Introdução: Redes Cristalinas

Documentos relacionados
O que são redes cristalinas?

Física VIII Ondas eletromagnéticas e Física Moderna

Aula 9 A Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

Lembrando: Portanto diminuindo d ficaria mais difícil resolver as duas fontes.

RAIOS-X (RAIOS RÖNTGEN)

RAIOS-X (RAIOS RÖNTGEN)

Aula 9 A Difração. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

O Elétron como Onda. Difração de Bragg

CRISTALOGRAFIA A FOTOGRAFIA DAS MOLÉCULAS

Tópicos. Difração de Raios X e do Elétron.

ECF5726 Óptica Física: Teoria, Experimentos e Aplicações Atividade A10 opcional Entrega: 02/11/2016 Aluno: José Guilherme Licio Número USP:

PMT Fundamentos de Ciência e Engenharia dos Materiais 2º semestre de 2014

Capítulo 1 - Cristais

ESTRUTURA DOS SÓLIDOS

Introdução a cristalografia de Raios-X

04 - DIFRAÇÃO DE RAIO X E DETERMINAÇÃO DA ESTRUTURA CRISTALINA

CMS Física do Estado sólido

Estrutura da Matéria BIK Prof. Fernando Carlos Giacomelli (Turma A)

Descoberta dos Raios-X

Rede Recíproca. CF086 - Introdução a Física do Estado Sólido 1

Laboratório de Estrutura da Matéria II

Se fizermos a mesma análise, para qualquer outra face do dado, teremos a mesma probabilidade 1/6 (um sexto).

UNIVERSIDADE FEDERAL DO ABC CENTRO DE ENGENHARIA, MODELAGEM E CIÊNCIAS SOCIAIS APLICADAS MATERIAIS E SUAS PROPRIEDADES (BC 1105)

Difração de raios X. Ciência dos Materiais

CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO

Unidade 5 DIFRAÇÃO DE RAIOS X. ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais

Laboratório de Estrutura da Matéria II

A Dualidade Onda-Partícula

Física IV Poli Engenharia Elétrica: 7ª Aula (26/08/2014)

O espectro eletromagnético

Difração de Raios X. Aluno: Luis Gustavo Gomes Pereira Profº: Dr. Lucas Barboza Sarno da Silva Disciplina: Física Experimental IV

NOTAS DE AULAS DE FÍSICA MODERNA

UNIVERSIDADE FEDERAL DO ABC BC-1105: MATERIAIS E SUAS PROPRIEDADES

FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 11-04/11/2017 TURMA: A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM

Introdução aos Materiais A Estrutura em Sólidos Cristalinos Metais DEMEC TM229 Prof. Adriano Scheid

Aula 13 - Capítulo 38 Fótons e Ondas de Matéria

Estrutura física da matéria Difração de elétrons

Lista de Problemas rad.)

NOTAS DE AULAS DE FÍSICA MODERNA

Propriedades Ondulatórias da matéria

Interferência e Experiência de Young

Descrição das Atividades

POLARIZAÇÃO-2 CAPÍTULO 31 TIPLER, MOSKA. 6ª EDIÇÃO. Revisão: Polarização. Prof. André L. C. Conceição DAFIS. Polarização

1304 Difração de elétrons

Max von Laue sugeriu que se os raios X fossem uma forma de radiação eletromagnética, efeitos de interferência deveriam ser observados.

Introdução à Física do Estado Sólido

Aula 7: Cristais 0,0,1 1/2,1/2,1/2 0,0,0 0,1/2,0 0,1,0 1/2,1/2,0 1,0,0. Aula 7 - Profa. Adélia

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais. Unidade 4 ESTRUTURA DOS SÓLIDOS CRISTALINOS

FMT402: FMT40 2: Int In rodu ção à Fís ica ic do Es do Es ad o Sólido Ementa:

FÍSICA MODERNA I Professora: Márcia A. Rizzutto 2 o Semestre de 2017 Diurno

Física IV para Química

Física Moderna I Aula 09. Marcelo G Munhoz Edifício HEPIC, sala 212, ramal

FÍSICA MÓDULO 19 FENÔMENOS ONDULATÓRIOS I. Professor Ricardo Fagundes

Experiência 10 DIFRAÇÃO E INTERFERÊNCIA

TRABALHO Nº 1 DETERMINAÇÃO DO COMPRIMENTO DE ONDA DE UMA RADIAÇÃO DUPLA FENDA DE YOUNG

Física IV Poli Engenharia Elétrica: 12ª Aula (25/09/2014)

