomo: elemento básico b da matéria

Leia mais

Observatórios Virtuais Fundamentos de Astronomia Cap. 7 (Gregorio-Hetem & Jatenco-Pereira) O SOL

Observatórios Virtuais Fundamentos de Astronomia Cap. 7 (Gregorio-Hetem & Jatenco-Pereira) O SOL O SOL Vimos no capítulo anterior a natureza da radiação eletromagnética e como ela transfere energia através do espaço. É com base na luz emitida pelas estrelas que podemos extrair informações importantes

Leia mais

Introdução à Astrofísica. Rogemar A. Riffel

Introdução à Astrofísica. Rogemar A. Riffel Introdução à Astrofísica Origem do Sistema Solar Rogemar A. Riffel Requerimentos do Modelo As órbitas dos planetas são em sua maioria coplanares e paralelas ao equador Solar; As órbitas são quase circulares;

Leia mais

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica O Princípio da Complementaridade e o papel do observador na Mecânica Quântica A U L A 3 Metas da aula Descrever a experiência de interferência por uma fenda dupla com elétrons, na qual a trajetória destes

Leia mais

5910179 Biofísica I Biologia FFCLRP USP Prof. Antônio C. Roque Origem dos elementos

5910179 Biofísica I Biologia FFCLRP USP Prof. Antônio C. Roque Origem dos elementos Origem dos Elementos Os organismos vivos são constituídos basicamente por oxigênio, carbono, hidrogênio, nitrogênio, cálcio e fósforo, que juntos perfazem 99% da composição do corpo humano. Elemento Símbolo

Leia mais

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB IV Olimpíada Brasileira de Astronomia IV OBA Gabarito da Prova de nível I (para alunos de 1ª à 4ª série)

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB IV Olimpíada Brasileira de Astronomia IV OBA Gabarito da Prova de nível I (para alunos de 1ª à 4ª série) SOCIEDADE ASTRONÔMICA BRASILEIRA SAB IV Olimpíada Brasileira de Astronomia IV OBA Gabarito da Prova de nível I (para alunos de 1ª à 4ª série) GABARITO NÍVEL 1 (Cada questão vale 1 ponto sendo que cada

Leia mais

FÍSICA-2011. Questão 01. Questão 02

FÍSICA-2011. Questão 01. Questão 02 Questão 01-2011 UFBA -- 2ª 2ª FASE 2011 A maioria dos morcegos possui ecolocalização um sistema de orientação e localização que os humanos não possuem. Para detectar a presença de presas ou de obstáculos,

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS

CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS A DEPENDÊNCIA DA VELOCIDADE DE REAÇÃO COM A TEMPERATURA A velocidade da maioria das reações químicas aumenta à medida que a temperatura também aumenta.

Leia mais

Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente

Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente Introdução Você já deve ter reparado que, quando colocamos

Leia mais

Fundamentos de Astronomia e Astrofísica TEORIA DO BIG BANG. Clayton B. O. dos Reis Deyvson G. Borba

Fundamentos de Astronomia e Astrofísica TEORIA DO BIG BANG. Clayton B. O. dos Reis Deyvson G. Borba Fundamentos de Astronomia e Astrofísica TEORIA DO BIG BANG Clayton B. O. dos Reis Deyvson G. Borba Resumo de como surgiu a teoria: No ano de 1927, O padre e cosmólogo belga Georges- Henri Édouard Lemaître,

Leia mais

Fundamentos de Astronomia e Astrofísica. Galáxias. Tibério B. Vale. http://astro.if.ufrgs.br/

Fundamentos de Astronomia e Astrofísica. Galáxias. Tibério B. Vale. http://astro.if.ufrgs.br/ Fundamentos de Astronomia e Astrofísica Galáxias Tibério B. Vale http://astro.if.ufrgs.br/ A descoberta das galáxias Kant (1755): hipótese dos "universos-ilha": a Via Láctea é apenas uma galáxia a mais

Leia mais

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar 3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento

Leia mais

PROVA DE FÍSICA 3 o TRIMESTRE DE 2012

PROVA DE FÍSICA 3 o TRIMESTRE DE 2012 PROVA DE FÍSICA 3 o TRIMESTRE DE 2012 PROF. VIRGÍLIO NOME N o 8 o ANO Olá, caro(a) aluno(a). Segue abaixo uma série de exercícios que têm, como base, o que foi trabalhado em sala de aula durante todo o

