Aula 32 Curvas em coordenadas polares

Documentos relacionados
Aula 31 Funções vetoriais de uma variável real

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Coordenadas Polares. Exemplos: Representar em um sistema de coordenadas polares, os seguintes pontos: d) P 4,

Capítulo 19. Coordenadas polares

Aula 4. Coordenadas polares. Definição 1. Observação 1

Equações paramétricas das cônicas

Curvas Planas em Coordenadas Polares

Universidade Federal da Bahia

Equações Paramétricas e Coordenadas Polares. Copyright Cengage Learning. Todos os direitos reservados.

Aula 19 Elipse - continuação

Obter as equações paramétricas das cônicas.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

Parametrização de algumas curvas planas

SISTEMAS DE COORDENADAS

Geometria Analítica I

Lista de Exercícios de Cálculo Infinitesimal II

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

Curvas em coordenadas polares

Provas de. Cálculo II 02/2008. Professor Rudolf R. Maier

Geometria Analítica II - Aula 5 108

LISTA DE EXERCÍCIOS #5 - ANÁLISE VETORIAL EM FÍSICA

1 Cônicas Não Degeneradas

MÓDULO 1 - AULA 21. Objetivos

(b) a quantidade de cloro no tanque no instante t;

Cálculo Vetorial / Ilka Rebouças Freire / DMAT UFBA

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece.

8.1 Áreas Planas. 8.2 Comprimento de Curvas

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

MAT Poli Cônicas - Parte I

Prof André Costa de Oliveira. 1 Ano do Ensino médio; Trigonometria: Introdução: ângulos e arcos na circunferência;

A integral definida Problema:

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

Aula 14 Círculo. Objetivos

Geometria Analítica II - Aula 7 178

ÁLGEBRA 1. Departamento de Matemática UDESC - Joinville

f, da, onde R é uma das regiões mostradas na

Extensão da tangente, secante, cotangente e cossecante, à reta.

Mudança de variável na integral dupla(continuação)

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

FACULDADE DE CIÊNCIA E TECNOLOGIA CURSOS DE ENGENHARIA

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

Equação Geral do Segundo Grau em R 2

Universidade Federal da Bahia

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff

Geometria Analítica II - Aula

carga do fio: Q. r = r p r q figura 1

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

Aula 2 A distância no espaço

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Equação da reta. No R 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05

Objetivos. em termos de produtos internos de vetores.

PROFESSOR: RICARDO SÁ EARP

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

Universidade Federal da Bahia

MAT001 Cálculo Diferencial e Integral I

1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1

(a) Determine a velocidade do barco em qualquer instante.

Aula 15 Superfícies quádricas - cones quádricos

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Planejamento do Curso de MATA03 Cálculo B Semestre 2008.

UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

Notas de Aula de Matemática Básica I

Semestre 2017 Ximena Mujica - DMat - UFPR 3

ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).

5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R.

MAT1153 / LISTA DE EXERCÍCIOS : REGIÕES DO PLANO, INTEGRAIS DUPLAS E VOLUMES : 1(d), 1(f), 1(h), 1(i), 1(j).

CURVATURA DE CURVAS PLANAS

Integrais Triplas em Coordenadas Polares

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

6.1 equações canônicas de círculos e esferas

Aula 10 Regiões e inequações no plano

Objetivos. Aprender a propriedade reflexiva da parábola.

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

MAT001 Cálculo Diferencial e Integral I

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).

Aula 17 Superfícies quádricas - parabolóides

Ricardo Bianconi. Fevereiro de 2015

Aula 9 Cônicas - Rotação de sistemas de coordenadas

Aula Exemplos diversos. Exemplo 1

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. Paridade das Funções Seno e Cosseno. Primeiro Ano do Ensino Médio

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Funções de uma variável real a valores em R n

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares

UNIVERSIDADE FEDERAL DE PERNAMBUCO

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

Transcrição:

MÓDULO 3 - AULA 32 Aula 32 Curvas em coordenadas polares Objetivo Aprender a usar as coordenadas polares para representar curvas planas. As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir. Vamos começar com um exemplo que servirá como motivação. Exemplo 32.1 A curva parametrizada pela equação α(t) = t (cos 2πt, sen 2πt), t 0 é um exemplo de uma espiral. Ela é chamada de espiral de Arquimedes. A distância de α(t) até a origem é α(t) = t 2 cos 2 2πt + t 2 sen 2 2πt = t. Ou seja, na medida em que t aumenta, o ponto α(t) afasta-se da origem. Em contrapartida, ao marcarmos o ponto α(t) = (t cos 2πt, t sen 2πt) no plano, percebemos que, para t > 0, 2πt é o ângulo que α(t), visto como um vetor, faz com a parte positiva do eixo Ox. Assim podemos compreender a dinâmica da curva: o vetor α(t) gira em torno da origem, com sentido anti-horário, dando uma volta em torno dela sempre que t varia sobre um intervalo de comprimento 1, enquanto o mesmo alonga-se, fazendo sua outra extremidade afastar-se da origem. O traço obtido é o seguinte: 175 CEDERJ

Coordenadas Polares θ r Como você pode ver no exemplo anterior, para determinar um ponto no plano, é necessário ter duas informações. No caso das coordenadas cartesianas, essas informações são as distâncias orientadas do ponto até os eixos coordenados Ox e Oy. No caso das coordenadas polares, essas duas informações serão uma distância e um ângulo. A primeira, usualmente representada por r, é a distância entre o ponto e origem, que será o pólo do sistema, daí o nome coordenadas polares. Quando a distância r é não nula, o segmento que une a origem ao ponto, ou o ponto visto como um vetor, faz um certo ângulo com o semi-eixo positivo Ox. Este ângulo, usualmente denotado por θ, é a segunda informação. Vamos usar a seguinte convenção para representar as coordenadas polares: (r, θ) polar Exemplo 32.2 As coordenadas cartesianas do ponto (2 2, π/4) polar são (2, 2) e as coordenadas polares do ponto (0, 2) são (2, 3π/2) polar. Para marcar o ângulo, iniciamos no semi-eixo Ox positivo e giramos no sentido anti-horário até esgotar o ângulo dado. CEDERJ 176

MÓDULO 3 - AULA 32 Usando essa convenção, podemos marcar também ângulos maiores do que 2π assim como ângulos negativos, da mesma forma como lidamos com os argumentos das funções trigonométricas. Lembre-se de que estamos interpretando esses ângulos como coordenadas. Muito bem, para os ângulos maiores do que 2π, seguimos medindo, dando tantas voltas quantas necessárias, até esgotar o valor dado. Por exemplo, (2, π/4) polar = (2, 9π/4) polar = (2, 17π/4) polar. Para marcar os ângulos negativos, fazemos a mesma coisa, porém girando no sentido horário. Dessa forma, (2, π/4) polar = (2, 7π/4) polar. A relação entre as coordenadas cartesianas e as coordenadas polares é dada pelas fórmulas { x = r cos θ y = r sen θ e, portanto, x 2 + y 2 = r 2. Podemos usar as coordenadas polares para expressar curvas, assim como o fazemos com as coordenadas cartesianas. Geralmente, expressamos r em função de θ. Você verá que certas curvas são mais facilmente expressas em termos de coordenadas polares. Exemplo 32.3 As equações x 2 + y 2 = 4 e x = 3 representam, em coordenadas cartesianas, a circunferência do círculo de raio 2, com centro na origem, e a reta paralela ao eixo Oy e que contém o ponto (3, 0). Em coordenadas polares, a equação da circunferência é, simplesmente, r = 2. Ou seja, r = 2 determina o conjunto de todos os pontos do plano cuja distância até a origem é 2. No entanto, a equação cartesiana x = 3 ganha a seguinte forma polar r cos θ = 3. Para expressarmos r em função de θ, temos de nos preocupar com a variação de θ. Assim, se θ ( π/2, π/2), podemos colocar r = 3 sec θ. 177 CEDERJ

