Disciplina: Mecanismos de Reações Orgânicas 1 QB52C-N61

Documentos relacionados
Química Orgânica I Profa. Dra. Alceni Augusta Werle Profa. Dra. Tania Márcia do Sacramento Melo

Reações de Substituição Nucleofílica em Carbono Saturado. Aula 11

AS REAÇÕES DE ELIMINAÇÃO E1 e E2

X δ. X=F,Cl,Br,I. Substituição RCH 2 CH 2 Y + X - Eliminação RHC CH 2 + HY + X -

Química Orgânica I. Ácidos e Bases, tipos de reações, intermediários de reações e termodinâmica e cinética de reações orgânicas.

Reações de Eliminação. Aula 10

Reações de Substituição Nucleofílica Alifática ao Carbono Saturado

Química Orgânica. 1- Substituição substituição nucleofílica alifática

7.1 CISÃO E FORMAÇÃO DE LIGAÇÃO NO MECANISMO POLAR

M E C A N I S M O S D E R E A Ç Õ E S. Conjuntos de etapas que descrevem a formação dos produtos nas reações químicas.

Química Orgânica Ambiental

6.1 CLASSIFICAÇÃO DAS REAÇÕES ORGÂNICAS

Índice. reações de S N 2. reações de S N 1. comparação entre S N 2 e S N 1. concorrência entre S N e eliminação

PPGQTA. Prof. MGM D Oca

Química Orgânica I Profa. Dra. Alceni Augusta Werle Profa. Dra. Tania Márcia Sacramento Melo. REAÇÕES DE ELIMINAÇÃO Aula 13

PPGQTA. Prof. MGM D Oca

Química Orgânica AULA 4

Reações de Substituição Nucleofílica em Haletos de Alquila

Reações de Eliminação

Reações de Eliminação

PPGQTA. Prof. MGM D Oca

Química Orgânica I Profa. Dra. Alceni Augusta Werle Profa. Dra. Tania Márcia do Sacramento Melo

Haletos de Alquilo e Substituição Nucleofílica

Programa Analítico de Disciplina QUI131 Química Orgânica I

Química Orgânica II Profa. Rosângela de A. Epifanio Prova 2 16/05/2005

5.1 REAÇÕES DE SUBSTITUIÇÃO

Lista de Exercícios Disciplina: Mecanismos de Reações Orgânicas I

Reações de Radicais Substituição Radicalar

Reações de Radicais Substituição Radicalar

Formação de Radicais. Halogenação e Combustão: i) Ocorrem por um mecanismo radicalar. Envolvem a quebra homolítica de uma ligação.

PPGQTA. Prof. MGM D Oca

7.1 REAÇÃO DE ELIMINAÇÃO

PPGQTA. Prof. MGM D Oca

3.1 REAÇÕES DE SUBSTITUIÇÃO

Ácidos e Bases, intermediários de reações orgânicas. Profa. Alceni Augusta Werle Profa. Tania Marcia do Sacramento Melo

Prof. Luiz F. Silva Jr - IQ-USP

QUIMICA ORGÂNICA BÁSICA

Química Orgânica I Profa. Dra. Alceni Augusta Werle Profa. Dra. Tania Márcia do Sacramento Melo Ácidos e Bases, tipos de reações, intermediários de

Reação de Substituição Nucleofílica

ALQUENOS - REVISÃO. Bruice, P Vol. 1 cap.3 e 6 Carey Vol. 1 cap. 6 e 9

Definição: São compostos derivados dos hidrocarbonetos pela substituição de um ou mais hidrogênios por igual número de halogênios (F, Cl, Br e I)

Resumo das aulas de Química Orgânica II

Compostos heterocíclicos: estrutura, síntese e reatividade. Aula 6

QFL-1322 Reatividade de Compostos Orgânicos 2 o Semestre de 2017

Prof a. Dr a. Patrícia Bulegon Brondani. Cetonas e Aldeídos

PROGRAMA DE ENSINO DE DISCIPLINA

QUÍMICA ORGÂNICA Reações Orgânicas - Substituição Prof. Jackson Alves

E1: eliminação unimolecular: no passo limitante somente a saída do grupo de partida

