REAÇÕES DE ÓXIDO-REDUÇÃO

Documentos relacionados
QUÍMICA ELETROANALÍTICA

CÉLULAS ELETROLÍTICAS

QUI201 (QUI145) QUÍMICA ANALÍTICA B (Química Industrial) Prof. Mauricio X. Coutrim

Reações de oxirredução

ELETROQUÍMICA OU. Profa. Marcia M. Meier QUÍMICA GERAL II

QUI219 QUÍMICA ANALÍTICA (Farmácia) Prof. Mauricio X. Coutrim

Química Analítica Avançada

QUI 154 Química Analítica V Análise Instrumental. Aula 4 Potenciometria

QUI 070 Química Analítica V Análise Instrumental. Aula 7 Química Eletroanalítica

Eletroquímica. Eletroquímica: Pilhas Galvânicas. Potencial de redução. Força eletromotriz. Equação de Nernst. Electrólise.

QUI 070 Química Analítica V Análise Instrumental. Aula 7 Química Eletroanalítica

Química Geral e Inorgânica. QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin. Eletroquímica

Cobre + Íons. Prata. Eletroquímica CURSO DE FÍSICOF

Eletroquímica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

Cursos Técnicos Integrados ao Ensino Médio

Eletroquímica. Profa. Marcia Margarete Meier. Disciplina de Química Geral Profa. Marcia Margarete Meier

QUI 070 Química Analítica V Análise Instrumental. Aula 4 Química Eletroanalítica

Volumetria de Óxido-redução

INTRODUÇÃO À ELETROQUÍMICA

APLICAÇÕES DOS POTENCIAIS PADRÃO DE ELETRODO

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE QUIMICA DISCIPLINA: FÍSICO-QUÍMICAII

1- Números de oxidação (Nox) Indicam a espécie que perde elétrons e a que ganha elétrons, ou seja, é a carga elétrica da espécie química.

Redox: objectivos principais

ELETROQUÍMICA. Prof a. Dr a. Carla Dalmolin

LISTA DE EXERCÍCIOS Eletroquímica

ÓXIDO-REDUÇÃO REAÇÕES REDOX : CONCEITO E IMPORTÂNCIA PILHAS E BATERIAS POTENCIAL DE ELETRODO CORROSÃO E PROTEÇÃO ELETRÓLISE

TEMA: EQUILÍBRIO REDOX

INTRODUÇÃO À ELETROQUÍMICA Prof. Dr. Patricio R. Impinnisi Departamento de engenharia elétrica UFPR

CÉLULAS GALVÂNICAS OU CÉLULAS ELECTROQUÍMICAS

1º Semestre Msc.: Marcos Rodrigues Facchini Cerqueira Profa.: Maria Auxiliadora Costa Matos

REAÇÕES DE ÓXIDO-REDUÇÃO

Célula eletroquímica ou galvânica: permite interconversão de energia química e elétrica

Química A MESTRADO INTEGRADO EM ENGENHARIA DO AMBIENTE. 1º Semestre /2013. Doutor João Paulo Noronha.

Reações Redox Número de Oxidação Semi-Reações

Departamento de Química Inorgânica IQ / UFRJ IQG 128 / IQG ELETRÓLISE

CQ049 FQ Eletroquímica.

Reacções de Redução/Oxidação. Redox

14ª LISTA - EXERCÍCIOS DE PROVAS - Eletroquímica

Eletroquímica. Profa. Marcia Margarete Meier. Disciplina de Química Geral Profa. Marcia Margarete Meier

Aula EQUILÍBRIO DE OXIDAÇÃO E REDUÇÃO METAS

Reacções de Oxidação-Redução

Estudo das reações químicas para geração de energia.

QUIMICA I. Eletroquímica. Profa. Eliana Midori Sussuchi

SOLUÇÃO PRATIQUE EM CASA

Colégio FAAT Ensino Fundamental e Médio

E cel = E catodo - E anodo E cel = 0,337 ( 0,763) E cel = 1,100 V. ZnSO 4(aq) 1,0 mol L -1 CuSO 4(aq) 1,0 mol L -1

Reacções de oxidação-redução em solução aquosa. Livro Química Inorgânica Básica na página da cadeira no Moodle Capítulo 4, p.