Leia mais

O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br

O céu. Aquela semana tinha sido uma trabalheira! www.interaulaclube.com.br A U A UL LA O céu Atenção Aquela semana tinha sido uma trabalheira! Na gráfica em que Júlio ganhava a vida como encadernador, as coisas iam bem e nunca faltava serviço. Ele gostava do trabalho, mas ficava

Leia mais

Princípios 6 Transformação de energia solar em eletricidade 6 Modelo solar com um módulo solar 7

Princípios 6 Transformação de energia solar em eletricidade 6 Modelo solar com um módulo solar 7 Bem-vindo ao mundo da linha PROFI fischertechnik 3 Energia no dia a dia 3 Óleo, carvão, energia nuclear 4 Água e vento 4 Energia solar 5 A energia 5 Energia solar 6 Princípios 6 Transformação de energia

Leia mais

Top Guia In.Fra: Perguntas para fazer ao seu fornecedor de CFTV

Top Guia In.Fra: Perguntas para fazer ao seu fornecedor de CFTV Top Guia In.Fra: Perguntas para fazer ao seu fornecedor de CFTV 1ª Edição (v1.4) 1 Um projeto de segurança bem feito Até pouco tempo atrás o mercado de CFTV era dividido entre fabricantes de alto custo

Leia mais

Capítulo 5 ESTRELAS. Hugo Vicente Capelato *

Capítulo 5 ESTRELAS. Hugo Vicente Capelato * Capítulo 5 ESTRELAS Hugo Vicente Capelato * * e-mail: hugo@das.inpe.br 5-1 5-2 ESTRELAS LISTA DE FIGURAS... 5-5 5.1 INTRODUÇÃO... 5-7 5.2 A COR E O BRILHO DAS ESTRELAS... 5-8 5.2.1 A SEQUÊNCIA PRINCIPAL

Leia mais

Data: / / Analise as proposições sobre as massas de ar que atuam no Brasil, representadas no mapa pelos números arábicos.

Data: / / Analise as proposições sobre as massas de ar que atuam no Brasil, representadas no mapa pelos números arábicos. -* Nome: nº Ano: 1º Recuperação de Geografia / 2º Bimestre Professor: Arnaldo de Melo Data: / / 1-(UDESC) Observe o mapa abaixo.. Analise as proposições sobre as massas de ar que atuam no Brasil, representadas

Leia mais

Súmula Teoria Energética. Paulo Gontijo

Súmula Teoria Energética. Paulo Gontijo Súmula Teoria Energética Paulo Gontijo O Universo Chama-se Universo ao conjunto de todas as coisas. Sua existência pressupõe a necessidade de dois conceitos anteriores a ele, que se denominam existência

Leia mais

HUBBLE E A EXPANSÃO DO UNIVERSO

HUBBLE E A EXPANSÃO DO UNIVERSO HUBBLE E A EXPANSÃO DO UNIVERSO Pedro José Feitosa Alves Júnior Universidade Federal do Vale do São Francisco 1. INTRODUÇÃO O início do século XX pode ser considerado um grande marco no desenvolvimento

Leia mais

Galáxias. dista. Sueli M. M. Viegas Instituto Astronômico e Geofísico, Universidade de São Paulo

Galáxias. dista. Sueli M. M. Viegas Instituto Astronômico e Geofísico, Universidade de São Paulo No início do século passado, graças à melhoria dos métodos de determinação de distâncias dos objetos celestes e do desenvolvimento das técnicas observacionais, abriu-se um novo campo na astronomia que,

Leia mais

Determinação de Massas e Raios Estelares

Determinação de Massas e Raios Estelares Determinação de Massas e Raios Estelares 1 Introdução A massa de uma estrela é a sua característica mais importante. Conhecendo-se a massa inicial e a composição química inicial de uma estrela, devemos

Leia mais

A Via Láctea Curso de Extensão Universitária Astronomia: Uma Visão Geral 12 a 17 de janeiro de 2004 Histórico Sec. XVII Galileu: descobriu que a Via-Láctea consistia de uma coleção de estrelas. Sec. XVIII/XIX