Reações de Substituição Nucleofílica Acílica

Universidade Federal do Ceará Centro de Ciências Departamento de Química Orgânica e Inorgânica

Preparação do cloreto de terc-butila

REAÇÕES ORGÂNICAS. INTRODUÇÃO A SUBSTITUIÇÃO NUCLEOFÍLICA Sn2 - PARTE I

2.1 COMPOSTOS AROMÁTICOS: LEI DE HUCKEL

Substituição Eletrofílica Aromática

Preparação do cloreto de terc-butila

2.8. Reações dos Alcanos (Bibliografia Principal: Vollhardt, 3rd) Formação de Radicais

QUIMICA ORGÂNICA A. Analisando Reações Orgânicas e seus Intermediários

Espectrometria de massas

PPGQTA. Prof. MGM D Oca

ENGENHARIA AMBIENTAL QUÍMICA ORGÂNICA SEGUNDO SEMESTRE 2014 PLANO DE CURSO Professora: Ana Júlia Silveira

Instituto de Química USP QFL 1221 Estrutura & Propriedade de Compostos Orgânicos Tópico 4. Acidez e Basicidade

Preparação do t-butila Reação SN1. Ana Carolina Boni Glaucio de Oliveira Testoni Susilaine Maira Savassa

Tópicos em destaque. O que é um orbital atômico? É a provável distribuição espacial dos elétrons ao redor do núcleo.

O DIAMANTE POSSUI HIBRIDIZAÇÃO

Adição Eletrofílica à Alquenos

4. Ácidos e Bases em Química Orgânica

Introdução ao curso, Ligação química e TOM. Aula 1

Acidez e Basicidade de Compostos Orgânicos

Aula 7. Organic Chemistry 4 th Edition Paula Yurkanis Bruice. Reações de Eliminação de Haletos de Alquila. Reações de Álcoois e Éteres

Lenta. Rápida. Aproximação do estado estacionário (EE) para [R + ]: Velocidade global da reação; Aproximação do EE em R + ;

UNIPAC Universidade Presidente Antônio Carlos Juiz de Fora

Introdução as Reações Orgânicas

META Entender os mecanismos das reações de substituição nucleofílica e reações de eliminação em átomo de carbono saturado..

PPGQTA. Prof. MGM D Oca

LICENCIATURA EM QUÍMICA QUÍMICA ORGÂNICA I SEGUNDO SEMESTRE 2014 PLANO DE CURSO Professora: Ana Júlia Silveira

PREPARAÇÃO DE ÉTERES - SÍNTESE DE WILLIAMSON Anteriormente, vimos que ariléteres podem ser preparados através do Método de Williamson. Todavia, este m

Reação de Substituição Nucleofílica em Haletos de alquila

Ácidos e Bases. Aula 3

PPGQTA. Prof. MGM D Oca

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS CAMPUS POMBAL - PB

término da migração origem da migração grupo migrante G.. G + Radicalar: G migra com um elétron. Eletrofílico: G migra como cátions, raro.

MGM D Oca Adição e Eliminação. Adição: (GRADUAÇÃO)

Ácidos e Bases, intermediários de reações orgânicas. Profa. Alceni Augusta Werle Profa. Tania Marcia do Sacramento Melo

Química Orgânica. Compostos orgânicos contêm carbono. O carbono não ganha nem cede elétrons

Preparação do Cloreto de t-butila. Ana Carolina Boni Glaucio de Oliveira Testoni Susilaine Maira Savassa

Alcoóis. -Nomenclatura IUPAC: Quantidade de C + tipo de ligação entre C + ol. Ex: Butan-2-ol. Fenóis

Química Orgânica. Aula 2 Acidez e Basicidade. Prof. Davyson Moreira

Lista de Exercícios (1)

Núcleo Temático: Química Teórica e Experimental Código da Disciplina: DRT: ( ) Prática

PPGQTA. Prof. MGM D Oca

Alcenos: estrutura, síntese e reatividade. Fundamentos de Química Orgânica Fábio Herbst Florenzano

Química Orgânica Fundamental. Exercícios Cap 6

Aula 6. Organic Chemistry. Reações de Substituição em Haletos de Alquila. O que é uma reação de substituição?