É a perda de elétrons. É o ganho de elétrons

Oxirredução IDENTIFICAÇÃO O QUE SOFRE ENTIDADE O QUE FAZ. Oxidante ganha e - ( NOX) oxida o redutor redução

ELETROQUÍMICA. paginapessoal.utfpr.edu.br/lorainejacobs. Profª Loraine Jacobs DAQBI

Capítulo by Pearson Education

ELETRODO OU SEMIPILHA:

TEMA: TITULAÇÕES REDOX

SISTEMAS REDOX. OXIDAÇÃO: perda de elétrons por parte de uma espécie REDUÇÃO : fixação (ganho) de elétrons por parte de uma espécie

André Silva Franco ASF Escola Olímpica de Química Julho de 2011

Experiência 11 PILHA DE DANIELL PILHA DE DANIELL

VO VO V 3+ - V 2+

Redução e oxidação. Housecroft cap. 8. Oxidação e redução

Trataremos da lei limite de Debye-Hückel e definiremos as células

REACÇÕES DE OXIDAÇÃO-REDUÇÃO (REDOX)

ELETROQUÍMICA. paginapessoal.utfpr.edu.br/lorainejacobs. Profª Loraine Jacobs DAQBI

QUÍMICA. Transformações Químicas e Energia. Eletroquímica: Oxirredução, Potenciais Padrão de Redução, Pilha, Eletrólise e Leis de Faraday - Parte 4

ELETROQUÍMICA OU. Profa. Marcia M. Meier QUÍMICA GERAL II

ELETROQUÍMICA. 1. Introdução

GOVERNO DO ESTADO DO RIO DE JANEIRO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA ESCOLA TÉCNICA ESTADUAL REPÚBLICA

ELETROQUÍMICA Profº Jaison Mattei

REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA

Eletrólitos e Não Eletrólitos

ELETROQUÍMICA: PILHAS GALVÂNICAS

para as soluções e pressão para gases. Identificar o par

O que esses dispositivos tem em comum? São dispositivos móveis. O que faz os dispositivos móveis funcionarem?

REVISÃO DE QUÍMICA CEIS Prof. Neif Nagib

e - Zinco ZnSO 4 Zn(s) Zn 2 Zn(s) Zn 2+ (aq) + 2 e - + 0,76 V Cu(s) Cu 2+ (aq) + 2 e - - 0,34 V

PMT AULAS 1 E 2 Augusto Camara Neiva. PMT Augusto Neiva

Reações em Soluções Aquosas

Reações com transferência de elétrons: oxirredução

Resumo e Listas Exercicios

01) O elemento X reage com o elemento Z, conforme o processo: Nesse processo: Z 3 + X Z 1 + X 2. b) X ganha elétrons de Z. d) X e Z perdem elétrons.

POTENCIAIS DE REDUÇÃO PADRÃO A 25 0 C

CORROSÃO E ELETRODEPOSIÇÃO

Reações Químicas GERAL

REAÇÕES QUÍMICAS PRODUZINDO CORRENTE ELÉTRICA CORRENTE ELÉTRICA PRODUZINDO REAÇÃO QUÍMICA PROF. RODRIGO BANDEIRA

PAGQuímica 2011/1 Exercícios de Eletroquímica

Resposta Capítulo 17: Eletroquímica: Pilhas

Reações com transferência de elétrons: oxirredução

UDESC 2017/1 QUÍMICA. Comentário. Temperatura inicial: 25 o C ou 298 K Temperatura final: 525 o C ou 798 K Variação de 500 K

PROFESSORA: Núbia de Andrade. DISCIPLINA: Química SÉRIE: 3º. ALUNO(a): Ba 0 / Ba 2+ // Cu + / Cu 0

HIDROMETALURGIA E ELETROMETALURGIA. Prof. Carlos Falcão Jr.

REAÇÕES QUÍMICAS. É o fenômeno pelo qual uma ou mais substâncias são transformadas em outra(s).

Aula 7 EQUILÍBRIO QUÍMICO. Kleber Bergamaski

Resp.: Na estrutura temos ¼ de átomos de ouro, portanto 6 quilates.

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 28 TURMA ANUAL

EXERCÍCIOS DE ELETROQUÍMICA

Eletroquímica. Métodos/Técnicas - Eletroquímicas. Físico-química III/DAQBI/UTFPR - João Batista Floriano. Técnicas Eletroquímicas

01) (CESGRANRIO-RJ) Considere a pilha representada abaixo. Cu(s) Cu 2+ Fe 3+, Fe 2+ Pt(s) Assinale a afirmativa falsa.

