Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua.

Documentos relacionados
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO. Prof.

Campo Elétrico [N/C] Campo produzido por uma carga pontual

superfície que envolve a distribuição de cargas superfície gaussiana

LIÇÃO 02 O CAMPO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

Energia potencial elétrica

Capítulo 22: Campos Elétricos

POTENCIAL ELÉTRICO. Prof. Bruno Farias

Aula-2 O campo elétrico

Halliday Fundamentos de Física Volume 3

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges

Aula-2 O campo elétrico. Curso de Física Geral III

Cap. 22. Campo Elétrico. Prof. Oscar Rodrigues dos Santos Potencial elétrico 1

Aula-2 O campo elétrico. Curso de Física Geral F semestre, 2011

Cap. 22. Campos Elétricos. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Campo Elétrico 2 Objetivos:

Cap. 24. Potencial Elétrico. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Terceira Lista - Potencial Elétrico

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

C. -20 nc, e o da direita, com +20 nc., no ponto equidistante aos dois anéis? exercida sobre uma carga de 1,0 nc colocada no ponto equidistante?

Física. Resumo Eletromagnetismo

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Física 3. Resumo e Exercícios P1

F = 1/4πɛ 0 q 1.q 2 /r 2. F = G m 1.m 2 /r 2 ENERGIA POTENCIAL 04/05/2015. Bacharelado em Engenharia Civil. Física III

Halliday & Resnick Fundamentos de Física

Cap. 24. Potencial Elétrico. Prof. Oscar Rodrigues dos Santos Potencial elétrico 1

de x = decosθ = k λdθ R cosθ, de y = desenθ = k λdθ R senθ, em que já substituímos dq e simplificamos. Agora podemos integrar, cosθdθ = k λ R,

Primeira Prova 2º. semestre de /09/2017 ATENÇÃO LEIA ANTES DE FAZER A PROVA

Tipos de forças. - As forças em físicas podem ser divididas em dois grandes grupos que são:

Força elétrica e Campo Elétrico

FÍSICA III 1/2008 Lista de Problemas 02 Campos elétricos

CAMPO ELÉTRICO E POTENCIAL ELÉTRICO

Potencial Elétrico 1

CAMPO ELÉTRICO. Carga de teste. Carga central. Campo elétrico

ELETRICIDADE E MAGNETISMO

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

E(r) = 2. Uma carga q está distribuída uniformemente por todo um volume esférico de raio R.

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /1 Data: 24/04/2019

Lei de Gauss Objetivos:

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Física III-A /1 Lista 1: Carga Elétrica e Campo Elétrico

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Fluxos e Conservação Lei de Gauss Isolantes. III - Lei de Gauss. António Amorim, SIM-DF. Electromagnetismo e Óptica. Lei de Gauss /2011

2 Campos Elétricos. 2-2 Campos elétricos. Me. Leandro B. Holanda,

Prof. Fábio de Oliveira Borges

Montagem de uma configuração de cargas

FÍSICA III AULA 2 PROFESSORA MAUREN POMALIS

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

Potencial Elétrico. 3.1 Energia Potencial e Forças Conservativas

Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Aula de Física II - Cargas Elétricas: Força Elétrica

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

Capítulo 23: Lei de Gauss

Capítulo 22: Campos Elétricos

corpos eletrizados cargas campo elétrico

2 Diferença de Potencial e Potencial Eletrostático

Halliday & Resnick Fundamentos de Física

Lista de Exercícios 1: Eletrostática

corpos eletrizados carg r a g s campo elétrico

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Física III-A /1 Lista 3: Potencial Elétrico

Eletromagnetismo. Eletrostática: O campo elétrico

Aula 21 - Lei de Biot e Savart

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

Ou seja, a massa dos elétrons é aproximadamente 2 mil vezes menor que a massa dos prótons. Podemos representar um átomo, embora fora de escala, por:

Conteúdos 5, 6 e 7 de Fundamentos do Eletromagnetismo

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

(d) E = Eŷ e V = 0. (b) (c) (f) E = Eˆx e V = (f)