Ácidos Carboxílicos e Derivados Reações de Substituição Nucleofílica no Grupo Acil

ESTRUTURA E REATIVIDADE DOS COMPOSTOS ORGÂNICOS ENGENHARIA QUÍMICA/ SEGUNDO SEMESTRE 2014 PLANO DE CURSO. Professora: Ana Júlia Silveira

QFL 2340 Estrutura e Propriedade de Compostos Orgânicos Lista 09: Reações Orgânicas. Parte I: Noções Gerais e Adição Nucleofílica

AULA 17. Reações Orgânicas. Prof Taynara Oliveira

Ácidos e Bases. Bronsted-Lowry e Lewis

Transcrição:

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus de Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Química e Biologia Disciplina: Mecanismos de Reações Orgânicas 1 QB52C-N61

Bibliografia Vollhardt, K. P. C., Schore, N. E., Química Orgânica Estrutura e Função. 4 a Ed., 2004. Bruice, P. Y., Organic Chemistry, 4ª Ed., Prentice all, 2003. Solomons, T.W., Fryhle, C. B. Organic Chemistry, 8 a Ed. (2004). Carey, F.A., Organic Chemistry, 4ª Ed., McGraw-ill, New York, 2000. Morrinson, R. Boyd, R., Química Orgânica, 13 a Ed., Calouste Gulbenkian, Lisboa, 1996. Allinger,N.L., Cava, M.P., Química Orgânica, 2 a Ed., Guanabara Dois, Rio de Janeiro, 1978 Sykes, P., A Guidebook to Mechanism in Organic Chemistry, John Wiley & Sons, New York, 1993. McMurry, Organic Chemistry, 5ª Ed., Brookscole, 1999;

Tópicos que serão estudados Relação entre a Estrutura e a Reatividade de Compostos Orgânicos Estabilidade e reatividade de Intermediários Orgânicos Substituição Alifática Nucleofílica Reações de Substituição S N 1 e S N 2 Reações de Eliminação E1 e E2 Substituição Nucleofílica e Eletrofílica em Sistemas Aromáticos

omólise e eterólise de ligações covalentes A ligação covalente pode ser quebrada de duas maneiras diferentes. Quebra omolítica (Grego: omo = igual; lise = perca ou clivagem): É a quebra de uma ligação covalente na qual ambos os fragmentos saem com um elétron da ligação. Ocorre a geração de radicais. Quebra eterolítica (Grego: etero = diferente; lise = perca ou clivagem): É a quebra de uma ligação covalente onde os dois elétrons da ligação vão para o mesmo fragmento. Ocorre à formação de íons positivos e negativos

eterólise de Ligações envolvendo um Carbono Formação de Carbocátions e Carbânions A eterólise de uma ligação contendo um carbono pode gerar dois tipos de íons. Os com carga positiva (carbocátions) e os com carga negativa (carbânions). Os radicais livres, os carbocátions e os carbânions são: Espécies altamente reativas. Atuam como intermediários transitórios em reações orgânicas. Os cátions de carbono são chamados de carbocátions Os ânions de carbono são chamados de carbânions. Os radicais livres e os carbocátions são espécies deficientes em elétrons. Os carbânions são espécies ricas em elétrons.

O que são eletrófilos? O que são nucleófilos? São reagentes que procuram elétrons, ou seja, gostam de elétrons. São reagentes que procuram prótons ou centros positivos. Qual é a definição para ácidos de Lewis? Qual é a definição para bases de Lewis? São espécies capazes de receber um par de elétrons São espécies capazes de doar um par de elétrons Os ácidos de Lewis são eletrófilos ou nucleófilos? Os ácidos de Lewis são eletrófilos, ou seja, procuram elétrons As bases de Lewis são eletrófilos ou nucleófilos? As bases de Lewis são nucleófilos, ou seja, doam elétrons para um núcleo.

