Professor Bruno Alves



Documentos relacionados
Aula 16 Mudança de Variável em Integrais Múltiplas

MAT Cálculo Diferencial e Integral III para Engenharia 1 ā Prova - 1o semestre de 2005

Lista 4. 2 de junho de 2014

MAT Cálculo Diferencial e Integral para Engenharia II

MA211 - Lista 09. Coordenadas Esféricas e Mudança de Variáveis 7 de outubro de 2015

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

LISTA DE CÁLCULO III. (A) Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: (e) (f) (g) (h)

Soluções abreviadas de alguns exercícios

MAT Cálculo Diferencial e Integral II - 2 semestre de 2012 Registro das aulas e exercícios sugeridos - Atualizado

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

UNIVERSIDADE FEDERAL FLUMINENSE

Capítulo 1. x > y ou x < y ou x = y

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

9 ạ Lista de Exercícios de Cálculo II Integrais Triplas: Coordenadas Retangulares, Cilíndricas e Esféricas; Mudança de Variáveis

Lista de Exercícios - Integrais

APLICAÇÕES DA DERIVADA

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

GAAL /1 - Simulado - 1 Vetores e Produto Escalar

Lista 1 - Cálculo III

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Exercícios resolvidos P2

Integrais Duplas. 1. Em cada caso, esboce a região de integração e calcule a integral: x 2 y 2 dxdy; (a) (b) e x+y dxdy; (c) x 1+y 3 dydx; (d)

Aula 13 Técnicas de Integração

Universidade Federal de Viçosa. MAT Cálculo Diferencial e Integral III 2a Lista /II

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

II Cálculo Integral em R n

1. Extremos de uma função

3.3 Espaço Tridimensional - R 3 - versão α 1 1

Resolução da Prova da Escola Naval Matemática Prova Azul

Departamento de Matemática - UEL Ulysses Sodré. Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

CAMPOS CONSERVATIVOS NO PLANO

I. Cálculo Diferencial em R n

Universidade Federal do Paraná

INTEGRAIS MÚLTIPLAS. [a, b] e [c, d], respectivamente. O conjunto P = {(x i, y j ) i = 0,..., n, j = i=1

CEFET/RJ - Cálculo a Várias Variáveis Professor: Roberto Thomé rthome@cefet-rj.br homepage: LISTA DE EXERCÍCIOS 01

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

Primitva. Integral Indenida

Universidade Federal da Bahia

Integral de funções de uma variável

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

9. Derivadas de ordem superior

Ponto, reta e plano no espaço tridimensional, cont.

Aplicações de Derivadas

Capítulo 5: Aplicações da Derivada

MAT Cálculo a Várias Variáveis I Lista de Exercícios sobre Integração Dupla

Aula 18 Elipse. Objetivos

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

Revisão de integrais simples. Definimos a soma S n = f(t i ) x i. chamada como soma. de Riemann de f sobre [a, b] i=1

4. Curvas planas. T = κn, N = κt, B = 0.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

x + y + 1 (2x 4y) = 10. (x 3) 5 y 2 + (x 3) 4 y 4 (x 2 6x y 6 ) 3

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Exercícios Teóricos Resolvidos

Somatórias e produtórias

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

Integrais Múltiplos. Slide 1. c 2000, 1998 Maria Antónia Carravilla FEUP

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Números Complexos. Capítulo Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Cálculo Diferencial e Integral 2: Integrais Duplas

6. Geometria, Primitivas e Transformações 3D

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

PROFº. LUIS HENRIQUE MATEMÁTICA

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:

O Teorema da Função Inversa e da Função Implícita

Lista 1 para a P2. Operações com subespaços

Complementos de Análise Matemática

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Exercícios Adicionais

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES

1 Módulo ou norma de um vetor

a = 6 m + = a a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

Cálculo em Computadores trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios Coordenadas polares 5

CI202 - Métodos Numéricos

CÁLCULO II - MAT0023. Nos exercícios de (1) a (4) encontre x e y em termos de u e v, alem disso calcule o jacobiano da

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici

MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013

Nesta aula iremos continuar com os exemplos de revisão.

Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por

Conceitos Fundamentais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x /2 1 3/2 2. 2) y = -x

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GEOMETRIA ANALÍTICA ASSUNTO: CÔNICAS

12. FUNÇÕES INJETORAS. FUNÇÕES SOBREJETORAS 12.1 FUNÇÕES INJETORAS. Definição

Åaxwell Mariano de Barros

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

a 1 x a n x n = b,

Exp e Log. Roberto Imbuzeiro Oliveira. 21 de Fevereiro de O que vamos ver 1. 2 Fatos preliminares sobre espaços métricos 2

As cônicas. c, a 2 elipse é uma curva do plano em que qualquer um de seus pontos, por exemplo,, satisfaz a relação:

Potenciação no Conjunto dos Números Inteiros - Z

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora!

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

Transcrição:

Professor Bruno Alves Engenharia maecânica Engenharia de produção Engenharia de controle e automação Poços de Caldas Segundo semestre de 1

Notas de aula da disciplina Cálculo III ministrada no segundo semestre de 1 na Faculdade Pitágoras - campus Poços de Caldas pelo professor Bruno Alves. Algumas informações importantes sobre a disciplina podem ser encontradas no portal do aluno, o qual pode ser acessado pelo site da faculdade, a saber: http://www.faculdadepitagoras.com.br/pocosdecaldas. Este material pode ser utilizado por alunos e docentes livremente, desde que citada a fonte e sem fins lucrativos. Quem pretende apenas a glória não a merece. Mário Quintana i

Sumário 1 Integrais duplas 1 1.1 Integral definida.......................... 1 1. Áreas e integrais duplas..................... 1.3 Integrais iteradas e o teorema de Fubini............. 7 1.3.1 Integrais iteradas..................... 7 1.3. O teorema de Fubini................... 9 1.4 Integrais duplas sobre regiões quaisquer............. 1 1.5 Mudanças de coordenadas em integrais duplas......... 17 1.5.1 Mudanças de coordenadas quaisquer.......... 17 1.5. Coordenadas polares................... 1.6 Aplicações da integral dupla................... 7 1.6.1 Área de superfícies.................... 7 1.6. Algumas aplicações em física............... 8 1.6.3 Algumas aplicações em estatística............ 9 Integrais triplas 31.1 Volume e integrais triplas.................... 31. Mudanças de coordenadas em integrais triplas......... 37..1 Mudanças de coordenadas quaisquer.......... 37.. Coordenadas cilíndricas................. 38..3 Coordenadas esféricas.................. 4.3 Aplicações da integral tripla................... 43 ii

.3.1 Volume de um sólido................... 43.3. Algumas aplicações em física............... 44.3.3 Algumas aplicações em estatística............ 46 iii

