Fórmula versus Algoritmo



Documentos relacionados
Exercícios Teóricos Resolvidos

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

O problema do jogo dos discos 1

AV2 - MA (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

Conceitos e fórmulas

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS

Cotagem de dimensões básicas

GAAL /1 - Simulado - 1 Vetores e Produto Escalar

A equação do 2º grau

Contagem I. Figura 1: Abrindo uma Porta.

Dadas a base e a altura de um triangulo, determinar sua área.

Eventos independentes

Equações do primeiro grau

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v /15

Capítulo 1. x > y ou x < y ou x = y

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

A função do primeiro grau

Aplicações de Combinatória e Geometria na Teoria dos Números

Um jogo de preencher casas

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

Poliminós e o Tabuleiro de Xadrez Prof. Onofre Campos (onofrecampos@secrel.com.br) Prof. Carlos Shine (cyshine@yahoo.com)

Equacionando problemas - II

Conceitos Fundamentais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

5 Equacionando os problemas

UNIVERSIDADE FEDERAL DO PARANÁ PIBID-PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO A DOCÊNCIA PROVAS E DEMONSTRAÇÕES EM MATEMÁTICA

Equações do segundo grau

Capítulo 7 Medidas de dispersão

Correlação e Regressão Linear

Canguru Matemático sem Fronteiras 2014

Jogos com números Números ocultos - 2ª Parte

Vetores Lidando com grandezas vetoriais

Associação de resistores

9. Derivadas de ordem superior

Capítulo 5: Aplicações da Derivada

Matemática - UEL Compilada em 18 de Março de Prof. Ulysses Sodré Matemática Essencial:

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

Licenciatura em Engenharia Electrotécnica e de Computadores 1998/99. Erros

Monografia sobre R ser um Domínio de Fatoração Única implicar que R[x] é um Domínio de Fatoração Única.

Aula 4 Estatística Conceitos básicos

Tópico 3. Limites e continuidade de uma função (Parte 2)

1 Módulo ou norma de um vetor

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica

16 Comprimento e área do círculo

Teoria dos Números. A Teoria dos Números é a área da matemática que lida com os números inteiros, isto é, com o conjunto

Projeção ortográfica da figura plana

GEOMETRIA LÚDICA: DESCOBRINDO A ÁREA DE FIGURAS PLANAS

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Só Matemática O seu portal matemático FUNÇÕES

Conhecendo um pouco de matrizes e determinantes

Somatórias e produtórias

N1Q1 Solução. a) Há várias formas de se cobrir o tabuleiro usando somente peças do tipo A; a figura mostra duas delas.

QUESTÃO 1 ALTERNATIVA B

Imposto progressivo. vem inteirinho, sem nenhum imposto, e no segundo há que se pagar 15%, isto é, 165, restando apenas 935.

Múltiplos Estágios processo com três estágios Inquérito de Satisfação Fase II

Os Problemas de Natureza Econômica

Calculando probabilidades

Métodos Matemáticos para Gestão da Informação

A interpretação gráfica e o ensino de funções

4Distribuição de. freqüência

Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) (a 50 + a 51 ).

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Razonete e Balancete

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

Hoje estou elétrico!

A Matemática e o dinheiro

MATERIAL MATEMÁTICA I

O TRABALHO COM PROBLEMAS GEOMÉTRICOS

Simulado OBM Nível 2

2. Representação Numérica

Resolução de sistemas lineares

Construção de tabelas verdades

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior.

QUESTÃO 17 Cada um dos cartões abaixo tem de um lado um número e do outro uma letra.

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental)

Qual o melhor caminho?

Alguns exemplos de problemas resolvidos

Corte total. Qualquer pessoa que já tenha visto um regis- A U L A

Problemas insolúveis. Um exemplo simples e concreto

Lista de Exercícios 4: Soluções Sequências e Indução Matemática

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b)

Matéria: Matemática Assunto: Máximo Divisor Comum Prof. Dudan

Geometria Área de Quadriláteros

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2.

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

Polos Olímpicos de Treinamento. Aula 2. Curso de Teoria dos Números - Nível 2. Divisibilidade II. Prof. Samuel Feitosa

Análise Dimensional Notas de Aula

Morfologia Matemática Binária

UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

Potenciação no Conjunto dos Números Inteiros - Z

Transcrição:

1 Introdução Fórmula versus Algoritmo na resolução de um problema 1 Roberto Ribeiro Paterlini 2 Departamento de Matemática da UFSCar No estudo das soluções do problema abaixo deparamos com uma situação fórmula versus algoritmo O problema comporta dois tipos diferentes de solução Podemos obter uma fórmula, que fornece uma resposta direta Ou então podemos construir um algoritmo que também nos dá a resposta quando os dados são concretizados Uma experiência com este problema em sala de aula nos leva a algumas reflexões sobre o Ensino da Matemática Não estaríamos nós, professores, enfatizando demasiadamente a associação entre solução de um problema e obtenção de uma fórmula, em detrimento da elaboração de algoritmos? 2 O problema Sejam b e h inteiros positivos 1 Considere um retângulo de base b e altura h reticulado por linhas paralelas aos lados, formando bh quadrados unitários Quantos desses quadrados têm seu interior interceptados por uma diagonal do retângulo? Esse problema pode ser encontrado no artigo Counting Squares de David L Pagni, publicado no periódico Mathematics Teacher, vol 84, n 9, dezembro de 1991, página 754 Nós o propusemos em uma aula de problemas para alunos de Licenciatura em Matemática da UFSCar Na figura acima, temos b = 6 e h = 4, e pode-se ver que o número de quadrados unitários que têm seu interior interceptado pela diagonal é 8 3 As soluções Na aula a que nos referimos, os estudantes, em sua maioria, se empenharam em encontrar uma fórmula para o número de quadrados unitários interceptados 1 Publicado na Revista do Professor de Matemática, n 27, 1 quadrimestre de 1995, págs 27 a 33 2 O autor agradece as sugestões do colega Sergio Rodrigues 1

Passaram a desenhar retângulos de vários tamanhos, contando o número de quadrados interceptados em cada caso O quadro ao lado traz alguns dos resultados considerados pelos estudantes n é o número de quadrados interceptados pela diagonal b h n 3 2 4 5 3 7 5 4 8 6 2 6 6 3 6 6 4 8 7 4 10 15 6 18 Não é fácil visualizar a fórmula correta a partir desses dados Com a ajuda do professor, os estudantes viram que n = b h mdc(b, h) Passaram então o restante da aula elaborando uma demonstração para essa fórmula Paralelamente a essas atividades, um estudante trabalhava de modo diferente, e no final da aula apresentou-nos uma solução que resumimos a seguir Observou que trocando b por h e vice-versa o resultado não se modifica Observou ainda que nos seguintes casos o problema é trivial Primeiro, se h = 1 (ou b = 1) o número de quadrados unitários interceptados é igual a b (ou h, respectivamente) Segundo, se b = h, o número de quadrados interceptados é b Vejamos o caso 3 2 Esse retângulo deve ser decomposto em dois retângulos menores O primeiro é o maior quadrado possível que caiba no retângulo (portanto, um quadrado 2 2) O segundo é o retângulo 1 2 Algebricamente temos 3 2 = 2 2 1 2 A figura a seguir ilustra como deve ser subdividido o retângulo 3 2 em retângulos menores O estudante observou que os retângulos menores estão dentro dos dois casos triviais já considerados acima Como o retângulo 2 2 nos fornece 2 quadrados unitários interceptados (caso b = h), e o retângulo 1 2 nos fornece também 2 (caso b = 1), então (concluiu o estudante) o número de quadrados unitários interceptados no retângulo 3 2 é 4 Para melhor ilustrar o procedimento, vejamos também o caso 11 7 Esse retângulo é decomposto em 4 retângulos menores Primeiro retiramos o maior quadrado possível, no caso, um quadrado 7 7 Do restante, repetimos o procedimento: novamente tomamos o maior quadrado possível (no caso, um quadrado 2

4 4) E assim por diante Paramos quando o retângulo inicial se esgota ou sobra um retângulo do tipo b = 1 ou h = 1 No nosso exemplo particular temos a decomposição: 11 7 = 7 7 4 4 3 3 1 3 Cada um desses retângulos menores está dentro dos dois casos triviais considerados acima Então (concluiu o estudante) o número de quadrados unitários interceptados no retângulo 11 7 é a soma 7 4 3 3 = 17 Termina aqui a solução de nosso estudante Não nos apresentou demonstração da validade do algoritmo, mas verificamos que funcionava perfeitamente 4 Algumas demonstrações Apresentamos primeiro uma demonstração da fórmula: o número de quadrados unitários interceptados é b h mdc(b, h) ( ) Indicaremos por 1, 2,, k os pontos da diagonal que são comuns a uma linha horizontal ou vertical do reticulado Suponhamos que os pontos estejam ordenados, isto é, j está entre j 1 e j1 Confira a figura h y 1 2 3 4 5 6 7 8 Cada um dos segmentos 12, 23,, k 1 k está univocamente associado a um quadrado unitário que tem seu interior interceptado pela diagonal Como temos k 1 desses segmentos, nosso problema ficará resolvido quando determinarmos k 1 em função de b e h Por definição k é o número de pontos da diagonal que são comuns a uma das linhas do reticulado A diagonal intercepta exatamente uma vez cada uma das b 1 linhas verticais e cada uma das h 1 linhas horizontais Mas do número k b x 3