Quí. Allan Rodrigues Monitor: João Castro

ANÁLISE DE MANGANÊS NA PIROLUSITA

PILHAS ELETROQUÍMICAS

Fe, Fe 2+ (0,02M) Cu 2+ (0,2M), Cu

Prática 8. Eletroquímica Transformações Físico-químicas que podem produzir ou consumir energia elétrica

Transcrição:

REAÇÕES DE ÓXIDO-REDUÇÃO A Química Analítica moderna tem por base a medida dos Sinais Analíticos, relacionados às transformações de propriedades dos materiais ao longo de uma Análise Química. Entre estes Sinais Analíticos, destacam-se as medidas de certas propriedades elétricas, tais como POTENCIAL, CORRENTE, RESISTÊNCIA ELÉTRICA (e seu inverso: CONDUTÂNCIA ELÉTRICA) e ainda outros sinais, correlacionados com as concentrações das espécies de interesse analítico, característicos das Técnicas Eletroquímicas Analíticas. O estudo da extensão de reações de oxi-redução ou simplesmente EQUILÍBRIO REDOX, envolve o fenômeno de transferência de cargas. O principal objetivo é estabelecer fundamentos teóricos sobre a habilidade que uma substância tem de reagir como doadora ou aceptora de elétrons. 1

REAÇÕES DE ÓXIDO-REDUÇÃO Assim, o estudo do Equilíbrio REDOX e de Técnicas REDOX Titulométricas clássicas é uma introdução à Eletroquímica Analítica Instrumental. Os aspectos fundamentais da transferência de elétrons em processos REDOX correlacionados com a medida de POTENCIAIS, são muito importantes para o entendimento dos princípios da TITULOMETRIA REDOX e, também, da aplicação de Técnicas Eletroquímicas Analíticas Instrumentais Avançadas, empregando os sinais analíticos POTENCIAL, CORRENTE, RESISTÊNCIA, CARGA ELÉTRICA e suas principais variantes tais como CORRENTE-TEMPO, CARGA-TEMPO, POTENCIAL-TEMPO. Em uma reação de oxi-redução ocorre a variação do número de oxidação das espécies envolvidas. 2

REAÇÕES DE ÓXIDO-REDUÇÃO Os elétrons são transferidos de um reagente para outro. Por que estudar as reações de óxido-redução? -desenvolvimento de novas baterias -prevenção à corrosão -produção industrial de Cl 2, F 2, Al, Cu, NaOH, etc. -reações redox de interesse biológico Importância: -econômica -ambiental -segurança 3

DESCARTE DE BATERIAS 4

CORROSÃO DO CONCRETO 5

CONCEITOS Oxidação: é um processo que resulta na perda de um ou mais elétrons pelas substâncias (átomos, íons ou moléculas). seu estado de oxidação altera-se para valores mais positivos. Redução: é um processo que resulta em ganho de um ou mais elétrons pelas substâncias (átomos, íons ou moléculas). seu estado de oxidação atinge valores mais negativos (ou menos positivos). Agente oxidante: é aquele que aceita elétrons e é reduzido durante o processo. Agente redutor: é aquele que perde elétrons e que se oxida no processo. A redução e a oxidação sempre ocorrem simultaneamente. 6

SEMI-CÉLULAS As reações de óxido-redução podem ser divididas em 2 semi-reações: Ce 4+ + e - Ce 3+ redução do Ce 4+ Fe 2+ Fe 3+ + e - oxidação do Fe 2+ Sistemas redox simples: são aqueles nos quais somente elétrons são trocados entre as formas oxidadas e reduzidas da substância. a Ox + ne - b Red Cu 2+ + 2e - Cu (s) Zn Zn 2+ + 2e - Cu 2+ + Zn Zn 2+ + Cu Mesmo número de elétrons não é difícil o BM e BC 7

SEMI-CÉLULAS Estequiometria 2:1 Fe 3+ + e - Fe 2+ Sn 2+ Sn 4+ + 2e - 2Fe 3+ + Sn 2+ 2Fe 2+ + Sn 4+ Sistemas combinados redox e ácido-base: envolvem não só a troca de elétrons, mas também prótons são transferidos, como em qualquer sistema ácido-base. 8