Disciplina: Física IV Física Moderna

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Teoria - Difração e Interferência

Ciências da Arte e do Património

A Dualidade Onda-Partícula

Física do Estado Sólido: Sólidos Condutores

Difração de Elétrons. Relatório, 09 de maio de 2008 Brenno Gustavo Barbosa e Thiago Schiavo Mosqueiro

FACULDADE PITÁGORAS LUZ E ONDAS. Prof. Ms. Carlos José Giudice dos Santos

ESTADO SÓLIDO. paginapessoal.utfpr.edu.br/lorainejacobs. Profª. Loraine Jacobs

Célula Unitária e 14 Retículos de Bravais

Instituto de Física USP. Física Moderna I. Aula 10. Professora: Mazé Bechara

Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ)

1318 Raios X / Espectro contínuo e característico Medida da razão h/e.

Tecnicas analiticas para Joias

Física VIII. Difração Sandro Fonseca de Souza

FÍSICA MODERNA I AULA 06

Raio X : produção e interação com a matéria

TÓPICOS EM CARACTERIZAÇÃO DE MATERIAIS DIFRAÇÃO DE RAIOS X

Escola Politécnica FAP GABARITO DA P2 24 de outubro de 2006

Biologia Estrutural. Ondas e Lei de Bragg. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

INTRODUçAO A TEORIA DE BANDAS EM SÕLIDOS

A experiência das Linhas de Balmer

Caracterização da Ametista por Difração de Raio X

DETERMINAÇÃO DA ESPESSURA DE UM CABELO ATRAVÉS DE PADRÕES DE DIFRACÇÃO

H α H β H γ H δ H ε H ξ H 6562,2 Å 4861,3 Å 4340,5 Å 4101,7 Å 3970,1 3889,1

Aula 5 Interferência. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel

Laboratório de Física Moderna

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna

Cap. 22 Óptica Ondulatória

Interferência de duas fendas

Parte III Alguns modos de operação. II Encontro da Rede Mineira de Química - UFSJ - Maio de 2012

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO

ONDAS ELETROMAGNÉTICAS:3 CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO. Revisão: Campos se criam mutuamente. Prof. André L. C.

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira

Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker

Aula 13 - Capítulo 38 Fótons e Ondas de Matéria

2018 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

ESTRUTURA DOS SÓLIDOS CRISTALINOS CAP. 03 Parte II

Estrutura atômica. Modelo quântico do átomo

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

DIFRAÇÃO E INTERFERÊNCIA

Transcrição:

Seminário 7: Redes Cristalinas Aluno: José Guilherme Licio; e-mail: jose.licio@usp.br Mestrando em Ensino de Física Programa de Pós-Graduação Interunidades Universidade de São Paulo 28 de Setembro de 2016 Neste seminário, foi falado um pouco a respeito do que são cristais/redes cristalinas, qual a importância que os estudos de cristalografia tem na ciência, e, em especial, como a técnica de difração por raios-x é útil para estudar a estrutura microscópica dos materiais cristalinos. Introdução: Redes Cristalinas Um Cristal é, tecnicamente, uma estrutura que possui alto ordenamento microscópico de seus constituintes (átomos, moléculas, íons...), formando uma rede cristalina que se estende a todas as direções. Por ordenamento, o que queremos dizer é uma periodicidade dos constituintes, de forma que qualquer ponto da rede é equivalente. Obviamente, num cristal real, nem todo ponto é equivalente, pois o material não é infinito, então os elementos que ficam nas bordas dos cristais não respeitam a simetria. No entanto, como um cristal, mesmo muito pequeno, ainda possui um número de átomos muito maior em seu interior que nas regiões das bordas, essa aproximação não tem muito problema em ser respeitada. Figura 1: À esquerda, micrografia de um grão de sal. À direita, a rede cristalina associada aos átomos que formam o sal de cozinha (NaCl).

Certas vezes um cristal pode ser identificado mesmo macroscopicamente, devido à sua forma geométrica e orientações específicas de faces planas, mas nem sempre isso pode ser feito! Alguns materiais são cristalinos devido à rede cristalina microscópica, mas não se "parecem" com cristais quando observamos a olho nu. Figura 2: Fotografia de um diamante bruto incrustrado numa pedra. A cristalinidade do material se estende ao nível macroscópico. Por outro lado, nem tudo o que chamamos de cristal é tecnicamente um cristal. Um exemplo disso é o vidro comum. Se chamamos um copo de vidro ordinário de copo de cristal, isso está tecnicamente errado, pois a sílica vítrea é um material amorfo, isto é, não possui um ordenamento microscópico, então não pode ser considerado um cristal. Figura 3: Sílica vítrea (SiO2). Embora haja ordem em regiões muito pequenas, essa estrutura não é cristalina, pois a ordem não tem alcance longo.