Estrutura do C 4, C 3+, C 3- e. C 3 Metano (C 4 ) Carbocátion de metila (C 3+ ) ibridização sp 2 Configuração eletrônica igual a do boro: + 2 2 1 6 C 1s 2s 2p Os carbocátions: Evidências experimentais indicam que a estrutura dos carbocátions é trigonal plana. Está estrutura pode ser explicada com base na hibridização de orbitais. O carbono central possui hibridização sp 2, é deficiente em elétrons, com seis elétrons no seu nível de energia mais externo. Estes seis elétrons formam as ligações covalentes com os hidrogênios (ou com os grupos alquila), do tipo sigma (σ). O orbital p não contém elétrons.

Radical de metila (C 3. ) ibridização sp 2 Os radicais: Evidências experimentais indicam que a estrutura dos radicais é trigonal plana. Esta estrutura pode ser alterada para pirâmidal se os grupos que estão ligados ao carbono central forem volumosos. O carbono central possui hibridização sp 2. Entretanto, o orbital p não está vazio, mas contém um elétron desemparelhado. Carbânion de metila (C 3 :- ) ibridização sp 3 Os carbânions: Evidências experimentais indicam que a estrutura dos carbânions é piramidal. O carbono central possui hibridização sp 3. Está estrutura lembra a estrutura da amina (N 3 ), só que com carga.

Energias de Dissociação das Ligações e Estabilidades Relativas dos Radicais Livres As energias de dissociação das ligações permitem avaliar as estabilidades relativas dos radicais livres. Os radicais livres são classificados como terciários (3º), secundários (2º), primários (1º) e de metila, com base na natureza do carbono que apresenta o elétron desemparelhado. Qual é a ordem de estabilidade destes radicais?

A Estabilidade dos Carbocátions As estabilidades relativas dos carbocátions são paralelas às dos radicais livres. A ordem geral de estabilidade é: Como justificar esta ordem de estabilidade? Esta ordem de estabilidade dos carbocátions está relacionada com o Efeito Indutivo (possibilidade de dispersão da carga positiva) e com o Efeito iperconjugativo.

Efeito Indutivo - Dispersão da Carga Positiva: Quanto maior o número de grupos alquilas ligados ao carbono positivo, maior será a dispersão desta carga. Os grupos alquila adquirem parte da carga positiva e estabilizam o carbocátion. A ordem de estabilidade dos carbocátions é paralela ao número de grupos metila (alquila) presentes. Os carbonos com hibridização sp 2 são mais eletronegativos que os com hibridização sp 3.

C + Efeito iperconjugativo: Representação Completa C + C + C C + C C C C Quanto maior o número de metilas ligadas ao carbono carregado positivamente (carbocátion) maior será a interação do orbital p do carbocátion com o orbital sp 3 da ligação C- da metila. Está interação favorece a distribuição da carga positiva. δ+ + + C δ+ δ+ + C C δ+ δ+ + C C + C C C C δ + δ+ δ+ + C δ+ carbocátion de metila ário 1 ário 2 Quanto mais distribuída a carga positiva, mais estável é o carbocátion C 3 ário δ + A estabilização resulta da indução ou da hiperconjugação? Resposta: Ambos são importantes, e como os dois efeitos funcionam na mesma direção. A teoria nos diz que eles devem ter mais ou menos a mesma importância.

Comparação da Acidez dos compostos C 4, N 3, 2 O e F. Estes compostos possuem em comum um elemento da mesma linha da Tabela Periódica. Sabendo que a eletronegatividade aumenta da esquerda para a direita. Qual é a ordem de Acidez dos compostos C 4, N 3, 2 O e F?

Comparação da Acidez dos compostos F, Cl, Br e I, Qual é mais Ácido?