Capítulo 1 Integrais duplas Neste capítulo, estenderemos a idéia de integral definida para funções de duas variáveis e aplicaremos algumas ferramentas para o cálculo destas, dentre elas, o teorema de Fubini e as coordenadas polares. 1.1 Integral definida Primeiro, vamos lembrar da definição de integral de funções de uma variável para a seguir, extendermos a idéia para funções de duas variáveis. Se f(x) é uma funçaõ definida no intervalo [a, b], começamos dividindo este intervalo em n subintervalos [x i 1, x i ], todos de comprimento x b a (basta n tomar x i a + i b a, para i, 1,..., n). epois, tomamos um ponto n x i no intervalo [x i 1, x i ], e então, formamos a soma de Riemann n f(x i ) x. (1.1) i 1

Fazendo n em (1.1), obtemos o que chamamos de integral definida da função f, no intervalo [a, b], isto é: b a f(x)dx lim n n f(x i ) x. (1.) i Quando f(x), a soma de Riemann pode ser interpretada como a soma da área de retângulos que, juntos, aproximam a área entre o gráfico de f(x), o eixo das abscissas e as retas x a e x b (de fato, a integral definida (1.), representa o valor exato da área em questão). 1. Áreas e integrais duplas Considere agora uma função f(x, y) definida num retângunlo R [a, b] [c, d] {(x, y) R a x b e c y d}, e consideremos que f(x, y). O gráfico desta função será uma superfície de equação z f(x, y). Seja então S {(x, y, z) R 3 a x b, c y d e z f(x, y)}. Vamos determinar o volume de S.

e maneira análoga à integral definida (onde dividiamos um pequeno intervalo em vários subintervalos), vamos dividir o retângulo R em vários retângulos menores, e, para isto, basta dividirmos os intervalos [a, b] em m e [c, d] em n subin- subintervalos [x i 1, x i ], todos de comprimento x b a m tervalos [y j 1, y j ], todos de comprimento y d c n, depois, cortamos R por retas paralelas aos eixos coordenados passando pelos pontos x i e y j, formando assim os subretângulos R i,j [x i 1, x i ] [y j 1, y j ] {(x, y) R x i 1 x x i e y j 1 y y j }, cada um deles com área A x y. Escolhendo um ponto (x ij, y ij) em cada retângulo R ij, podemos aproximar o pedaço do sólido S dentro do retângulo R ij pelo paralelepípedo de base R ij e altura f(x ij, y ij), cujo volume será f(x ij, y ij) A. 3

Repetindo este procedimento para cada retângulo R ij e depois somando o volume de cada um dos paralelepipedos obtidos, obtemos uma aproximação do volume do sólido S, a saber V (S) m n f(x ij, yij) A. (1.3) i j Note que quanto maior o número de subretângulos que dividimos R (ou seja, quanto maior m e n), melhor a nossa aproximação do sólido S. Assim, fazendo m, n em (1.3), obtemos V (S) lim m,n m i n f(x ij, yij) A. (1.4) j A expressão em (1.4) é a que usamos para definir o volume do sólido S em qustão, e, assim como no caso da integral definida para funções de uma variável, esta intimamente ligada com a nossa definição de integral, dada a seguir. efinição 1.1. Se f(x, y) é uma função definida num retângulo R R, definimos a integral de f sobre o retângulo R por R f(x, y)da R f(x, y)dxdy : lim m,n m i n f(x ij, yij) A, (1.5) j 4

quando este limite existe (pode-se provar que o limite acima existe sempre que f é uma função contínua, ou mesmo quando f não é contínua, mas o conjunto onde f é descontínua é pequeno, num certo sentido). Observação 1.. O somatório duplo dado em (1.3) é chamado de soma dupla de Riemann, enquanto que a integral definida em (1.5), é chamada de integral dupla de Riemann. Note que a única restrição na escolha de (x ij, y ij) é que este ponto esteja no retângulo R ij [x i 1, x i ] [y j 1, y j ]. Procuraremos então, desde então, tomar (x ij, yij) como o ponto médio de R ij, isto é, tomaremos x ij como o ponto médio de [x i 1, x i ] ( x ij x i 1+x i ) e y ij como o ponto médio de [y j 1, y j ] ( yij y j 1+y j ), obtendo assim a seguinte regra: Propriedade 1.3 (Regra do ponto médio). Se (x ij, y ij) é o ponto médio de R ij, vale então que R f(x, y)da m i n f(x ij, yij) A. (1.6) Exemplo 1.4. Usando a regra do ponto médio, com m n, encontre o valor aproximado de R (xy y )da, onde R [, 1] [1, 3]. j Solução: Usando a regra do ponto médio com m n, dividimos [, 1] em dois pedaços, pelos pontos x, x 1 1 e x 1, assim, x 1,j 1 4 e x,j 3 4. ividimos agora [1, 3] em dois pedaços, pelos pontos y 1, y 1 e y 3, assim, yi,1 3 e y i, 5. A área A de cada um destes subretângulos será igual a 1, assim: R (xy y )da i f(x ij, yij) A j f(x 11, y 11) A + f(x 1, y 1) A + f(x 1, y 1) A + f(x, y ) A 5

( 1 f 4, 3 ) ( 1 1 + f 4, 5 ) ( 1 3 + f 4, 3 ) 1 + f [ 1 ( ) ] [ 3 3 4 1 + 1 ( ) ] 5 5 4 1 [ + 3 ( ) ] [ 3 3 4 1 + 3 5 4 ( 3 4, 5 ) 1 ( ) ] 5 1 3 4 5 + 5 4 9 4, 5 (o valor exato deste integral é 4, 666...). Propriedades 1.5. As integrais duplas tem propriedades semelhantes as propriedades da integral definida, a saber: (i) [f(x, y) + g(x, y)]da f(x, y)da + g(x, y)da; R R R (ii) cf(x, y)da c f(x, y)da, onde c é uma constante; R R (iii) f(x, y)da g(x, y)da, sempre que vale f(x, y) g(x, y), em R R todo (x, y) R. Exercícios 1.6. Nos exercícios a seguir, use a regra do ponto médio com as informações dadas para fazer o que se pede. 1) Com m e n 3, estime a área do sólido entre a superfície z xy e o retangulo R [, 4] [1, 7]. ) Com m 4 e n, estime a área do sólido entre a superfície z y x e o retangulo R [ 1, 3] [, ]. 3) Com m 3 e n 3, estime a o valor de R (x y )da, onde R {(x, y) R 1 x e 1 y 4}. 4) Com uma calculadora, m 4 e n 4, estime a o valor de y R e x da, onde R [, 1] [, 1]. 6