Note que, na medida em que θ π/2 +, a distância r do ponto até a origem cresce para o infinito, pois lim θ π/2 + sec θ = +. Exercício 1 Encontre a equação polar da reta y = 2. Exemplo 32.4 Vamos encontrar a equação polar da circunferência determinada por (x 1) 2 + y 2 = 1. Para isso, reescrevemos essa equação da seguinte maneira: (x 1) 2 + y 2 = 1 x 2 2x + 1 + y 2 = 1 x 2 + y 2 = 2x. Agora usamos as equações x 2 + y 2 = r 2 e x = r cos θ para obter r 2 = 2r cos θ. Assim, a equação polar fica r = 2 cos θ. Um pouco de cuidado, agora, com a variação de θ. Para percorrer toda a circunferência, uma vez, basta fazer θ ( π/2, π/2]. Veja que devemos incluir o ângulo π/2 para obter r = 0. Note que a origem não tem a coordenada θ bem definida. Além disso, estamos sempre considerando r um número positivo. No entanto, quando lidamos com equações tais como a do exemplo anterior, r = 2 cos θ, percebemos a conveniência de estabelecer a seguinte convenção: ( r, θ) polar = (r, θ + π) polar. Assim, o ponto de coordenadas cartesianas (1, 3) pode ser representado em coordenadas polares como: (2, π/3) polar = (2, 5π/3) polar = ( 2, 4π/3) polar = ( 2, 2π/3) polar. CEDERJ 178

MÓDULO 3 - AULA 32 A equação r = 2 cos θ, então, também faz sentido quando cos θ assume valores negativos. Veja que, se θ [π/2, 3π/2), a equação representa a mesma circunferência: (x 1) 2 + y 2 = 1. Exercício 2 Determine a equação polar da circunferência determinada por Exemplo 32.5 (Revisitado) x 2 + (y + 2) 2 = 4. Vamos encontrar uma equação polar para a curva determinada pela parametrização α(t) = (t cos 2πt, t sen 2πt). Essa equação paramétrica é dada em termos de coordenadas cartesianas. Isto é, x(t) = t cos 2πt e y(t) = t sen 2πt. Primeiro, vamos considerar uma equação paramétrica dada em termos das coordenadas polares: { r = t θ = 2πt. Assim, a equação da curva, em termos de coordenadas polares, pode ser obtida das equações anteriores, eliminando o parâmetro t: Exercício 3 r = θ 2π, θ 0. Faça um esboço das seguintes curvas, dadas por equações escritas em termos de coordenadas polares: (a) θ = π 3, r 0; (b) r = θ π, θ 0; (c) r = 3 csc θ, π/4 < θ < 3π/4; { r = t (d) θ = t. Há várias técnicas que permitem esboçar curvas dadas em termos de coordenadas polares. Tais técnicas levam em conta simetrias e outras características geométricas que podem ser detectadas nas equações. O estudo de tais técnicas, porém, foge ao escopo deste curso, no qual queremos apresentar uma introdução a esse tema. A seguir, apresentaremos uma série de curvas com suas equações e nomes, para que você tenha uma idéia das possibilidades. 179 CEDERJ

Exemplo 32.6 As curvas dadas por equações do tipo r = 2 a (1 + cos θ) são chamadas de cardióides. Na figura a seguir, estão representadas quatro cardióides, onde os valores de a são 1, 2, 3 e 4. 8 6 4 4 8 12 16 8 Observe que as curvas são simétricas em relação ao eixo Ox. Isso pode ser percebido nas equações da seguinte forma: r(θ) = 2 a (1 + cos θ) = r( θ), pois cos θ = cos ( θ). Exemplo 32.7 A equação r = 2 cos 2θ, θ [0, 2π] determina uma curva chamada rosácea de quatro folhas. Veja que seu gráfico apresenta simetrias em relação aos dois eixos cartesianos. 2-2 2-2 CEDERJ 180

MÓDULO 3 - AULA 32 Exemplo 32.8 As curvas correspondentes a equações da forma r = a ± b cos θ ou r = a ± b sen θ são conhecidas como limaçons. As cardióides, apresentadas no exemplo 32.5, são casos particulares de limaçons, quando a = b. Há dois tipos principais de curvas, dependendo de quem é maior, a ou b. A palavra limaçon quer dizer, em francês, caracol. Aqui estão quatro exemplos, com suas respectivas equações. -3-1 1-1 3 1-1 1 r = 1 2 cos θ r = 1 + 2 sen θ -4 4 4-4 r = 4 3 sen θ r = 4 + 3 cos θ Chegamos ao fim da aula. E agora vamos aos exercícios, começando com os que foram propostos ao longo da aula. 181 CEDERJ