Alguns Marcos Históricos Desde muito tempo a humanidade pensa a respeito da permanência de padrões macroscópicos a níveis microscópicos nos materiais. Um dos cristais conhecidos há mais tempo é o floco de neve, que possui uma estrutura hexagonal que reflete o ordenamento das moléculas de água no nível microscópico. Filósofos e cientistas como Kepler, Hooke e Descartes dedicaram uma parte de suas pesquisas para o entendimento da formação de cristais, e em algum momento estudaram o floco de neve justamente como exemplo. Antes do desenvolvimento de técnicas envolvendo Raios-X, o estudo dos cristais era baseado em medir proporções geométricas macroscópicas, e fazer inferências sobre como essas proporções refletiriam uma estrutura mais ínfima da matéria. Figura 4: Desenhos feitos por Robert Hooke sobre a estrutura dos flocos de neve. Figura 5: Capa do livro "Sobre os flocos de neve hexagonais", de Johannes Kepler.

Figura 6: Uma das imagens levadas na Sonda Voyager, para representar a humanidade e o conhecimento que temos atualmente. O floco de neve está destacado. Com a descoberta dos raios-x, no século XIX, foi possível estudar com mais profundidade as propriedades microscópicas de cristais, com a técnica de difração por raios-x. A mecânica quântica também teve papel muito importante para explicar fenômenos em redes cristalinas que não poderiam ser explicados classicamente. Atualmente, a cristalografia é uma das áreas de maior destaque na física, e em 2012 as Nações Unidas declararam 2014 como sendo o Ano Internacional da Cristalografia. No Brasil, a cristalografia é uma área também de bastante destaque. Muitos Prêmios Nobel foram dados a pesquisas que, de alguma maneira, envolveram cristalografia. Só na área da física, podemos destacar os seguintes prêmios: 1914 - Max Von Laue, "por sua descoberta da difração de raios-x por cristais". 1915 - Sir William Henry Bragg & William Lawrence Bragg, "pelos serviços prestados à análise de estruturas cristalinas por meio de raios-x". 1917 - Charles Glover Barkla, "pela descoberta da radiação de Röntgen característica dos elementos".

1920 - Charles Edouard Guillaume, "em reconhecimento ao serviço prestado para as medições precisas na física, por sua descoberta de anomalias em ligas de aço e níquel". 1937 - Clinton Joseph Davisson & George Paget Thomson, "pela descoberta experimental da difração de elétrons por cristais". 1991 - Pierre-Gilles de Gennes, "por descobrir que métodos desenvolvidos para estudar fenômenos de ordenamento em sistemas simples podem ser generalizados para formas complexas de matéria, em particular cristais líquidos e polímeros". Essa lista, apesar de extensa, ainda não revela todos os prêmios que foram dados. As pesquisas cristalográficas tem importância também em outras áreas, como a química e a medicina, pois permitem estudos a respeito de fármacos e biomoléculas. Redes de Bravais Uma rede cristalina é caracterizada por vetores que geram toda a rede infinita a partir de uma parte mínima. Simbolicamente, escrevemos: Onde R é um ponto qualquer da rede, que pode ser alcançado por uma combinação linear dos vetores primitivos. Os coeficientes são números inteiros. A rede gerada por esses vetores primitivos é chamada de Rede de Bravais. Na rede de Bravais, qualquer ponto deve ver a vizinhança exatamente como qualquer outro ponto da rede veria. Isto é, todo ponto deve ser equivalente. Novamente, fazemos a aproximação de que o cristal é infinito. Os pontos da rede de Bravais podem ser átomos, íons, moléculas, e assim por diante. Não necessariamente uma rede de Bravais precisa ter como base um único átomo. há 14 redes. Em duas dimensões, existem 5 redes de Bravais possíveis. Em três dimensões,

Figura 7: As cinco redes de Bravais em duas dimensões (1 - oblíqua, 2 - retangular, 3 - retangular centrada, 4 - hexagonal, 5 - quadrada). Toda a rede cristalina mostrada em cada caso pode ser gerada a partir dos dois vetores representados. Nem sempre uma rede cristalina é diretamente uma rede de Bravais. Às vezes, para se encontrar a Rede de Bravais de um cristal é necessário fazer alguma manipulação geométrica. Um exemplo disso é o que ocorre na rede em favo de mel. A rede em forma de favo de mel, encontrada por exemplo no grafeno, embora seja periódica e ordenada, não é uma Rede de Bravais, pois nem todo ponto da rede enxerga a vizinhança da mesma forma. Figura 8: Rede em favo de mel. Não é uma rede de Bravais.