5) Com uma calculadora, m 4 e n 4, estime a o valor de R cos(x y )da, onde R [, 1] [, 1]. 6) Usando a tabela de valores abaixo, estime o valor de f(x, y)da R para m n e R [1, 3] [, 4]. 1.3 Integrais iteradas e o teorema de Fubini 1.3.1 Integrais iteradas Note que, tanto para integrais de funções de uma variável, quanto para funções de duas variáveis, o cálculo de uma integral definida (simples ou dupla) a partir da definição é bastante trabalhoso. No caso de uma variável, tinhamos uma ferramenta poderosa, o teorema fundamental do cálculo. Para funções de duas (ou até mesmo de mais variáveis), temos o teorema de Fubini, que garante que para calcularmos uma integral dupla (ou tripla, ou...), é suficiente calcularmos duas (ou três, ou...) integrais simples. Seja f(x, y) uma função de duas variáveis, contínua num retângulo R [a, b] [c, d]. Usaremos a notação b f(x, y)dx para indicar que y está fixado a e estamos integrando f(x, y) em relação a x apenas (de maneira semelhante a que faziamos no calculo de derivadas parciais). Temos então que A(y) b f(x, y)dx é um valor que depende apenas de y, ou seja, uma função de y. a 7

Integrando agora a função A de y c até y d, obtemos d c A(y)dy d c [ b a ] f(x, y)dx dy. (1.7) A expressão do lado direito de (1.7) é o que chamamos de integral iterada, isto é d b c a f(x, y)dxdy d c [ b a ] f(x, y)dx dy, (1.8) indicando que integramos a função f(x, y) primeiro em relação a variável x, de x a a x b e depois integramos o resultado em relação a variável y, de y c a y d. e maneira análoga, obtemos b d a c f(x, y)dydx b a [ d Exemplo 1.7. Calcule as seguintes integrais iteradas c ] f(x, y)dy dx. (1.9) 1 1 1 xe y dxdy e 1 1 1 xe y dydx Solução: 1 1 1 xe y dxdy 1 1 1 [ 1 1 1 e y [ x e y dy 1 ] y1 [ e y y 1 e e 1 ] xe y dx dy ] x1 dy x 8

1 1 1 xe y dydx 1 1 1 [ 1 ] xe y dy dx 1 [xe y dy] y1 y 1 dx x(e e 1 )dx [ x(e e 1 ) e e 1 ] x1 x Note que, em ambos os casos, obtivemos o mesmo resultado quando integramos a função f, independente da ordem de integração. 1.3. O teorema de Fubini Em geral, o teorema a seguir, nos garante que isto, sob certas condições, será sempre verdade que podemos integrar sob a ordem que nos for mais conveniente, além de nos dar um método prático para o calculo de integrais duplas, que consiste em calcular duas integrais simples Teorema 1.8 (de Fubini). Se f é uma função de duas variáveis, contínua no retângulo R [a, b] [c, d], então f(x, y)da b d f(x, y)dydx d b R a c c a f(x, y)dxdy. e modo mais geral, tal resultado ainda é válido quando f é uma função limitada em R e é descontínua apenas num número pequeno de pontos de R, num certo sentido. Exercícios 1.9. Nos exercícios a seguir, calcule as integrais para a região retângular dada. 9

1) R (x y y )da, R {(x, y) R 1 x e y }. ) (xy cos(x))da, R {(x, y) R R x π e 1 y 1}. 3) y R e x da, R {(x, y) R x 1 e y 1}. 4) R y ln(x)da, R [1, ] [ 1, 1]. 5) tg(xy)da, R [, 1] [, π]. R 6) Calcule o valor exato da integral dada no exemplo 1.4. 7) Encontre o volume do sólido entre o plano 1x 3y + 6z 13 e o retângulo R [1, 3] [, 4]. Esboce o seu gráfico. 8) Encontre o volume do sólido entre a superfície z 5 xy os planos x 1, x 1, y 1 e y. Esboce o seu gráfico. 1.4 Integrais duplas sobre regiões quaisquer No calculo de integrais simples, integramos sempre apenas em intervalos, mas para integrais duplas, nem sempre a região na qual nos interessa integrar uma função é retangular. Vamos supor que R é uma região limitada na qual f está definida. Como é limitada, podemos tomar um retângulo R R que contenha, assim, extendemos a nossa função f da seguinte maneira: { f(x, y) quando (x, y) ; F (x, y) quando (x, y) R\. efinição 1.1. efinimos a integral dupla da função f sobre a região por f(x, y)da : F (x, y)da. R 1

Observação 1.11. Note que a definição 1.1 faz sentido, uma vez que os valores de F dentro de coincidem com os de f, ennquanto que, fora de, F é nula, não contibuindo assim para a soma de Riemann. Note também, que tal definição não depende da escolha do retângulo R, desde que este contenha a região. Note também que a função F definida acima, em geral, é descontínua, mas ainda podemos calcular sua integral visto que, F será descontínua na fronteira de, além dos pontos onde f é descontínua. esde que este conjunto seja pequeno num certo sentido, não haverá problema no cálculo da integral de F em R, consequentemente, no cálculo da integral de f em. Quando f(x, y), a integral f(x, y)da pode ser interpretada como o volume do sólido entre a região e a superfície z f(x, y). Muitas vezes, a região é limitada por curvas que são gráficos de funções (y g i (x), e/ou x h j (y)). Nestes casos (repartindo a região em subregiões, se necessário), podemos descrever a região por uma das seguintes 11

formas: {(x, y) R a x b e g 1 (x) y g (x)} e {(x, y) R h 1 (y) x h (y) e c y d}, tornando assim o cálculo da integral de f em respectivamente f(x, y)da f(x, y)da b g (x) a g 1 (x) d h (y) c h 1 (y) f(x, y)dydx e f(x, y)dxdy. Ambos os casos podem ser representados nas figuras abaixo Exemplo 1.1. Calcule xyda, onde é a região limitada pelas parábolas y x e y 1 + x. 1

Solução: Primeiro, devemos encontrar os pontos de interseção de tais parábolas. Igualando as equações, obtemos: x 1 + x x 1 x ±1 y. Vemos então que {(x, y) R 1 x 1 e x y 1 + x }, e assim: xyda 1 1+x 1 1 1 1 1 1 1 1 1 1 x xydydx ] 1+x [ xy dx x [ x(1 + x ) x(x ) [ x + x 3 + x 5 4x5 [ ] x + x 3 3x 5 dx 1 [ x + x 3 3x 5] dx 1 1 [ ] x 1 + x4 4 3x6 6 1 ] dx ] dx 13