Mn 7+ + 5e - Mn 2+ fase redox Instável em água, hidrolisa Mn 7+ + 4H 2 O MnO 4- + 8H + MnO 4- + 8H + + 5e - Mn 2+ + 4H 2 O Moléculas Ácido dehidroascórbico C 6 H 6 O 6 + 2H + + 2e - C 6 H 8 O 6 Ácido ascórbico 9

BALANCEAMENTO 2MnO 4- + H 2 O 2 + 6H + 2MnO 4- + 3H 2 O 2 + 6H + 2MnO 4- + 5H 2 O 2 + 6H + 2MnO 4- + 7H 2 O 2 + 6H + 2Mn 2+ + 3O 2 + 4H 2 O 2Mn 2+ + 4O 2 + 6H 2 O 2Mn 2+ + 5O 2 + 8H 2 O 2Mn 2+ + 6O 2 + 10H 2 O MnO 4- + 8H + + 5e - Mn 2+ + 4H 2 O H 2 O 2 O 2 + 2H + + 2e - Quantidade de elétrons liberados pelo agente redutor = Quantidade de elétrons capturados pelo agente oxidante 10

EXEMPLOS Fe 3+ e Sn 2+ Fe 3+ + e - Fe 2+ 2Fe 3+ + Sn 2+ 2Fe 2+ + Sn 4+ Sn 2+ Sn 4+ + 2e - BrO 3- e I - BrO 3- + 6H + + 6e - Br - + 3H 2 O 2I - I 2 + 2e - BrO 3- + 6H + + 6I - Br - + 3I 2 + 3H 2 O CdS dissolvido em HNO 3 a quente HNO 3 + 3H + + 3e - NO + 2 H 2 O CdS Cd 2+ + S 2- S 2- S + 2e- 2HNO 3 + 6H + + 3CdS 2NO + 3Cd 2+ + 3S + 4H 2 O 11

MnO 4- e Mn 2+ MnO 4- + 4H + + 3e - MnO 2 + 2H 2 O Mn 2+ + 2H 2 O MnO 2 + 4H + + 2e -? C 3 H 8 O 3 (glicerina) e Cr 2 O 7 2- Cr 2 O 7 2- + 14H + + 6e - 2Cr 3+ + 7H 2 O C 3 H 8 O 3 + 3H 2 O 3CO 2 + 14H + + 14e -? 12

TREINO Oxidação da base citrato por KMnO 4 em meio alcalino Oxidação do hexanitrito-cobalto(ii) com KMnO 4 em meio ácido Dica: Co(NO 2 ) 6 3- + H 2 O Co 2+ + NO 3- + H + + e - 13

REAÇÕES REDOX PARA COMPOSTOS ORGÂNICOS Em todos os exemplos focalizados até agora, a ênfase foi dada a compostos inorgânicos, sendo que os princípios e os fundamentos estabelecidos, também são válidos para compostos orgânicos de um modo geral. Quando se falam em processos orgânicos, porém, vale uma regra geral: A REDUÇÃO de uma molécula orgânica corresponde, usualmente, ao aumento de seu conteúdo de hidrogênio e à diminuição do seu conteúdo em oxigênio. R C O OH [H] [O] + - R C O H DIMINUIÇÃO DO CONTEÚDO EM OXIGÊNIO O exemplo acima é genérico e mostra a transformação de ácido carboxílico em aldeído. 14

REAÇÕES REDOX PARA COMPOSTOS ORGÂNICOS Do mesmo modo, a conversão de aldeído em álcool, representa uma redução orgânica: R C O H [H] [O] + - R H C H OH AUMENTO DO CONTEÚDO EM HIDROGÊNIO Por sua vez, os alcoóis podem ser reduzidos ao correspondente alcano, em um processo típico de redução orgânica: H [H] + H DIMINUIÇÃO DO R C H OH [O] - R C H H CONTEÚDO EM OXIGÊNIO 15

REAÇÕES REDOX PARA COMPOSTOS ORGÂNICOS A OXIDAÇÃO de uma molécula orgânica corresponde, usualmente, ao aumento de seu conteúdo de oxigênio e à diminuição do seu conteúdo em hidrogênio. De maneira mais geral, a oxidação de um composto orgânico é uma reação em que ocorre o aumento do conteúdo de qualquer elemento mais eletronegativo que o carbono: R H C H H Estado de oxidação MAIS BAIXO [H] [O] R H C H OH [H] [O] R C O H [H] [O] O R C OH Estado de oxidação MAIS ALTO 16