b 1 h 1 devemos subtrair o número de pontos da diagonal que são comuns com algum vértice de um quadrado unitário, de modo que estes pontos não sejam contados duas vezes Um desses pontos é certamente (x 0, y 0 ) = (0, 0) Os outros pontos (x i, y i ), i 1, são tais que x i e y i são inteiros positivos e a inclinação do segmento que une (0, 0) a (x i, y i ) é a mesma que a da diagonal, isto é y i x i = h b Esses pontos podem ser obtidos considerando-se todas as frações m/n equivalentes a h/b tais que m h e n b A menor dessas frações é a fração irredutível p/q que é obtida simplificando a fração h/b por mdc(b, h) Depois, multiplicando-se p/q por 1, 2, 3,, mdc(b, h), obtemos as frações procuradas Assim, contando com (0, 0), existem mdc(b, h) 1 pontos (x i, y i ), i 0 Por exemplo, sejam b = 12 e h = 8 (ver figura abaixo) Como mdc(12, 8) = 4, simplificando-se 8/12 por 4 obtemos a fração equivalente irredutível 2/3 Assim, as frações equivalentes 1 1 2 3 = 2 3, 2 2 2 3 = 4 6, 3 3 2 3 = 6 9, 4 4 2 3 = 8 12, fornecem os pontos (3, 2), (6, 4), (9, 6) e (12, 8), que pertencem à diagonal 8 Voltando aos cálculos anteriores, 6 4 2 0 3 6 9 12 k = b 1 h 1 (mdc(b, h) 1) ou k 1 = b h mdc(b, h) Portanto existem b h mdc(b, h) quadrados unitários que têm seu interior interceptados pela diagonal Fica assim demonstrada a fórmula ( ) Vamos fazer agora algumas considerações sobre a solução do estudante Trata-se de uma seqüência de procedimentos que, executados corretamente, nos levam à solução, desde que b e h sejam fornecidos em valores numéricos Dizemos que essa seqüência de procedimentos é um algoritmo A princípio ficamos surpresos com essa solução Mas dois fatos nos levaram a pensar que o algoritmo estava correto Primeiro, sua semelhança com o 4

algoritmo euclidiano para o cálculo do máximo divisor comum Segundo, aplicando o algoritmo a alguns exemplos, verificamos que funcionava perfeitamente Fizemos então um estudo posterior no qual constatamos: a) A fórmula b h mdc(b, h) implica na validade do algoritmo; b) A fórmula b h mdc(b, h) pode ser obtida do algoritmo; c) A veracidade do algoritmo pode ser obtida independentemente da fórmula Provaremos as afirmações a) e b), as quais significam que a fórmula e o algoritmo são equivalentes A afirmação c) será deixada para o exercício da argúcia do leitor Indicaremos por N b h o número de quadrados unitários interceptados por uma diagonal do retângulo b h Algumas identidades óbvias são: N b h = N h b, N b b = b e N 1 h = h Por outro lado, o algoritmo consiste essencialmente da seguinte propriedade: dados os inteiros positivos b h, se b = qh r, onde 0 r h, então N b h = qn h h N r h = qh N r h ( ) a) A fórmula b h mdc(b, h) implica na validade do algoritmo Supondo válida a fórmula, temos N b h = b h mdc(b, h) Portanto N b h = b h mdc(b, h) = qh r h mdc(h, r) = qh N r h, e isto implica a veracidade de ( ) e, conseqüentemente, do algoritmo b) A fórmula b h mdc(b, h) pode ser obtida do algoritmo Para sistematizar, anotaremos b = a 1 e h = a 2 aplicado a a 1 e a a 2 pode ser assim desenvolvido: O algoritmo euclidiano a 1 = q 1 a 2 a 3, 0 a 3 < a 2, a 2 = q 2 a 3 a 4, 0 a 4 < a 3, a 3 = q 3 a 4 a 5, 0 a 5 < a 4, a n 3 = q n 3 a n 2 a n 1, 0 a n 1 < a n 2, a n 2 = q n 2 a n 1 a n, 0 a n < a n 1, a n 1 = q n 1 a n 0, onde a n = mdc(a 1, a 2 ) Somando-se todas as equações acima, vem donde a 1 a 2 a n 1 = (q 1 a 2 q n 1 a n ) (a 3 a n ) a 1 a 2 = (q 1 a 2 q n 1 a n ) a n, 5

ou q 1 a 2 q n 1 a n = a 1 a 2 a n Aplicando repetidamente a propriedade ( ) acima, temos como queríamos demonstrar 5 Conclusão N b h = N a1 a 2 = q 1 N a2 a 2 N a2 a 3 = q 1 N a2 a 2 q 2 N a3 a 3 N a3 a 4 = q 1 N a2 a 2 q 2 N a3 a 3 q n 1 N an a n = q 1 a 2 q 2 a 3 q n 1 a n = a 1 a 2 a n = b h mdc(b, h), É principalmente a diversidade de abordagens dos assuntos em estudo que ativa a flexibilidade e a capacidade de compreensão da mente dos estudantes Essa diversidade faz compreender ao estudante de uma maneira prática que há muitos modos de tratar o mesmo problema intelectual No Ensino da Matemática através de Problemas, vimos que devemos colocar nossa atenção na possibilidade de se apresentarem soluções na forma de algoritmos A elaboração de algoritmos desenvolve qualidades de organização e previsão, e é uma atividade que não deve ser omitida no ensino formal da Matemática 6 Referência bibliográfica Pagni, D L, Counting Squares Mathematics Teacher, vol 84, n 9, dezembro de 1991, pág 754 6