[ x + x 4 x 6 ] 1 1 1 [ 1 + 1 4 1 6 1 [ 1 1 ]. 1 ( 1) + ( 1) 4 ( 1) 6 ] Exemplo 1.13. Encontre o volume do sólido entre o parabolóide z x +y e a região no plano xy limitada pela reta y x e pela parábola y x. Solução: A região em questão pode ser descrita de duas maneiras. Resolveremos então tal problema com cada uma destas maneiras. 14

Escrevendo como {(x, y) R x e x y x}, temos: V x x (x + y )dydx ] x [yx + y3 dx 3 x (x 3 + 8x3 3 x4 x6 3 [ ] x 4 4 + 8x4 1 x5 5 x7 1 8 + 3 3 3 5 18 1 16 35. ) dx Agora, escrevendo como {(x, y) R 1 y x y e y 4}, temos: V 4 y 4 4 [ y 5 (x + y )dxdy 1 [ y ] x 3 y 3 + xy dy 1 y [ y 3 3 + y 5 y 3 4 y3 15 + y 7 7 y4 96 y4 8 [ 64 15 + 56 7 8 3 3 16 35. Propriedades 1.14. As integrais duplas tem propriedades semelhantes as propriedades da integral definida, a saber: ] 4 ] ] 4 dy 15

(i) [f(x, y) + g(x, y)]da f(x, y)da + g(x, y)da; R (ii) cf(x, y)da c f(x, y)da, onde c é uma constante; (iii) f(x, y)da g(x, y)da, sempre que vale f(x, y) g(x, y), em todo (x, y) ; (iv) A() 1dA, onde A() representa a área da região. A partir das propriedades (iii) e (iv), pode-se provar a seguinte propriedade (tente provar você mesmo): (v) Se m f(x, y) M, para todo (x, y), então ma() f(x, y)da MA(). Temos ainda uma propriedade muito útil no cálculo das integrais duplas, que garante que podemos dividir uma região em quantas nos forem convenientes, integrar separadamente em cada uma dessas regiões e depois, somar os resultados. (vi) Se 1 e A( 1 ), então f(x, y)da 1 f(x, y)da+ f(x, y)da. Exercícios 1.15. Nos exercícios a seguir, calcule o valor das integrais 1) 1 x 3 ) e y y 3) 1 v 1 (x y)dydx. xdxdy. 1 v dudv. 4) π cosθ e sin θ drdθ. 5) ey da, onde {(x, y) R y 1 e x y}. 6) x x y da, onde {(x, y) R x 1 e y x}. 16

7) y da, onde {(x, y) x +1 R x 1 e y x}. 8) xyda, onde é a região limitada pelos triângulos de vértice (, ), ( 1, 1) e (3, 4). 9) (x y)da, onde é a região limitada pelo círculo de centro na origem e raio. 1) Encontre o volume do sólido limitado pelos planos z x, y x, x+y e z. 11) Encontre o volume do sólido limitado pelos cilindros x + y r e y + z r. 1) Calcule xyda, onde é a região dada na figura abaixo. 1.5 Mudanças de coordenadas em integrais duplas 1.5.1 Mudanças de coordenadas quaisquer No cálculo de integrais de funções de uma variável, temos uma regra para mudança de coordenadas, ou de substituição, a qual se baseia na regra da 17

cadeia para derivadas. A saber: b f(x)dx (a) g(b) f(g(u))g (u)du. (1.1) a g Uma mudança de variáveis pode muitas vezes ser útil no cálculo de integrais duplas, a fim de simplificarmos nossos cálculos. Neste sentido, considere uma transformação T, do plano uv no plano xy, de forma que esta leve bijetivamente uma região S do plano uv numa região R do plano xy e que esta seja de classe C 1, isto é, se T (u, v) (g(u, v), h(u, v)) (x, y), então as funções g e h, de R em R tanham todas as derivadas parciais contínuas. Sendo T bijetora e C 1, T terá inversa T 1, do plano xy no plano uv, a qual será também bijetora e também C 1, digamos T 1 (x, y) (G(x, y), H(x, y)) (u, v) conforme ilustrado abaixo. Exemplo 1.16. Encontre a imagem do quadrado S {(u, v) R u 1 e v 1} pela transformação T definida pelas equações x u v e y uv. (1.11) Solução: A transformação leva a borda da região S na borda da sua imagem. Assim, precisamos apenas encontrar as bordas da imagem de S pela transformação em questão. Cada seguimento que compõe a borda de S será analisado separadamente. O primeiro deles, S 1, dada por v e 18

u 1, assim, substituindo estes valores em (1.11), obtemos x u e v, e como u 1, temos que u 1, assim, x 1. O segundo lado, S, dado por u 1 e v 1. Substituindo em (1.11), obtemos x 1 v e y v, assim, x 1 y e y. Similarmente, o 4 terceiro lado, S 3, dado por u 1 e v 1, nos dá x y 1 e y, 4 enquanto o quarto lado, S 4, dado por u e v 1, donde 1 x e y. Obtemos assim, a situação abaixo. Semelhante ao termo g (u) em (1.1), que é um fator corretor da mudança de variáveis, no caso de integral duplas temos o determinante Jacobiano, ou Jacobiano da transformação T. efinição 1.17. O Jacobiano da transformação T dada por x g(u, v) e y h(u, v) é (x, y) (u, v) : x u y u x v y v x y u v x y v u. Exemplo 1.18. Encontre o Jacobiano da transformação T definida pelas equações x u v e y uv. Solução: (x, y) (u, v) (u v ) u (uv) u (u v ) v (uv) v 19

duplas u v v u u u ( v) v 4u + 4v. Assim, temos o seguinte resultao para mudañça de variáveis em integrais Teorema 1.19 (Mudança de variáveis em integrais duplas). Suponha que T é uma transformação C 1 com Jacobiano não nulo e que transforma uma região S do plano uv numa região R do plano xy de forma bijetora (exeto, no máximo nas bordas destas regiões) e que f seja uma função contínua na região R. Nessas condições, vale R f(x, y)da S f(x(u, v), y(u, v)) (x, y) (u, v) dudv. Exemplo 1.. Calcule o valor da integral x+y da, onde R é a região R x y limitada pelo trapézio de vértices (1, ), (, ), (, ) e (, 1). Solução: Façamos a mudança de variáveis sugerida pela integral R tomando u x + y e v x y, assim, escrevendo x e y em função de u e v, obtemos x 1(u + v) e y 1 (u v), e o Jacobiano da transformação é (x, y) (u, v) 1. ( 1 (u+v)) u ( 1 (u v)) u 1 1 1 1 ( 1 (u+v)) v ( 1 (u v)) v Para encontrarmos a região R do plano uv correspondente a região S pela transformação em questão, notamos que S e a região limitada pelas retas x+y x y da,

y x y x e x y 1, assim, temos que R é limitada por u v v u v e v 1. Temos então que S {(u, v) R v u v e 1 v }, assim R x + y x y da 1 1 1. S S v 1 v 1 1 1 1 u (x, y) v (u, v) dudv u v 1 dudv u 1 v dudv [ ] u v dv v v [ v v ( v) v dv ] dv