Tipos de Reações Orgânicas

As Reações de Substituição Nucleofílica e de Eliminação em Carbonos Saturados Exemplo Geral As reações de Substituição e de Eliminação ocorrem geralmente ao mesmo tempo. Começando pelas Reações de Substituição Nucleofílicas Tipos de Reações de Substituição Nucleofílica As reações de substituição ocorrem porque o grupo abandonador (geralmente halogênios) é mais eletronegativo que o carbono, deixando este mais deficiente em elétrons.

A Molecularidade e Cinética das Reações de Substituição Nucleofílica O que é Molecularidade de uma reação? É o número de moléculas ou íons que participam do estado de transição da etapa determinante da velocidade (etapa lenta). O que é uma Reação Unimolecular? É a reação em que somente uma espécie (molécula ou íon) está envolvida no estado de transição da etapa determinante da velocidade (etapa lenta). O que é uma Reação Bimolecular? É a reação em que duas espécie (molécula ou íon) estão envolvidas no estado de transição da etapa determinante da velocidade (etapa lenta). O que é um Estudo Cinético? É o estudo da medida da variação da velocidade de uma reação quando se varia a concentração de cada reagente. A cinética determina a molecularidade de uma reação química.

A velocidade da reação será igual: A velocidade na qual o reagente Nu: -, ou R-L, desaparece da mistura ou, A velocidade na qual L: -, ou Nu-R, se forma na mistura produto. Pode-se medir a velocidade do desaparecimento dos íons haletos por sua precipitação com nitrato de prata e pesando o precipitado. Pode-se medir a velocidade de desaparecimento dos íons hidróxido, titulando as amostras com ácido. Pode-se seguir a velocidade de muitas reações espectroscopicamente.

Reação Bimolecular A Reação é Bimolecular se a velocidade de reação é diretamente proporcional à concentração do Nu: - e do R-L. Portanto, o Nu: - e o R-L estão envolvidos no estado de transição da etapa determinante da velocidade. Pode-se representar esta proporcionalidade por uma equação da velocidade: ou k (Constante da velocidade). A equação da velocidade é de primeira ordem em relação ao [Nu: - ] e ao [R-L]. Mas globalmente é de segunda ordem porque depende de duas concentrações.

Reação SN2 - Exemplo Observou-se que se dobrando a concentração do cloreto de etila e se mantendo a concentração do íon hidróxido constante a velocidade da reação é dobrada. Observou-se também que se dobrando a concentração do íon hidróxido, enquanto se mantém constante a concentração do cloreto de etila, a velocidade é dobrada. E, finalmente que se dobrando simultaneamente as duas concentrações (do íon hidróxido e do cloreto de etila) a velocidade quadruplica. A expressão da velocidade para esta reação é de segunda ordem. O estado de transição para a etapa determinante da velocidade da reação depende tanto da concentração do cloreto de etila quanto da concentração do íon hidróxido e que esta reação é bimolecular. Chama-se este tipo de reação de uma reação SN2 que significa Substituição Nucleofílica Bimolecular.

Mecanismo: 3 átomos de hidrogênio estão no mesmo plano

A energia de ativação para a reação S N 2 de um haleto de alquila secundário é maior do que para um primário devido ao efeito estérico.

Tipos de Compostos que podem ser obtidos a partir das reações S N 2

A Estereoquímica e os Mecanismos das Reações S N 2 A reação S N 2 ocorre com inversão de configuração do carbono que sofre a substituição, quando este carbono for quiral. Exemplos: 2-bromo-octano e o álcool 2-octanol apresentam pares de enantiômeros. C 6 13 C 6 13 C 6 13 C 6 13 C Br Br C C O O C C 3 C 3 C 3 C 3

Exemplos de Reação que ocorre com inversão de configuração (S N 2). C 6 13 C 6 13 C Br O C C 3 C 3 C 6 13 C 6 13 C 6 13 Br δ δ O O - C O C Br C + Br - Mecanismo: C 3 C 3 C 3 O nucleófilo aborda o carbono que sustenta o grupo abandonador por trás, isto é, do lado diretamente oposto ao grupo abandonador. A configuração do átomo de carbono se inverte da mesma maneira que uma sombrinha se inverte quando é apanhada por um vento forte. O estado de transição é aquele em que o nucleófilo e o grupo abandonador estão parcialmente ligados ao carbono que sofre a inversão. Uma vez que este estado de transição envolve tanto o nucleófilo quanto o substrato, este mecanismo explica a cinética de segunda ordem da reação observada.