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Magnetismo e movimento de cargas. Fontes de Campo Magnético. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202

1 f =10 15.) q 1. σ 1. q i. ρ = q 1. 4πa 3 = 4πr 3 q i = q 1 ( r a )3 V 1 = V 2. 4πr 2 E = q 1. q = 1 3, q 2. q = 2 3 E = = q 1/4πR 2

( ) r. (b) (c) (d) ( ) 2a. (f) Gabarito Pág. 1

Força Elétrica. Agora, atrair ou repelir significa uma carga exercer sobre a outra uma força. Assim,

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Aula do cap. 10 Rotação

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET72F Profª Elisabete N Moraes

FÍSICA III 1/2008 Lista de Problemas 01 A lei de Coulomb

Física Geral Nos problemas abaixo dê as suas respostas em unidades SI.

1 - Fricção: Formas de Eletrização

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

Halliday & Resnick Fundamentos de Física

CAMPO ELÉTRICO LEONARDO PASSOS SALVATTI

Física III IQ 2014 ( )

Fichas de electromagnetismo

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletrização por atrito

Eletromagnetismo aula 02. Maria Inês Castilho

Aula 2 Lei de Coulomb

Lei de Gauss Φ = A (1) E da = q int

Primeira Lista - lei de Coulomb

Energia. 5.2 Equações de Laplace e Poisson

Quantização da carga. todos os objectos directamente observados na natureza possuem cargas que são múltiplos inteiros da carga do eletrão

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Transcrição:

Forças de ação à distância têm atreladas a si um campo, que pode ser interpretado como uma região na qual essa força atua. Por exemplo, a força gravitacional está relacionada a um campo gravitacional, zona na qual a influência dessa força é percebida. A Terra, assim como qualquer outro corpo com massa, produz um campo gravitacional ao seu redor, motivo pelo qual somos atraídos para sua superfície ou a Lua orbita nosso planeta.

Da mesma maneira, a força elétrica também é uma força de ação à distância, portanto existe um campo elétrico. Assim como uma corpo com massa produz ao redor de si um campo gravitacional, uma carga elétrica sempre terá a sua volta um campo elétrico Embora seja necessário no mínimo duas cargas elétricas para que haja uma interação por meio da força elétrica, o campo elétrico é criado apenas por uma única carga, uma vez que ela é uma propriedade intrínseca da carga.

Um campo elétrico é uma grandeza vetorial, pois trata de uma distribuição de vetores ao redor da carga elétrica. Por convenção, o sentido desses vetores depende do sinal da carga geradora do campo. Cargas negativas geram campos elétricos direcionados para a carga, chamados de convergentes. Já as cargas positivas têm suas linhas de campo apontadas para longe da carga, sendo portanto campos divergentes.

Outra forma de representar graficamente os campos elétricos se dá através das linhas de campo, que possuem orientação determinada pela mesma regra que os vetores do campo elétrico. Essa formação contribui no entendimento da atração ou repulsão das cargas elétricas:

Para campos formados por distribuições de cargas não pontuais, há formatos diferentes para a distribuição das linhas, porém as mesmas sempre respeitam a orientação devido ao sinal da carga. Um placa com distribuição uniforme de cargas elétricas gera vetores inicialmente paralelos entre si que possuem o mesmo valor, dessa forma há um campo elétrico uniforme.

Quando temos duas cargas de igual valor e sinais opostos interagindo entre si há a configuração conhecida como dipolo elétrico:

É possível determinar a intensidade de um campo elétrico E ao testar sua influência sobre uma carga elétrica colocada em seu interior, denominada carga de prova q 0. Ao medir a ação da força elétrica F sobre a carga de prova, o campo é obtido por: E = F q 0 A unidade de medida utilizada para o campo elétrico será, em princípio, o Newton por Coulomb [N/C].