Exercícios 1.1. Calcule o Jacobiano das transformações dadas por 1) x u 3v e y v 5u. ) x u v e y u + v. 3) x r cos θ e y r sin θ. 4) x e u+v e y e u v. Encontre a imagem da região S para cada uma das seguintes transformações 5) S [, 3] [, ], x u 3v e y v 5u. 6) S [, 1] [, 1], x v e y u(1 + v ). 7) S é o triângulo de vértices (, ), (1, ) e (1, 1), x u e y v. Calcule as integrais a seguir usando as transformações dadas 8) R x da, onde R é a região limitada pela elipse 9x +4y 36, x u e y 3v. 9) (x 3y)dA, onde R é a região limitada pelo triângulo de vértices R (, ), (1, ) e (, 1), x u + v e y u + v. 1) xyda, onde R é a região do primeiro quadrante limitada pelas R retas y x e y 3x e pelas hiperboles xy 1 e xy3, x u e y v. v 1.5. Coordenadas polares Suponhamos que queremos calcular a integral f(x, y)da, onde R é R uma das regiões da figura abaixo. Nestas condições, é difícil descrever R em coordenadas retângulares (coordenadas cartesianas tradicionais), porém, R pode ser facilmente descrita em coordenadas polares.

Lembremos que as coordenadas polares (r, θ) e as coordenadas retangulares (x, y) de um ponto se relacionam pelas seguintes fórmulas. r x + y x r cos θ y r sin θ, (1.1) onde sempre vale que r e θ π, podendo, obviamente, r e θ estarem sujeitos a restrições mais fortes do que estas, dependendo da região que desejamos descrever. Vamos usar coordenadas polares para nos auxiliar em diversos casos, nos quais a região na qual desejamos integrar uma função f(x, y), pode ser expressa de maneira bem mais simples com o uso destas coordenadas do que 3

com coordenadas cartesianas. Note que a transformação descrita em (1.1) tem o Jacobiano dado por: (x, y) (r, θ) (x) r (y) r (r cos θ) r (r sin θ) r (x) θ (y) θ (r cos θ) θ (r sin θ) θ (cos θ) (r cos θ) ( r sin θ) (sin θ) r cos θ + r sin θ r(cos θ + sin θ) r, e como r x + y, temos o seginte Teorema 1. (Mudança de coordenadas retangulares para coordenadas polares). Se é uma região qualquer do plano cartesiano, vale que: f(x, y)da f(r cos θ, r sin θ)rdrdθ, onde, em cada uma das integrais, consideramos a região descrita nas coordenadas em questão. Exemplo 1.3. Encontre o volume do sólido limitado pelo parabolóide z 1 x y e pelo plano z. Solução: A região do plano xy correspondente, é a limitada pela curva que satisfaz a equação 1 x y, isto é, é aquela limitada pelo círculo x + y 1, a qual pode ser descrita por {(x, y) R x + y 1}, ou, em coordenadas polares {(r, θ) r 1 e θ π}. Assim, temos: V (1 x y )da 4

π 1 π [1 (x + y )]da (r r 3 )drdθ 1 4 dθ π. π (1 r )rdrdθ [ r r4 4 ] 1 dθ Exemplo 1.4. Encontre o volume do sólido limitado pelo parabolóide z x + y, pelo cilindro x + y x e pelo plano z. Solução: A região do plano xy correspondente, é a limitada pela curva que satisfaz a equação x + y x, ou, depois de completarmos quadrados, (x 1) + y 1. Em coordenadas polares, r r cos θ, ou r cos θ. Assim, em coordenadas polares, podemos escrever tal região 5

como {(r, θ) r cos θ e π θ π }. Temos então que V 8 (x + y )da π cos θ π π π π r 3 drdθ 4 cos 4 θdθ 8 ( 1 + cos θ π π π r rdrdθ [ r 4 4 cos 4 θdθ ) dθ π [ 3 θ + sin θ + 1 sin 4θ 8 ] π ] cos θ 3π dθ ( 1 + cos θ ) 1 + cos 4θ dθ Exercícios 1.5. Esboce a região em questão e calcule as integrais a seguir 1) π 13r cos θdrdθ. ) π 3 sin θrdrdθ. 3) xyda, onde é a região limitada pelo cículo de centro na origem e raio 4. 4) cos(x + y )da, onde é a região acima do eixo x limitada pelo círculo de equação x + y 4. 5) yex da, onde é a região do primeiro quadrante limitada pelo círculo de equação x + y 5. Esboce e encontre o volume dos sólidos descritos abaixo 6) Entre da parábola z x +y e a região do primeiro quadrante limitada pelo círculo de centro na origem e raio 1. 7) Entre a esfera de equação x +y +z 16 e fora do cilindo de equação x + y 4. 8) Entre o cone z x + y e a esfera de centro na origem e raio 1. 6

1.6 Aplicações da integral dupla 1.6.1 Área de superfícies Teorema 1.6. ada uma superfície z f(x, y), com (x, y) R, podemos calcular sua área atravez da fórmula A(S) 1 + [f x (x, y)] + [f y (x, y)] da ( ) ( ) z z 1 + + da. x y Exemplo 1.7. Encontre a área da superfície z x + y sobre a região T do plano xy, limitada pelo triângulo de vértices (, ), (1, ) e (1, 1). Solução: A região T do plano xy correspondente, pode ser descrita por T {(x, y) R x 1 e y x}, assim, como z z (x +y) y y A, temos T 1 (x) + + 1dA 1 x 4x + 5dx 1 8 7 x [ 3 (4x + 5) 3 (x +y) x x 4x + 5dydx ] 1 7 5 5 1 x e

1.6. Algumas aplicações em física ensidade e massa Consideremos uma lâmina que ocupa uma região do plano xy de massa variável. Seja ρ(x, y) a função densidade de tal lâmina no ponto (x, y) em unidade de massa por unidade de área, isto é, ρ lim m. Nestas condições A temos que a massa total da lâmina é dada por m ρ(x, y)da. Pode se considerar fisicamente diversos tipos de densidade e aplicar o mesmo modelo, como por exemplo, considerar uma lâmina carregada elétricamente, onde ρ representa a densidade de carga elétrica. Momento e contros de massa Nas mesmas condições acima, definimos o momento em relação ao eixo x de uma lâmina por M x yρ(x, y)da, e, similarmente, o momento em relação ao eixo y é dado por M y xρ(x, y)da. Temos também que as coordenadas (x, y) do centro de massa de uma lâmina são dadas por x M y m 1 xρ(x, y)da e y M x m m 1 yρ(x, y)da, m onde m acima representa a massa da lâmina. 8