A Reação S N 1 - Exemplo 3 C C 3 C Br C 3 C 3 _ + 2 O 3 C C O + Br C 3 + 3 O + O estudo cinética da reação do brometo de terc-butila com água mostrou que a velocidade de reação é de primeira ordem, ou seja, só depende da concentração do brometo de terc-butila. Quando se dobra a concentração do brometo de terc-butila, observa-se que a velocidade da reação dobra. Mas, quando se dobra, ou mesmo triplica, a quantidade de água a velocidade da reação não se altera. Portanto, o brometo de terc-butila é a única espécie que está envolvida no estado de transição da etapa que define a velocidade. Esta reação é Unimolecular. Chama-se este tipo de reação de reação S N 1 (Substituição Nucleofílica Unimolecular).

Mecanismo: vídeo

O que é Solvólise? É uma reação em que o nucleófilo é uma molécula do solvente. Solvólise (Grego: Solvó = solvente; lise = quebra ou clivagem). Quebra pelo solvente.

A Estereoquímica e os Mecanismos das Reações S N 1 A reação seguinte depende somente da concentração do 3-bromo-3-metil-hexano. Portanto a velocidade da reação é de primeira ordem. Neste caso ocorre a Racemização Total. Mecanismo: Primeira Etapa (Lenta) Segunda Etapa (Rápida)

Por que é importante saber a estereoquímica de uma substância quiral? Talidomida (Desenvolvido na Alemanha, em 1954) É uma substância usualmente utilizada como medicamento sedativo, antiinflamatório e hipnótico (induz o sono). Devido a seus efeitos teratogênicos (anomalias), tal substância deve ser evitada durante a gravidez, pois causa malformação ou ausência de membros no feto. A talidomida é um derivado do ácido glutâmico e estruturalmente contém dois anéis amida e um único centro quiral. Este composto existe na forma de mistura equivalente dos enantiômeros S e R que se interconvertem rapidamente em condições fisiológicas. O enantiômero S está relacionado com os efeitos teratogênicos da talidomida enquanto que o enantiômero R é responsável pelas propriedades sedativas da mesma.

Fatores que Afetam as Velocidades das Reações S N 1 E S N 2 Os fatores mais importantes são: 1. A estrutura do carbono que sustenta o grupo abandonador. 2. O Efeito eletrônico (Indutivo) 3. A concentração do nucleófilo. 4. A reatividade do nucleófilo (só para reações bimoleculares). 5. A polaridade e a natureza do solvente. 6. O tamanho do nucleófilo: 7. A natureza do grupo abandonador. 1. A estrutura do carbono que sustenta o grupo abandonador. Os haletos de alquila simples apresentam a seguinte ordem geral de reatividade nas reações S N 2. Os haletos alílicos e benzílicos simples são geralmente mais reativos do que os haletos primários ou mesmo do que os haletos de metila em reações S N 2. Os haletos de neopentila, apesar de serem haletos primários são pouco reativos em reações S N 2.

A diminuição na reatividade para as reações S N 2 é principalmente decorrente dos efeitos estéricos. Os substituintes volumosos ligados ao carbono ou próximo dele têm um efeito inibidor na reação S N 2. O aumento do efeito estérico favorece o mecanismo S N 1. Vídeo 1

2 Efeito Eletrônico (Indutivo) O Fator Eletrônico (Indutivo) é o fator mais importante na determinação da reatividade dos substratos orgânicos, numa reação S N 1. Os únicos compostos orgânicos que sofrem reação por um caminho S N 1 são aqueles que são capazes de formar carbocátions relativamente estáveis. As reações S N 1 estão limitadas a compostos tais como: carbonos terciário, alílico, benzílico ou algum outro grupo estabilizador.