Leia mais

Evolução Estelar e A Via-Láctea

Evolução Estelar e A Via-Láctea Introdução à Astronomia Evolução Estelar e A Via-Láctea Rogério Riffel http://astro.if.ufrgs.br Formação estelar - Estrelas se formam dentro de concentrações relativamente densas de gás e poeira interestelar

Leia mais

A Via-Láctea. Prof. Fabricio Ferrari Unipampa. adaptado da apresentação The Milky Way, Dr. Helen Bryce,University of Iowa

A Via-Láctea. Prof. Fabricio Ferrari Unipampa. adaptado da apresentação The Milky Way, Dr. Helen Bryce,University of Iowa A Via-Láctea Prof. Fabricio Ferrari Unipampa adaptado da apresentação The Milky Way, Dr. Helen Bryce,University of Iowa Aparência da Via Láctea no céu noturno Imagem de todo o céu em luz visível Nossa

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

RIO TERÁ ICECUBE, 'CUBO' DE GELO COM VOLUME DEZ VEZES MAIOR QUE O PÃO DE AÇUÇAR

RIO TERÁ ICECUBE, 'CUBO' DE GELO COM VOLUME DEZ VEZES MAIOR QUE O PÃO DE AÇUÇAR COMUNICADO DE IMPRENSA No 4 Núcleo de Comunicação Social / CBPF [Para publicação imediata] O quê: Pesquisadores do IceCube irão apresentar dados sobre a recente detecção dos dois neutrinos mais energéticos

Leia mais

Matéria Escura. Introdução à Cosmologia 2012/02

Matéria Escura. Introdução à Cosmologia 2012/02 Matéria Escura Introdução à Cosmologia 2012/02 Introdução Determinação do parâmetro de densidade da matéria não relativística. Estudo da história e evolução do Universo. Conhecimento da composição do Universo.

Leia mais

V.7. Noções Básicas sobre o uso da Potência e do Torque do Motor.

V.7. Noções Básicas sobre o uso da Potência e do Torque do Motor. V.7. Noções Básicas sobre o uso da Potência e do Torque do Motor. V.7.1. Torque Quando você faz força para desrosquear uma tampa de um vidro de conservas com a mão, se está aplicando torque. O torque é

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

A Terra inquieta. www.interaulaclube.com.br

A Terra inquieta. www.interaulaclube.com.br A UU L AL A A Terra inquieta Vesúvio Durante a famosa erupção do vulcão italiano Vesúvio, no ano 79 d.c., a cidade de Pompéia foi coberta por cinzas vulcânicas e a cidade de Herculano foi sepultada por

Leia mais

As Fases da Lua iluminado pela luz do Sol A fase da lua representa o quanto dessa face iluminada pelo Sol está voltada também para a Terra

As Fases da Lua iluminado pela luz do Sol A fase da lua representa o quanto dessa face iluminada pelo Sol está voltada também para a Terra As Fases da Lua À medida que a Lua viaja ao redor da Terra ao longo do mês, ela passa por um ciclo de fases, durante o qual sua forma parece variar gradualmente. O ciclo completo dura aproximadamente 29,5

Leia mais

Lista 13: Gravitação. Lista 13: Gravitação

Lista 13: Gravitação. Lista 13: Gravitação Lista 13: Gravitação NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 2 (para alunos da 3ª à 4ª série)

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 2 (para alunos da 3ª à 4ª série) SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 2 (para alunos da 3ª à 4ª série) Questão 1) (1 ponto) Como você já deve saber o sistema solar

Leia mais

ENSINO FUNDAMENTAL - CIÊNCIAS 9ºANO- UNIDADE 3 - CAPÍTULO 1

ENSINO FUNDAMENTAL - CIÊNCIAS 9ºANO- UNIDADE 3 - CAPÍTULO 1 ENSINO FUNDAMENTAL - CIÊNCIAS 9ºANO- UNIDADE 3 - CAPÍTULO 1 questão 01. O que é Astrofísica? questão 02. O que são constelações? questão 03. Como era o calendário Lunar? questão 04. Qual era diferença