Momento de inércia Nas mesmas condições, definimos o momento de inércia em relação ao eixo x de uma lâmina por I x y ρ(x, y)da, e, similarmente, o momento de inércia em relação ao eixo y é dado por I y x ρ(x, y)da. efinimos também o momento de inércia em relação a origem por I O (x + y )ρ(x, y)da I x + I y. 1.6.3 Algumas aplicações em estatística Probabilidade Sejam X e Y duas variáveis aleatórias, como a vida útil de duas componentes de uma máquina. Se f(x, y) é a função densidade conjunta de X e Y, temos que a probabilidade de (X, Y ) estar em uma certa região é dada por (P (X, Y ) ) f(x, y)da. Observação 1.8. Em tais condições, temos que f(x, y) é uma função que nos dá probabilidades, isso singnifica que f(x, y) e f(x, y)da 1. R 9

Valor esperado Nas mesmas condições acima, temos que os valores esperados para X e para Y são dados, respectivamente por µ x xf(x, y)da e µ y yf(x, y)da. Exercícios 1.9. Calcule o centro de massa e o momento de inércia das lâminas dadas abaixo 1) a lâmina definida em [, 1] [, 1] com densidade ρ(x, y) x + 3y. ) a lâmina definida na região circular de centro na origem e raio com densidade ρ(x, y) e x +y. Encontre a área das superfícies dadas 3) a Superfície definida em [ 1, 1] [, 4] de equação z x + 3y. 4) a Superfície definida em [ 1, 1] [ 1, 1] de equação z x y. 5) a Superfície definida em {(x, y) R 1 x +y 9 de equação z xe y. Calcule o valor esperado e as probabilidades pedidas abaixo com base na função densidade conjunta (dica: encontre primeiro o valor de C) { C(x + y) quando (x, y) [, 1] [, 1]; f(x, y) caso contrário. 6) (P (X, Y ) [, 5] [, 5]). 7) (P (X, Y ) ), onde {(x, y) R 1 x 9 e 1 y x}. 8) (P (X, Y ) ), onde é a região limitada pelo círculo de centro na origem e raio 49. 3

Capítulo Integrais triplas Neste capítulo, estudaremos a integral de funções de três variáveis, e veremos que a idéia é bastante semelhante a estudada no capítulo anterior. e fato, a maioria dos resultados é uma generalização do caso para duas variáveis, e podem também ser generalizadas para funções de quatro ou mais variáveis sem grandes dificuldades (apesar de, a partir de quatro variáveis, perdemos a visualização geométrica)..1 Volume e integrais triplas Suponhamos inicialmente, uma função f(x, y, z) definida numa região B limitada por um paralelepípedo, a saber B [a, b] [c, d] [r, s] {(x, y, z) R 3 a x b, c y d e r z s}. O primeiro passo a fim de integrar f em B é dividir B em subparalelepípedos. Para isto, basta dividir os intervalos [a, b] em l subintervalos [x i 1, x i ], todos de mesmo comprimento ( x b a ), [c, d] em m subintervalos [y l j 1, y j ], todos de mesmo comprimento ( y d c) e [r, s] em n subintervalos [z m k 1, z k ], todos de mesmo comprimento ( z s r ). Traçando planos paralelos aos planos cartesianos, n passando pelos pontos x i, y j e z k, dividimos B em lmn subparalelepípedos B ijk [x i 1, x i ] [y j 1, y j ] [z k 1, z k ], mostrado na figura abaixo. Cada um 31

desses subparalelepípedos com volume V x y z. Assim, formamos a soma tripla de Riemann, a saber l m n f(x ijk, yijk, zijk) V, i1 j1 k1 onde (x ijk, y ijk, z ijk ) é o ponto médio de B ijk. Temos então a seguinte efinição.1. efinimos a integral tripla de uma função f sobre um paralelepípedo B por B f(x, y, z)dv : lim l,m,n l i1 m j1 k1 n f(x ijk, yijk, zijk) V. A integral tripla existe sempre que a função f é contínua no paralelepípedo B, ou ao menos, é descontínua apenas num conjunto pequeno de pontos num certo sentido. 3

Temos também o Teorema. (Teorema de Fubini para integrais triplas). Se f é uma função contínua no paralelepípedo B [a, b] [c, d] [r, s], então f(x, y, z)dv b d s B a c r f(x, y, z)dzdydx. Mais que isso, podemos integrar em relação à x, y e z na ordem que julgarmos mais conveniente. Exemplo.3. Calcule B xy z 3 dv, onde B [ 1, 1] [, ] [1, 4] Solução: B xy z 3 dv 1 4 1 1 1 1 1 1 1 1 1 1 [ xy z 4 xy z 3 dzdydx ] 4 4 [ 55xy [ 85xy 3 4 17xdx [ 85x ] 1 1. 4 ] dx dydx 1 ] dydx efinimos agora agora a integral tripla de uma função f sobre uma região E qualquer do espaço tridimensional (um sólido). e maneira semelhante àquela feita em integrais duplas, consideremos um paralelepípedo B qualquer e definimos uma função F em B, de forma que F coincida com f em E, e F fora de E. Temos então a seguinte 33

efinição.4. Nas condições acima, definimos f(x, y, z)dv : F (x, y, z)dv. E B No caso em que E pode ser descrita por E {(x, y, z) R 3 a x b, g 1 (x) y g (x) e u 1 (x, y) z u (x, y)} (podendo ser x entre funções de y e z, e y entre funções de z, ou...), podemos calcular f(x, y, z)dv E por f(x, y, z)dv : b g (x) u (x,y) E a g 1 (x) u 1 (x,y) F (x, y, z)dzdydx, podendo ser trocada a ordem de integração, conforme nos for conveniente. Exemplo.5. Calcule E x + z dv, onde E é a região limitada pelo parabolóide y x + z e o plano y 4. 34

Solução: Note que o sólido E pode ser descrito por E {(x, y, z) R 3 x, x y 4 e y x z y x }, assim temos E x + z dv 4 x y x x + z y x dzdydx. A expressão acima está correta, porém não é muito fácil de se calcular tal integral. Podemos tentar reescrever a região E, de forma a facilitar o cálculo da integral. Note que podemos escrever a região E de outra forma, a saber E {(x, y, z) R 3 x + z 4 e x + z y 4}, assim E x + z dv 4 x +z x + z dyda, onde é a região limitada pelo círculo de centro na origem e raio do plano xz. Temos então E x + z dv 4 x + z dyda x +z [ y ] 4 x + z da x +z (4 x z ) x + z da. Escrevendo em coordenadas polares (x r cos θ e z r sin θ), temos E x + z dv π π π (4 x z ) x + z da [ 4r 3 (4 r ) r rdrdθ (4r r 4 )drdθ 3 r5 5 ] dθ 35