Exercícios Exercício 1 Encontre a equação polar da reta y = 2. Solução: Devemos usar a fórmula que relaciona y com as variáveis de coordenadas polares: y = r sen θ. Assim, obtemos: r sen θ = 2 r = 2 sen θ r = 2 csc θ. Para terminar, devemos apresentar a variação de θ. Não queremos que sen θ seja igual a zero. Para cobrirmos toda a reta y = 2, devemos fazer θ ( π, π). Exercício 2 Determine a equação polar da circunferência determinada por x 2 + (y + 2) 2 = 4. Solução: Vamos começar reescrevendo a equação dada de maneira diferente. x 2 + (y + 2) 2 = 4 x 2 + y 2 + 4y + 4 = 4 x 2 + y 2 = 4y. Agora usamos as equações x 2 + y 2 = r 2 e y = r sen θ, para obter: x 2 + (y + 2) 2 = 4 r = 4 sen θ r 2 = 4 r sen θ r = 4 sen θ. de θ. Agora que temos a equação, devemos apresentar o domínio de variação CEDERJ 182

MÓDULO 3 - AULA 32 A circunferência em questão tem centro no ponto (0, 2) e raio 2. Ela, portanto, se encontra na região y 0 do plano. Ou seja, abaixo do eixo Ox. A variação de θ será no intervalo [0, π). Veja que r(0) = 0, representando a origem. Na medida em que θ varia de 0 até π, sen θ varia de 0 até 1 e depois de volta até 0, sempre na região positiva. No entanto, a equação r = 2 sen θ determina valores negativos para r. Isso está perfeito, pois esses pontos devem ser rebatidos para serem marcados, segundo nossa convenção, e, dessa forma, a circunferência obtida é, precisamente, a que corresponde à equação x 2 + (y + 2) 2 = 4. Exercício 3 Faça um esboço das seguintes curvas, dadas por equações escritas em termos de coordenadas polares: (a) θ = π 3, r 0; (b) r = θ π, θ 0; (c) r = 3 csc θ, π/4 < θ < 3π/4; { r = t (d) θ = t. Solução: (a) Aqui temos a afirmação que θ é uma constante e r assume valores positivos. Isso corresponde a um raio partindo da origem, que faz ângulo π/3 com o eixo Ox. (b) Essa equação corresponde a uma espiral. (c) A equação corresponde a uma reta paralela ao eixo Ox. Para fazer o esboço correto devemos estar atento à variação de θ. Aqui está: quando θ varia de π/4 até 3π/4, percorremos o segmento de reta que liga os pontos (3, 3) até o ponto ( 3, 3). (d) Esta equação paramétrica determina a equação polar r = θ, que também é uma espiral. Veja que temos de tomar θ 0. y = 3 r = 3 csc θ r = θ/π r = θ Agora é com você! 183 CEDERJ

Exercício 4 Encontre uma equação polar para as curvas dadas pelas seguintes equações cartesianas: (a) x 2 + y 2 = 2; (b) x 2 + (y 4) 2 = 16; (c) (x 1) 2 + (y 1) 2 = 2; (d) x = 3; (e) x + y = 1. Exercício 5 Faça um esboço das curvas dadas pelas seguintes equações polares: (a) r = 2, π θ π; (b) r = 3 sen θ, 0 θ π; (c) r = sec θ, π/3 θ π/3; (d) r = 3 cos θ + 2 sen θ, 0 θ π/2; (e) r = 3 3 sen θ, θ [0, 2π] (cardióide); (f) r = 3 sen 3θ, θ [0, 2π] (rosácea de três pétalas); (g) r = 5 4 sen θ, θ [0, 2π] (limaçon); (h) r = 4 + 7 cos θ, θ [0, 2π] (limaçon). CEDERJ 184