CAMPO ELÉTRICO PRODUZIDO POR UMA CARGA PONTUAL Conforme definido inicialmente para o campo elétrico: E = F q 0 Substituindo a força elétrica sobre a carga de prova q 0 pela Lei de Coumlob: F = 1 qq 0 4πε 0 r 2 r Obtém-se que: E = 1 4πε 0 q r 2 r

Da mesma maneira como é possível calcular a força elétrica resultante sobre determinada carga pontual pela soma de cada força sobre a mesma, o mesmo princípio é válido para um campo elétrico, uma vez que ele também é um vetor: E = F q 0 = F 01 q 0 + F 02 q 0 + F 03 q 0 + + F 0n q 0 E = E 1 + E 2 + E 3 + + E n

EXEMPLO 1

CAMPO ELÉTRICO PRODUZIDO POR UM DIPOLO O campo elétrico será calculado sobre o eixo que une as duas cargas que constituem o dipolo:

E = 1 4πε 0 E = E (+) E (-) q 2 r 1 + 4πε 0 q r 2 E = 4πε 0 q z 1 2 q 2 d 4πε 0 z + 1 2 2 d

E = q 1 4πε 0 z 2 E = q 4πε 0 z 2 1 d 2z 2 1 2d z 1 d 2z 1 + d 2z 2 2 2 E = q 2πε 0 z 3 d 2 2 1 d 2z

De modo geral, o cálculo do campo ocorre em pontos nos quais z >> d, uma vez que a dimensão do dipolo é muito pequena. Consequentemente, o termo (d/2z) << 1, assim é possível desconsiderá-lo. Desse modo, o campo elétrico é simplificado para: E = 1 qd 2πε 0 z 3 O produto qd é definido como uma nova grandeza física, denominada momento dipolar elétrico p, medido em Coulomb vezes metro [C.m]. Logo, para o campo elétrico: E = 1 2πε 0 p z 3

EXEMPLO 2

CAMPO ELÉTRICO PRODUZIDO POR UMA LINHA DE CARGAS Considera o cálculo do campo elétrico gerado por uma distribuição contínua de cargas ao longo de linha. Nesse caso, é util utilizar a grandeza densidade linear de carga λ, sendo: λ = q l Onde q e l são, respectivamente, a carga elétrica e o comprimento da linha. A unidade de medida da densidade linear de carga é o Coulomb por metro [C/m].

Será calculado o campo elétrico produzido por um anel delgado de raio R e densidade linear de carga λ em um ponto P sobre o eixo que passa perpendicularmente sobre o centro do anel.

Como agora há um número elevado de cargas elétricas, diferentemente dos casos da carga pontual e do dipolo elétrico, serão consideradas noções do cálculo diferencial e integral para a determinação do campo. Uma vez que se torne possível conhecer o campo produzido por um elemento infinitesimal de carga dq sobre o ponto P, é possível integrá-lo e assim determinar o campo elétrico resultante campo resultante. Para um elemento de arco ds do anel, a densidade linear de carga λ é fornecida por: λ = dq ds dq = λds

Para o campo produzido pelo elemento de carga dq: de = 1 dq 4πε 0 r 2 = 1 λds 4πε 0 r 2 De acordo com o Teorema de Pitágoras: de = 1 4πε 0 λds z 2 + R 2 2

Conforme a figura, o vetor de possui um componente perpendidular e outro paralelo ao eixo central. Os componentes perpendiculares produzidos pelos n elementos de carga dq se anulam, uma vez que possuem o mesmo módulo e orientações diferentes. O interesse consiste no cálculo do componente paralelo. Para o ângulo θ entre de e seu componente paralelo, temos que: cosθ = z r = z z 2 + R 2 1/2

Portanto, para decosθ: decosθ = 1 4πε 0 λds z 2 + R 2 2 z z 2 + R 2 1/2 decosθ = zλ 4πε 0 z 2 + R 2 3/2 ds Como o campo elétrico resultante E é contituído somente pelos componentes paralelos: de = decosθ de = decosθ

E = zλ 4πε 0 z 2 + R 2 3/2 ds E = zλ 4πε 0 z 2 + R 2 3/2 2πR ds 0 E = zλ(2πr) 4πε 0 z 2 + R 2 3/2 Sendo λ(2πr) igual a carga elétrica total q do anel, obtém-se para o campo elétrico que: E = qz 4πε 0 z 2 + R 2 3/2

Para casos nos quais z>> R, ou seja, que o ponto P esteja muito distante do anel, se tem que z² + R² = z², assim o campo pode ser descrito como: E = 1 4πε 0 q z 2 Logo o anel se comporta como uma carga pontual para longas distâncias.