[ (16 96)θ 15 18π 15. Exercícios.6. Nos exercícios abaixo, esboce o sólido E e calcule ] π 1) E (xz y 3 )dv, onde E [, 3] [ 1, 1] [, 1]. ) E xyzdv, onde E {(x, y, z) R3 x 1, x y x e z x + y}. 3) E xdv, onde E {(x, y, z) R3 y 4, x 16 y e x z x}. 4) E exy dv, onde E é a região abaixo do plano z x + y + 1 e pela região do plano xy limitada pelas curvas y, x 1 e y x. 5) E (x + y + z 3 )dv, onde E é a região limitada pelo tetraedro de vértices (,, ), (1,, ), (,, ) e (,, 3). Propriedades.7. As integrais triplas tem propriedades semelhantes as propriedades da integral dupla. São elas: (i) [f(x, y, z)+g(x, y, z)]dv f(x, y, z)dv + g(x, y, z)dv ; E E E (ii) cf(x, y, z)dv c f(x, y, z)dv, onde c é uma constante; E E (iii) f(x, y, z)dv g(x, y, z)dv, sempre que vale f(x, y, z) E E g(x, y, z), em todo (x, y, z) E; A partir das propriedades (iii) e (iv), pode-se provar a seguinte propriedade (tente provar você mesmo): (iv) Se m f(x, y, z) M, para todo (x, y, z) V, então mv (E) f(x, y, z)dv MV (E). E 36

Temos ainda uma propriedade muito útil no cálculo das integrais triplas, que garante que podemos dividir um sólido em quantos nos forem convenientes, integrar separadamente em cada um desses, e depois, somar os resultados. (v) Se E E 1 E e V (E 1 E ), então f(x, y, z)dv E E 1 f(x, y, z)dv + E f(x, y, z)dv.. Mudanças de coordenadas em integrais triplas..1 Mudanças de coordenadas quaisquer e modo semelhante ao feito em integrais duplas, vamos estudar como fazer uma mudança de variáveis em integrais triplas. Seja T uma transformação que leva um sólido S no espaço uvw num sólido R no espaço xyz, pelas equações x g(u, v, w) y h(u, v, w) z k(u, v, w). Se T é uma transformação bijetora (exeto, no máximo, nas fronteiras de R e S) e C 1, podemos escrever T 1, isto é, podemos escrever x, y e z em função de u, v e w. Temos então a seguinte efinição.8. O Jacobiano da transformação T dada por x g(u, v, w), y h(u, v, w) e z k(u, v, w) é (x, y, z) (u, v, w) : x u y u z u x v y v z v x w y w z w. 37

.. Coordenadas cilíndricas Vimos que muitas vezes, o uso de coordenadas polares facilitava o cálculo de integrais duplas. Veremos agora uma transformação de coordenadas bastante parecida, as coordenadas cilíndricas, as quais muitas vezes facilitam o cálculo das integrais triplas. ado um ponto do espaço tridimensional, suas coordenadas cartesianas (x, y, z) se relacionam com suas coordenadas cilíndricas (r, θ, z) atravez das seguintes equações r x + y x r cos θ y r sin θ z z, (.1) onde, em (.1), sempre vale que r e θ π, podendo, obviamente, r e θ estarem sujeitos a restrições mais fortes do que estas, dependendo da região que desejamos descrever. Note que tais coordenadas são basicamente as coordenadas polares, se ignoramos a coordenada z, uma vez que esta não sofre nenhuma alteração. 38

O Jacobiano da transformação dada em (.1) é dado por (x, y, z) (r, θ, z) Temos então o seguinte x x x r θ z y y y. r θ z z z z r θ z r cos θ r cos θ r θ r sin θ r sin θ r θ z z r θ cos θ r sin θ sin θ r cos θ. 1 r cos θ + r sin θ r. r cos θ z r sin θ z z z Teorema.9 (Mudança de coordenadas cartesianas para coordenadas cilíndricas). Seja E um sólido qualquer, então vale que: E f(x, y, z)da E. f(r cos θ, r sin θ, z)rdrdθdz, onde, em cada uma das integrais, consideramos o sólido E descrita nas coordenadas em questão. Exemplo.1. Calcule a massa de um sólido E, limitado pelo cilindro x + y 1, pelo plano z 4 e pelo parabolóide z 1 x y, onde a densidade em cada ponto é igual a distância deste ponto ao eixo z. Solução: Usando coordenadas cilíndricas, temos que o cilindo em questão é dado por r 1, enquanto o parabolóide é dado por z 1 r, assim, E {(r, θ, z) θ π, r 1 e 1 r z 4}. Visto também que a distância de um ponto (x, y, z) para o eixo z é dada por x + y r, temos que a solução é dada por 39

E x + y dv π 1 4 π 1 π 1 π π 1π 5. r rdzdrdθ 1 r [ ] zr 4 drdθ 1 r ( 3r + r 4) drdθ [r 3 + r5 5 6 5 dθ ] 1 dθ Observação.11. Algumas vezes, é conveniente considerar x ou y como a variável que não se altera, e fazer a adaptação necessária...3 Coordenadas esféricas Um outro tipo de transformação, também muito útil no cálculo de integrais triplas é a transformação em coordenadas esféricas, que como o proóprio nome diz, nos ajudarão quando a região na qual desejamos integrar é uma região esféria (ou semelhante). ado um ponto do espaço tridimensional, 4

suas coordenadas cartesianas (x, y, z) se relacionam com suas coordenadas esféricas (ρ, θ, φ) atravéz das seguintes fórmulas ρ x + y + z x ρ sin φ cos θ y ρ sin φ sin θ z ρ cos φ(.) onde, em (.), sempre vale que r, θ π e θ π, podendo, obviamente, r, θ e φ estarem sujeitos a restrições mais fortes do que estas, dependendo da região que desejamos descrever. O Jacobiano da transformação dada em (.) é dado por (x, y, z) (r, θ, z) x x x ρ θ φ y y y ρ θ φ. z z z ρ θ φ ρ sin φ cos θ ρ sin φ cos θ ρ sin φ cos θ ρ θ φ ρ sin φ sin θ ρ sin φ sin θ ρ sin φ sin θ ρ θ φ. ρ cos φ ρ cos φ ρ cos φ ρ θ φ sin φ cos θ ρ sin φ sin θ ρ cos φ cos θ sin φ sin θ ρ sin φ cos θ ρ cos φ sin θ. cos φ ρ sin φ ρ sin 3 φ cos θ ρ sin φ cos φ sin θ ρ sin φ cos φ cos θ ρ sin 3 φ sin θ ρ sin 3 φ cos θ ρ sin 3 φ sin θ ρ sin φ cos φ sin θ ρ sin φ cos φ cos θ 41