Regra Geral de Reações S N 2 e S N 1 Os substratos alílicos e benzílicos substituídos bloqueiam acentuadamente a aproximação do nucleófilo, reagindo somente através de um mecanismo S N 1. Comparação entre as reações S N 2 e S N 1. S N 2 S N 1 Mecanismo em uma única etapa Mecanismo em várias etapas É uma reação Bimolecular É uma reação Unimolecular Não ocorre rearranjo de carbocátion Ocorre rearranjo de carbocátion O produto apresenta a configuração invertida com relação ao reagente O produto apresenta uma configuração invertida e outra retida com relação ao reagente Ordem de reatividade Ordem de reatividade

3 - O Efeito da Concentração do Nucleófilo As velocidades das reações S N 1 não são afetadas pela concentração do nucleófilo. As velocidades das reações S N 2 dependem de ambos. 4 - O Efeito da Força do Nucleófilo Tipos de Nucleófilos Nucleófilo forte: Reage rapidamente com o substrato Nucleófilo fraco: Reage lentamente com o substrato. Força dos Nucleófilos. Afeta o mecanismo e a velocidade das reações S N 2 e S N 1. Nucleófilos fortes favorecem o mecanismo S N 2 e os Nucleófilos fracos favorecem o mecanismo S N 1 quando existe a possibilidade de formação de um carbocátion estável.

Um nucleófilo carregado negativamente é sempre mais forte do que o seu ácido conjugado. Exemplos: O - é um nucleófilo mais forte do que o 2 O RO - é mais forte do que RO. Qual reação é mais rápida? C 3 Cl + O - C 3 O + Cl - Rápido + 2 O C Cl - 3 O 2 C 3 Cl + + Muito Lento S N 2 C 3 Cl C 3 Cl + 2 N - C 3 N 2 + Cl - + + 3 N C 3 N 3 + Cl - Muito Rápido Mais Lento S N 2

Em um grupo de nucleófilos no qual o átomo nucleofílico é o mesmo, a nucleofilicidade é paralela à basicidade. Exemplo para compostos oxigenados: Está é a ordem de reatividade e de basicidade. pka 3 O + + C 3 O 2 C 3 COO ArO 2 O C 3 O -1,7-2,5 4,8 10,0 15,7 16 C 3 C 2 O 16,0 A nucleofilicidade decresce da esquerda para a direita na Tabela Periódica. + C Exemplo: 3 C 2 Br + 3 N C 3 C 2 N 3 + Br - Rápido C 3 C 2 Br + + 2 O C Br - 3 C 2 O 2 + Muito Lento

Tipos de Solventes Solventes próticos: têm um hidrogênio ligado a um átomo fortemente eletronegativo (oxigênio, nitrogênio, etc.). Exemplos: 2 O, C 3 C 2 O, C 3 O, N 3, etc. Solventes apróticos: Não têm um hidrogênio ligado a um elemento fortemente eletronegativo. Exemplos: Benzeno, alcanos, DMSO, DMA, DMF, etc.

Exceções: Para compostos que tem em comum átomos de um mesmo grupo da tabela periódica, em solventes próticos (água, etanol, etc.) a força do nucleófilo não é paralela à sua basicidade, mas sim ao seu tamanho. Em solventes próticos, o nucleófilo (que tem em comum átomos de um mesmo grupo da tabela periódica) mais forte é o nucleófilo maior. Isto se deve ao Efeito da Solvatação. Os tióis (R-S) são nucleófilos mais fortes do que os álcoois (R-O) Os íons RS- são nucleófilos mais fortes do que os íons RO-. Os íons haletos mostram a seguinte ordem:

O Efeito da Solvatação nos Nucleófilos Pequenos. O Os ânions menores são mais solvatados por solventes próticos porque possuem a carga negativa mais concentrada. Quanto menor o ânion mais forte é a Ligação de hidrogênio, consequentemente maior será o efeito da solvatação. O.. : X.. :- O O Ânion cloreto em água (Solvente Prótico)

MECANISMO SN2 MECANISMO SN1 C 3 C 2 S (pka=10,5) C 3 C 2 O (pka=16,0)

5 - O Efeito da Polaridade e da Natureza do Solvente Polaridade do Solvente Os solventes polares solvatam e estabilizam mais os íons do que os solventes não-polares. Constante dielétrica Quanto maior a constante dielétrica, maior será a polaridade do solvente e maior será a sua capacidade para solvatar os íons. A constante dielétrica é a habilidade de separar cargas.

O Efeito do Solvente na velocidade das Reações S N 2 As reações S N 2 aumentam a velocidade de reação, em solventes apróticos altamente polares porque os ânions não são solvatados.

A Reação S N 1 será favorecida por um nucleófilo fraco em um solvente polar prótico.. 6 - O Tamanho do Nucleófilo: Os nucleófilos Estericamente Impedidos são menos reativos. Exemplo:

Entre os ânions etóxido e terc-butóxido, qual é a base mais forte? e qual é o melhor nucleófilo? A base mais forte é o terc-butóxido porque ele doa o par de elétrons com maior facilidade. O melhor nucleófilo é o etóxido porque ele é menor e menos impedido estericamente. 7 - A Natureza do Grupo Abandonador Os melhores grupos abandonadores são aqueles que produzem as moléculas ou íons mais estáveis, depois de sua separação. Quanto menos básico é o grupo, mais facilmente ele se desliga do carbono. Exemplo: A água é um grupo abandonador melhor do que o íon hidróxido. Os álcoois não reagem com íons haleto em meio neutro, porque, sob estas condições, o grupo abandonador seria um íon hidróxido. Os álcoois, entretanto, reagem facilmente com os íons haleto em meio ácido. Em meio ácido o grupo abandonador é a água.

Para os halogênios, a ordem do melhor grupo abandonador é inversa a da basicidade, ou seja, quanto menos básico melhor é o grupo abandonador: I - > Br - > Cl - > F -

Outros Bons Grupos Abandonadores A reação S N 1 é favorecida por melhores grupos de saída (Ver estado de transição), mas deve existir a possibilidade de gerar um carbocátion estável e o solvente ser prótico.

Qual reação ocorrerá pelo mecanismo S N 2? C 3 C 3 C.. Br.. : + C 3 S.. _.. : Propano (acetona) C 3 SNa / C 3 S.. C 3 Ṣ. C C 3 C 3.. _ + : Br :.. C 3 C 3 C O O S CF 3 O 2 O C 3 C 3 C + O O O S CF 3 O As reações S N 1 ocorrem geralmente quando o solvente prótico é o nucleófilo

Qual reação ocorrerá pelo mecanismo S N 2? Quanto mais forte for o nucleófilo, mais favorecida será o mecanismo S N 2 Esta reação pode ocorrer por um mecanismo S N 1 porque o nucleófilo é fraco, o solvente é prótico e principalmente porque o cátion benzílico (cátion primário) é estabilizado por ressonância.

2-bromobutano + etóxido de sódio etanol Qual é o mecanismo? O que será formado?. C 3 C 2 Ȯ. C 3 C 2 + C 3 C.._ 2 Br C δ C 3 C 2 O C Br δ C 3 C 2 O S C 3 R C 3 C 2 C 3 C C 3 + Br - 2-bromobutano + 2 O Qual é o mecanismo? O que será formado? C 3 C 2 S C C 3 Br + C C 3 C 2.... C 3 + O + Br - C 3 C 2 C 3 C + + C 3 C 2 O O + C C 3 +.... O O C 3 C 2 C 3 C C + C 3 R C 3 C 2 S O + O+