Muitas reações de oxidação-redução podem ser realizadas de duas formas que são fisicamente muito diferentes. 1 A reação é desenvolvida colocando-se o oxidante e o redutor em contato direto, um recipiente adequado. Cu (s) + 2Ag + Cu 2+ + 2Ag (s) 2 A reação é realizada em uma célula eletroquímica na qual os reagentes não estão em contato direto uns com os outros. 17

CÉLULAS ELETROQUÍMICAS Uma célula eletroquímica consiste de dois condutores elétricos denominados ELETRODOS, mergulhados em uma solução de eletrólitos selecionados de forma adequada. Para que uma corrente comece a fluir na célula é necessário: (1)que os eletrodos estejam conectados externamente, através de um condutor metálico (2)que as duas soluções de eletrólitos estejam em contato, permitindo o movimento de íons entre elas (3)que uma reação de transferência de elétrons possa ocorrer em cada um dos eletrodos 18

CÉLULAS ELETROQUÍMICAS Isola os reagentes, mas mantém o contato elétrico entre as 2 metades da célula CIRCUITO ABERTO: os eletrodos não estão conectados externamente (voltímetro de resistência interna elevada é conectado) 19

CÉLULAS GALVÂNICAS Energia potencial da célula é convertida em energia elétrica 20

FLUXO DE ELÉTRONS 21

TIPOS DE CÉLULAS ELETROQUÍMICAS Células galvânicas ou voltaicas: Armazenam energia elétrica. Nessas células, as reações que ocorrem nos eletrodos tendem a prosseguir espontaneamente e produzem um fluxo de elétrons do ânodo para o cátodo através do condutor externo. Cu (s) + 2Ag + Cu 2+ + 2Ag (s) Cátodo: é o eletrodo no qual ocorre a redução. Ânodo: é o eletrodo no qual ocorre a oxidação. Célula eletrolítica: requer uma fonte externa de energia elétrica para sua operação. 2Ag (s) + Cu 2+ 2Ag + + Cu (s) 22

CÉLULAS ELETROLÍTICAS 23

REPRESENTAÇÃO ESQUEMÁTICA dois limites, um em cada extremidade da ponte salina Cu Cu 2+ (0,0200 mol L -1 ) Ag + (0,0200 mol L -1 ) Ag limite entres fases, ou interface, no qual o potencial se desenvolve 24

EXERCÍCIO Célula de hidrogênio e prata/cloreto de prata nas condições padrão EXEMPLO Multímetro ÂNODO ELÉTRONS Ponte Salina ph 2 = 1,0 atm [H + ] = 1,0 mol L -1 Bolhas de hidrogênio CÁTODO Solução de Cl - saturada com AgCl Ag 0 Lâmina de platina platinizada AgCl (S) 25

POTENCIAL DE JUNÇÃO LÍQUIDA Potencial de junção líquida: resulta de diferenças nas velocidades nas quais os íons presentes nos compartimentos das células e na ponte salina migram através das interfaces. Um potencial de junção líquida pode alcançar valores tão elevados mas também podem ser desprezíveis se o eletrólito da ponte salina tiver um ânion e um cátion que migrem aproximadamente na mesma velocidade. 26

MOVIMENTO DE CARGAS 27

POTENCIAIS DE ELETRODO Circuito aberto A diferença de potencial que se desenvolve entre os eletrodos da célula é uma medida da tendência da reação em prosseguir a partir de um estado de não-equilíbrio para a condição de equilíbrio. 28

POTENCIAIS DE ELETRODO Célula descarregando com o tempo até atingir o equilíbrio 29

POTENCIAIS DE ELETRODO Após o equilíbrio ser atingido 30

VARIAÇÃO DO POTENCIAL DA CELA APÓS A PASSAGEM DE CORRENTE ATÉ O ALCANCE DE EQUILÍBRIO 31

DIFERENÇA DE POTENCIAL O potencial de uma célula eletroanalítica está diretamente relacionado às atividades dos reagentes e dos produtos da reação da célula e indiretamente relacionado às concentrações molares. a X = X [X] = coef. de atividade Cu (s) + 2Ag + Cu 2+ + 2Ag (s) Equilíbrio: K a( Cu a( Ag 2 ) ) 2 Fora do equilíbrio: Q a( Cu a( Ag 2 ) ) i 2 i G = RTlnQ - RTlnK = RTlnQ/K O potencial da célula E cel está relacionado à energia livre da reação G por: G = -nfe cel 32