CAMPO ELÉTRICO PRODUZIDO POR UM DISCO CARREGADO A configuração será semelhante ao caso do anel, calculando-se o campo em um ponto P sobre um eixo que atravessa o centro do disco de modo ortogonal a sua superfície.

Para auxiliar no cálculo, será considerado que o disco é constituído por n anéis infinitesimais com largura radial dr. O disco possui uma densidade superficial de carga σ uniforme, fornecida para um elemento infinitesimal de área da por: σ = dq da dq = σda = σ 2πr dr Por analogia ao problema do anel de cargas: E = zλ(2πr) 4πε 0 z 2 + R 2 3/2 de = zσ 2πr dr 4πε 0 z 2 + r 2 3/2 Anel Anel Infinitesimal

Reescrevendo a expressão: de = σz 4ε 0 2r dr z 2 + r 2 3/2 Integrando a expressão: de = σz 4ε 0 2r dr z 2 + r 2 3/2 E = σz 4ε 0 0 R z 2 + r 2 3/2 2r dr

A integral é resolvida utilizando a forma X m dx, sendo X = z² + r², m = -3/2 e (2r)dr = dx, cuja solução é fornecida por: X m dx = Xm+1 m + 1 Por conseguinte: E = σz z 2 + r 2 1/2 4ε 0 1/2 R 0 E = σ 2ε 0 1 z z 2 + R 2

Para o caso de um disco ou placa infinitos, se tem que R, portanto o segundo termo entre parênteses tende a zero. Consequentemente: E = σ 2ε 0

UMA CARGA PONTUAL EM UM CAMPO ELÉTRICO Se uma carga pontual q entra em um campo elétrico, será submetida a uma força definida por: F = qe A força eletrostática F que age sobre uma partícula carregada submetida a um campo elétrico E tem o mesmo sentido que E se a carga q da partícula for positiva e o sentido oposto se a carga q for negativa.

UM DIPOLO EM UM CAMPO ELÉTRICO Como exemplo, será considerada uma molécula de água no interior de um campo elétrico uniforme, pois a mesma se comporta como um dipolo elétrico:

Ao serem submetidos ao campo elétrico, os dois polos estarão sujeitos a forças elétrostáticas. No exemplo, como o campo possui a mesma orientação em ambos os polos (pois ele é uniforme), as forças terão sentidos opostos (devido aos sinais opostos dos polos) e se cancelarão. Porém, como as forças são aplicadas em regiões afastadas do centro de massa dos dipolos, isso ocasiona um torque, fazendo com que o dipolo gire.

Considerando que o CM esteja a uma distância x de um dos polos e a uma distância (d x) do outro (onde d é a distância entre os polos), o torque resultante τ possui módulo: τ = Fxsenθ + F(d x)senθ = Fdsenθ Usando F = qe e d = p/q (pois por definição p = qd): τ = pesenθ Equação que pode ser escrita na forma vetorial por: τ = p E

Em um forno de micro-ondas, um campo elétrico alternado é acionado sobre os alimentos. As moléculas de água presentes tenderão a alinhar seu momento dipolar elétrico com a orientação do campo, porém como a mesma mudacontinuamente o movimento das moléculas persiste. Essa energia é convertida para energia térmica, ocasionando o aquecimento do alimento.

EXEMPLO 3

Referências Halliday, Resnick e Walker. Fundamentos de Física, volume 3, Eletromagnetismo. 9ª edição, editora LTC, Rio de Janeiro, 2010. As imagens e exemplos foram extraídas da fonte acima ou do banco de dados do google.