Leia mais

Ondas Sonoras. Velocidade do som

Ondas Sonoras. Velocidade do som Ondas Sonoras Velocidade do som Ondas sonoras são o exemplo mais comum de ondas longitudinais. Tais ondas se propagam em qualquer meio material e sua velocidade depende das características do meio. Se

Leia mais

Parte 2. Escola Secundária José Saramago FQA 10º ano 2007/2008 Marília Peres

Parte 2. Escola Secundária José Saramago FQA 10º ano 2007/2008 Marília Peres Parte 2 Escola Secundária José Saramago FQA 10º ano 2007/2008 Marília Peres A expansão do Universo No início do século XX, descobriu-se que: as galáxias, na sua grande maioria afastam-se umas das outras;

Leia mais

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas. COMPETÊNCIAS E HABILIDADES CADERNO 9 PROF.: Célio Normando CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

Leia mais

AS QUATRO FORÇAS FUNDAMENTAIS DA NATUREZA

AS QUATRO FORÇAS FUNDAMENTAIS DA NATUREZA AS QUATRO FORÇAS FUNDAMENTAIS DA NATUREZA Adaptado dum artigo na revista inglesa "Astronomy Now" por Iain Nicolson As interacções entre partículas subatómicas e o comportamento em larga escala de matéria

Leia mais

A Terra um Planeta muito Especial: Formação do Sistema Solar

A Terra um Planeta muito Especial: Formação do Sistema Solar A Lua (do latim Luna) é o único satélite natural da Terra, situando-se a uma distância de cerca de 384.405 km do nosso planeta. O feixe de luz, representado pela linha amarela, mostra o período que a luz

Leia mais

Escola E. B. 2º e 3º ciclos do Paul. Trabalho elaborado por: Diana Vicente nº 9-7ºB No âmbito da disciplina de Ciências Naturais

Escola E. B. 2º e 3º ciclos do Paul. Trabalho elaborado por: Diana Vicente nº 9-7ºB No âmbito da disciplina de Ciências Naturais Escola E. B. 2º e 3º ciclos do Paul Trabalho elaborado por: Diana Vicente nº 9-7ºB No âmbito da disciplina de Ciências Naturais Introdução Formação do sistema solar Constituição * Sol * Os planetas * Os

Leia mais

ASTRONOMIA. A coisa mais incompreensível a respeito do Universo é que ele é compreensível Albert Einstein

ASTRONOMIA. A coisa mais incompreensível a respeito do Universo é que ele é compreensível Albert Einstein ASTRONOMIA A coisa mais incompreensível a respeito do Universo é que ele é compreensível Albert Einstein ASTRONOMIA A LUZ PROVENIENTE DE ESTRELAS DISTANTES PROVA QUE O UNIVERSO É ANTIGO? Vivemos num universo

Leia mais

As galáxias emitem radiação ao longo do espectro desde altas freqüências (raios gama) até baixas freqüências (ondas de radio).

As galáxias emitem radiação ao longo do espectro desde altas freqüências (raios gama) até baixas freqüências (ondas de radio). Luz integrada das Galáxias, magnitudes e cores 2.1 Radiação de corpo negro As galáxias emitem radiação ao longo do espectro desde altas freqüências (raios gama) até baixas freqüências (ondas de radio).

Leia mais

Magnetismo: Campo Magnético

Magnetismo: Campo Magnético INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel Magnetismo: Campo Magnético Disciplina: Física III Professor: Carlos Alberto Aurora Austral Polo Sul Aurora Boreal Polo

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

Movimentos da Terra PPGCC FCT/UNESP. Aulas EGL 2016 João Francisco Galera Monico unesp

Movimentos da Terra PPGCC FCT/UNESP. Aulas EGL 2016 João Francisco Galera Monico unesp Movimentos da Terra PPGCC FCT/UNESP Aulas EGL 2016 João Francisco Galera Monico Terra Movimentos da Terra Cientificamente falando, a Terra possui um único movimento. Dependendo de suas causas, pode ser

Leia mais

Forças Gravitacionais Diferenciais e Sistema Solar

Forças Gravitacionais Diferenciais e Sistema Solar Introdução à Astrofísica Forças Gravitacionais Diferenciais e Sistema Solar Rogemar A. Riffel Derivação da força diferencial A força gravitacional diferencial é a diferença entre as forcas exercidas em