DIFERENÇA DE POTENCIAL E cel RT nf ln Q RT nf ln K E 0 cel RT nf ln K EQUAÇÃO DE NERNST E cel E 0 cel RT nf ln Q 33

POTENCIAIS DE ELETRODO Célula eletroquímica é composta de 2 reações de meia-cela Cada reação de meia-cela possui um potencial de eletrodo associado, medido em relação a um padrão de referência 2 Ag + + 2e - 2Ag(s) Cu 2+ + 2e - Cu(s) E cela = E cátodo E ânodo = E direita - E esquerda Reação espontânea: E cela > 0 34

ELETRODO PADRÃO DE HIDROGÊNIO Potencial desse eletrodo foi associado a zero em todas as temperaturas por convenção. 2H + (aq) + 2e - H 2(g) 35

POTENCIAL PADRÃO DE ELETRODO (E 0 ) O potencial padrão de eletrodo de uma semi-reação é definido como seu potencial de eletrodo quando as atividades dos reagentes e produtos são todas iguais a unidade. 36

POTENCIAL PADRÃO DE ELETRODO (E 0 ) 37

POTENCIAL PADRÃO DE ELETRODO (E 0 ) 38

CONVENÇÕES DE SINAIS IUPAC (1953) Potencial de eletrodo: exclusivamente para semi-reações representadas na forma de reduções. Termo potencial de oxidação pode ser utilizado para representar o processo no sentido contrário, mas jamais pode ser denominado potencial de eletrodo. Sinal do potencial de eletrodo (+ ou -) indica se a redução é espontânea ou não em relação ao EPH. 39

EXERCÍCIO Calcule o potencial termodinâmico da seguinte célula e a variação de energia livre associada à reação da célula. Cu Cu 2+ (0,0200 mol L -1 ) Ag + (0,0200 mol L -1 ) Ag Ag + + e - Ag(s) Cu 2+ + 2e - Cu(s) E 0 = 0,799 V E 0 = 0,337 V 40

ATIVIDADE Calcule o potencial para a seguinte célula empregando atividade: Zn ZnSO 4 (0,05 mol L -1 ), PbSO 4 (sat) Pb E 0 PbSO 4 /Pb = -0,350 V E 0 Zn 2+ /Zn = -0,763 V SO 2-4 = 0,4 nm Zn 2+ = 0,6 nm 1 cz 2 2 log 0,509z 2 1 3,3 41

EXERCÍCIO Faça a representação esquemática da seguinte célula, indicando a reação que ocorreria espontaneamente se a célula estivesse em curto circuito e calcule o potencial da mesma. E 0 Fe 3+ / Fe 2+ = +0,771 V E 0 UO 2+ 2, H + / U 4+ = +0334 V [UO 2+ 2 ] = 0,0150 mol L -1 [Fe 3+ ] = 0,0250 mol L -1 [U 4+ ] = 0,200 mol L -1 [Fe 2+ ] = 0,0100 mol L -1 [H + ] = 0,0300 mol L -1 42

CONSTANTES DE EQUILÍBRIO REDOX K eq [ Cu [ Ag Cu (s) + 2Ag + Cu 2+ + 2Ag (s) 2 2 ] ] E Cu Cu 2+ (x mol L -1 ) Ag + (y mol L -1 ) Ag E - E E cela direita esquerda 2 Ag /Ag Cu E /Cu Após o equilíbrio ser atingido 43

E cela 0 E direita E esquerda No equilíbrio os potenciais de eletrodo para todas as semi-reações em um sistema de oxidação-redução são iguais. Exemplo: Calcule a constante de equilíbrio para a reação: 2MnO 4- + 3Mn 2+ + 2H 2 O 5MnO 2 (s) + 4H + 2MnO 4- + 8H + + 6e - MnO 2 (s) + 4H 2 O 3MnO 2 (s) + 12H + + 6e - 3Mn 2+ + 6H 2 O E 0 = +1,695 V E 0 = +1,23 V 44

ATIVIDADE Para a célula eletroquímica Pt(s) VO 2+ (0,116 mol L -1 ), V 3+ (0,116 mol L -1 ), H + (10,57 mol L -1 ) Sn 2+ (0,0318 mol L -1 ), Sn 4+ (0,0318 mol L -1 ) Pt(s), E = -0,289 V. Escreva a reação global da célula eletroquímica e calcule a sua constante de equilíbrio. 45