ρ sin 3 φ(cos θ + sin θ) ρ sin φ cos φ(sin θ + cos θ) ρ sin 3 φ ρ sin φ cos φ ρ sin φ(sin φ + cos φ) ρ sin φ, assim, como ρ e φ π sin φ, temos que assim, temos o seguinte (x,y,z) (r,θ,z) ρ sin φ, Teorema.1 (Mudança de coordenadas cartesianas para coordenadas esféricas). Se E é um sólido qualquer, vale que: E f(x, y, z)da E f(ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ)ρ sin φdρdφdθ, onde, em cada uma das integrais, consideramos o sólido E descrita nas coordenadas em questão. Exemplo.13. Calcule E e(x +y +z ) 3 dv, onde E é a região limitada pela esfera de centro na origem e raio 1. Solução: Veja que podemos escrever E {(x, y, z) R 3 x + y + z 1} em coordenadas cartesianas. Em coordenadas esféricas, temos E {(ρ, θ, φ) ρ 1, θ π e φ π}. Assim, temos E e (x +y +z ) 3 dv π π 1 π π π π π π 4 [ e ρ3 e ρ3 ρ sin φdρdφdθ 3 sin φ ] 1 dφdθ e 1 sin φdφdθ 3 [ ] π 1 e cos φ dθ 3 (e 1)dθ 3

4 π(e 1). 3 Exercícios.14. Esboce as regiões em questão e calcule as seguintes integrais 1) E x(y +z )dv, onde E é a região limitada pelo cilindro y +z 1 e os planos x 1 e x 1. ) E ez dv, onde E é a região limitada pelo cilindro x + y 5, pelo parabolóide z 1 + x + y e pelo plano xy. 3) Encontre a massa da região limitada pela esfera de equação x + y + z a, onde a densidade em cada ponto é proporcional à distância deste ponto ao eixo z. 4) xyzdv, onde E é a região limitada pelas esferas de centro na E origem e raios 1 e. 5) E y z dv, onde E é a região limitada pelo plano yz e pelo parabolóide x 1 y z. 6) x dv, onde E é a região limitada pelo elipsóide de equação E 1 (dica: use a transformação dada por u ax, v by e y b + z c z cz). a +.3 Aplicações da integral tripla.3.1 Volume de um sólido ada um sólido E R 3, temos que seu volume é dado por V (E) dv. E 43

Exemplo.15. Encontre o volume do tetraedro de vértices (,, ), (1,, ), (, 1, ) e (,, 1). Solução: Temos que tal região é a limitada pelos planos x, y, z e z 1 x y, assim V 1 1 x 1 x y 1 1 x 1 1 6. dzdydx (1 x y)dydx 1 x + x dx.3. Algumas aplicações em física ensidade e massa Consideremos um sólido E do plano xy de massa variável. Seja ρ(x, y, z) a função densidade de tal lâmina no ponto (x, y, z) em unidade de massa por unidade de volum, isto é, ρ lim m. Nestas condições temos que volume V total do sólido é dado por m ρ(x, y, z)dv. e Pode se considerar fisicamente diversos tipos de densidade e aplicar o mesmo modelo. 44

Momento e contros de massa Nas mesmas condições acima, definimos o momento em relação ao plano xy de um sólido por M xy E zρ(x, y, z)dv, similarmente, o momento em relação ao planoyz é dado por M yz E xρ(x, y, z)dv, e, o momento em relação ao planoxz é dado por M xz E yρ(x, y, z)dv. Temos também que as coordenadas (x, y, z) do centro de massa de um sólido são dadas por x M yz m, y M xz m onde m acima representa a massa do sólido. e z M xy m Momento de inércia Nas mesmas condições, definimos o momento de inércia em relação ao eixo x de um sólido por I x (y + z )ρ(x, y, z)dv, E similarmente, o momento de inércia em relação ao eixo y é dado por I y (x + z )ρ(x, y, z)dv, E 45

e, o momento de inércia em relação ao eixo z é dado por I z (x + y )ρ(x, y, z)dv..3.3 Algumas aplicações em estatística E Probabilidade Sejam X, Y e Z três variáveis aleatórias, como a vida útil de três componentes de uma máquina. Se f(x, y, z) é a função densidade conjunta de X, Y e Z, temos que a probabilidade de (X, Y, Z) estar em uma certa região E é dada por (P (X, Y, Z) E) f(x, y, z)dv. Observação.16. Em tais condições, temos que f(x, y, z) é uma função que nos dá probabilidades, isso singnifica que f(x, y, z) e f(x, y)dv R 3 1. Exercícios.17. Aplique os conhecimentos adiquiridos e resolva os seguintes problemas 1) Encontre o centro de massa e o momento de inercia em relação a cada um dos planos xy, xz e yz da metade superior da esfera de centro na origem e raio 1, cuja densidade em cada ponto é dada por ρ(x, y, z) 1 + x + y + z. ) Encontre o valor de C para que a função f dada abaixo seja uma função densidade conjunta { C(x + y + z 3 ) quando (x, y, z) [, 1] [, 1] [, 1]; f(x, y, z) caso contrário. E 46

3) Para a mesma função do exercício anterior, calcule P ((X, Y, Z) E), onde E é a reg ião do primeiro octante entre as esferas de centro na origem e raios 1 e 3 respectivamente. 47

Referências Bibliográficas [1] LEITHOL, Louis. Cálculo com geometria analítica, V.. 3. ed. São Paulo: HARBRA, 1994. ISBN: 97885946 [] STEWART, James. Cálculo, V.. 5. ed. São Paulo: Cengage, 5. ISBN: 978851484 [3] THOMAS, George B. Cálculo, V.. 11. ed. São Paulo: Addison Wesley, 8. ISBN: 978858863936 [4] ANTON, Howard A. Cálculo, V.. 8. ed. Porto Alegre: Bookman, 7. ISBN: 9788563181 [5] HUGHES-HALLET, eborah; GLEASON, Andrew M; FLATH, aniele E. Cálculo e aplicações. São Paulo: Edgard Blucher, 1999. ISBN: 9788511786 [6] LARSON, Ron; EWARS, Bruce. Cálculo com aplicações. 6. ed. Rio de Janeiro: LTC, 5. ISBN: 978851614333 [7] SIMMONS, George Finlay. Cálculo com geometria analítica, V.. São Paulo: Makron-Books,1987. ISBN: 9788534614689 [8] LIMA, Elon Lages. Curso de análise, v.. Rio de Janeiro: IMPA, 4. ISBN: 97885441 48