Leia mais

Determinação da distância à Pequena Nuvem de Magalhães pela observação de uma estrela cefeida

Determinação da distância à Pequena Nuvem de Magalhães pela observação de uma estrela cefeida Determinação da distância à Pequena Nuvem de Magalhães pela observação de uma estrela cefeida Este exercício é uma cópia modificada do exercício Determinação de distâncias no Universo, originalmente desenvolvido

Leia mais

Juliana Cerqueira de Paiva. Modelos Atômicos Aula 2

Juliana Cerqueira de Paiva. Modelos Atômicos Aula 2 Juliana Cerqueira de Paiva Modelos Atômicos Aula 2 2 Modelo Atômico de Thomson Joseph John Thomson (1856 1940) Por volta de 1897, realizou experimentos estudando descargas elétricas em tubos semelhantes

Leia mais

Abril Educação Astronomia Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Astronomia Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Astronomia Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Complete as lacunas: Os astros não estão fixos, mas realizam vários movimentos no espaço. Sua trajetória é chamada.

Leia mais

Densímetro de posto de gasolina

Densímetro de posto de gasolina Densímetro de posto de gasolina Eixo(s) temático(s) Ciência e tecnologia Tema Materiais: propriedades Conteúdos Densidade, misturas homogêneas e empuxo Usos / objetivos Introdução ou aprofundamento do

Leia mais

As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano.

As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano. PROFESSORA NAIANE As estações do ano acontecem por causa da inclinação do eixo da Terra em relação ao Sol. O movimento do nosso planeta em torno do Sol, dura um ano. A este movimento dá-se o nome de movimento

Leia mais

Considera-se que o Sistema Solar teve origem há cerca de 5 mil milhões de anos.

Considera-se que o Sistema Solar teve origem há cerca de 5 mil milhões de anos. 19 e 20 17/11/2011 Sumário Correção do TPC. Como se formou o Sistema Solar? Constituição do Sistema Solar. Os planetas do Sistema Solar. Principais características dos planetas do Sistema Solar. Outros

Leia mais

Cosmologia: a estrutura do nosso universo. MSc Rodrigo Nemmen FIS2207 Fundamentos de Astronomia Dez. 2006

Cosmologia: a estrutura do nosso universo. MSc Rodrigo Nemmen FIS2207 Fundamentos de Astronomia Dez. 2006 Cosmologia: a estrutura do nosso universo MSc Rodrigo Nemmen FIS2207 Fundamentos de Astronomia Dez. 2006 Qual o modelo cosmológico padrão atual para a evolução do universo? Evolução e composição do universo

Leia mais

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA

Nome:...N o...turma:... Data: / / ESTUDO DOS GASES E TERMODINÂMICA Ensino Médio Nome:...N o...turma:... Data: / / Disciplina: Física Dependência Prof. Marcelo Vettori ESTUDO DOS GASES E TERMODINÂMICA I- ESTUDO DOS GASES 1- Teoria Cinética dos Gases: as moléculas constituintes

Leia mais

Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I. Pressão Atmosférica

Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I. Pressão Atmosférica Universidade de São Paulo Departamento de Geografia FLG 0253 - Climatologia I Pressão Atmosférica Prof. Dr. Emerson Galvani Laboratório de Climatologia e Biogeografia LCB Questão motivadora: Observamos

Leia mais

Válvulas controladoras de vazão

Válvulas controladoras de vazão Generalidades Válvula controladora de vazão variável Válvula de controle de vazão variável com retenção integrada Métodos de controle de vazão Válvula de controle de vazão com pressão compensada temperatura

Leia mais

Instituto de Educação Infantil e Juvenil Outono, 2015. Londrina, Nome: Ano: Tempo Início: Término: Total: ALBERT EINSTEIN

Instituto de Educação Infantil e Juvenil Outono, 2015. Londrina, Nome: Ano: Tempo Início: Término: Total: ALBERT EINSTEIN Instituto de Educação Infantil e Juvenil Outono, 2015. Londrina, Nome: de Ano: Tempo Início: Término: Total: Edição 4 MMXV grupo B ALBERT EINSTEIN Imagens de supernova podem ajudar a testar teoria de Einstein

Leia mais

Como erguer um piano sem fazer força

Como erguer um piano sem fazer força A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

Ciências E Programa de Saúde

Ciências E Programa de Saúde Governo do Estado de São Paulo Secretaria de Estado da Educação Ciências E Programa de Saúde 18 CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE SP Grandes realizações são possíveis quando se dá atenção aos pequenos

Leia mais

5 as Olimpíadas Nacionais de Astronomia

5 as Olimpíadas Nacionais de Astronomia 5 as Olimpíadas Nacionais de Astronomia Prova da eliminatória regional 14 de Abril de 2009 15:00 Duração máxima 120 minutos Nota: Ler atentamente todas as questões. Existe uma tabela com dados no final

Leia mais

GRUPO III 1 o BIMESTRE PROVA A

GRUPO III 1 o BIMESTRE PROVA A Unidade Portugal Série: 6 o ano (5 a série) Período: TARDE Data: 27/4/2011 PROVA GRUPO GRUPO III 1 o BIMESTRE PROVA A Nome: Turma: Valor da prova: 4,0 Nota: Forte terremoto provoca tsunami e mata centenas

Leia mais

Aula Inaugural. Introdução à Astrofísica. Reinaldo R. de Carvalho (rrdecarvalho2008@gmail.com)

Aula Inaugural. Introdução à Astrofísica. Reinaldo R. de Carvalho (rrdecarvalho2008@gmail.com) Aula Inaugural Introdução à Astrofísica Reinaldo R. de Carvalho (rrdecarvalho2008@gmail.com) Livros recomendados:!! 1 - An Introduction to Modern Astrophysics, Bradley W. Carroll & Dale A. Ostlie, Second

Leia mais

7 as Olimpíadas Nacionais de Astronomia

7 as Olimpíadas Nacionais de Astronomia 7 as Olimpíadas Nacionais de Astronomia Prova Teórica Final 25 de Maio de 2012 10:00 (Açores) Duração máxima 120 minutos Nota: Ler atentamente todas as questões. Existe uma tabela com dados no final da

Leia mais

ÁGUA... O planeta Terra

ÁGUA... O planeta Terra os Planetas e a Lua O nosso planeta Terra é o é um planeta grande e a ÁGUA... O planeta Terra maior parte dele é O planeta Terra é o terceiro planeta do nosso sistema solar. Tomando o Sol como referência,

Leia mais

LIGAÇÕES INTERATÔMICAS

LIGAÇÕES INTERATÔMICAS UNIDADE 2 - LIGAÇÕES INTERATÔMICAS 2.1. FORÇAS DE LIGAÇÃO FORTES Importante conhecer-se as atrações que mantêm os átomos unidos formando os materiais sólidos. Por exemplo, uma peça de cobre contém 8,4x10

Leia mais

Reconhecimento e explicação da importância da evolução tecnológica no nosso conhecimento atual sobre o Universo.

Reconhecimento e explicação da importância da evolução tecnológica no nosso conhecimento atual sobre o Universo. ESCOLA BÁSICA2,3 EUGÉNIO DOS SANTOS 2013 2014 página 1 ESCOLA BÁSICA DO 2.º E 3.º CICLOS EUGÉNIO DOS SANTOS PLANIFICAÇÃO E METAS DE APRENDIZAGEM DA DISCIPLINA DE CIÊNCIAS FÍSICO-QUÍMICAS 7.º ANO DE ESCOLARIDADE

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira

Leia mais

DESCARGAS ELÉTRICAS ATMOSFÉRICAS

DESCARGAS ELÉTRICAS ATMOSFÉRICAS CENTRO UNIVERSITÁRIO DE LAVRAS DESCARGAS ELÉTRICAS ATMOSFÉRICAS HENRIQUE RAMOS VILELA LARISSA MARIA ELIAS SOARES Lavras 2016 Em uma tempestade, as fortes correntes de convecção elevam as menores gotículas

Leia mais

Qual o nosso lugar no Universo?

Qual o nosso lugar no Universo? Qual o nosso lugar no Universo? Acredita-se que no Universo existam cerca de 100 000 milhões de galáxias. As galáxias são enormes grupos de estrelas, gás e poeira. Nem todas são iguais e diferenciam-se

Leia mais