Se estivermos num ponto vermelho, há um ponto da rede acima e dois abaixo. Mas se estivermos num ponto azul, então há dois acima e um abaixo. Numa rede de Bravais, todo ponto deve ser equivalente. Para transformar em uma rede de Bravais, usamos os vetores pintados de vermelho na figura, como sendo os vetores primitivos da rede, e assim geramos uma rede hexagonal, que é de Bravais. Figura 9: Após a transformação, usando os vetores vermelhos como primitivos, temos uma rede hexagonal, que é de Bravais. Difração O fenômeno de Difração ocorre quando uma onda passa por um obstáculo (por exemplo, fendas ou fios) cujas dimensões sejam da ordem de grandeza do comprimento de onda incidente. No caso da luz, vimos em aula como são os padrões gerados quando o obstáculo é uma fenda simples (ou, por exemplo, um fio de cabelo), uma fenda dupla e uma rede de difração (várias fendas, como ocorre por exemplo num CD, DVD ou Blu-Ray).

Figura 10: Comparação entre os padrões de interferência gerados pela difração de fenda simples, fenda dupla e rede de difração. A interferência que ocorre quando há difração nos permite calcular várias grandezas de interesse, como a separação entre fendas ou o comprimento de onda da luz incidente. A relação entre o ângulo em que ocorrem os máximos de interferência, a distância entre fendas (ou tamanho da fenda, no caso da fenda simples) e o comprimento de onda é dada por ( ), onde d é o espaçamento (ou, no caso da fenda simples, tamanho da fenda), é o ângulo medido a partir do eixo central do sistema, m é a ordem da franja (inteiro) e é o comprimento da onda. Difração de Raios-X O fenômeno de difração depende da relação entre o comprimento de onda da luz incidente e o tamanho típico dos obstáculos. É necessário que o obstáculo seja da ordem de grandeza do comprimento de onda.

Raios-X são ondas eletromagnéticas cujo comprimento de onda é da ordem de décimos de nanômetros, e podem ser gerados bombardeando elétrons muito energéticos num alvo ou então desacelerando o elétron. Figura 11: Representação da faixa do espectro eletromagnético onde se encontram os Raios-X. Repare que existem vários tipos de Raio-X, e cada um deles é usado para uma aplicação distinta, devido à diferença de como cada faixa interage com a matéria. Figura 12: Duas maneiras de gerar raios-x. À esquerda, vemos representado um filamento F que joga elétrons altamente energéticos num alvo T. À direita, raio-x produzido pela desaceleração do elétron. Na figura acima, vemos duas maneiras de gerar raios-x. Podemos gerar essa radiação colidindo elétrons altamente energéticos a um alvo, e, dessa forma, os raios-x gerados terão energia caracterizada pelo material do qual é feito o alvo (raios-x característicos); também podemos gerar raios-x desacelerando elétrons na presença de núcleos, conforme representado à direita. Esse tipo de radiação recebe o nome de

Bremmstrahlung, que significa radiação de freamento. Num experimento real, ambos os tipos de raios-x são gerados, mas os espectros de cada um são bem distintos, e existem filtros que bloqueiam certas partes dos raios gerados a fim de se obter melhor precisão. Uma rede de difração óptica não pode ser usada para se produzir difração de raios-x. Podemos verificar isso utilizando a equação usual: dsen(θ)=mλ Se tomarmos λ = 1 Angstrom (0.1nm), e d=3000nm (valor típico de uma rede de difração óptica), vemos que o primeiro máximo (m=1) ocorre em θ = 0.0019. Este valor pequeno torna o experimento impraticável. Portanto, para se fazer difração de raios-x, é necessário que a separação entre obstáculos seja da ordem de ângstroms. Por causa disso, redes cristalinas, cujo espaçamento entre os elementos da rede é dessa ordem, podem ser usadas para difratar raios-x. Num arranjo periódico, por exemplo o do sal de cozinha, podemos dividir a rede em planos fictícios, e caracterizar uma distância entre esses planos. Figura 13: Representação da rede do sal de cozinha em 3D. O comprimento a0 é a distância interplanar entre os planos da rede. Quando um raio-x incide sobre essa rede, ele é espalhado para todas as direções. Cada elemento da rede atua como um obstáculo, e esse fenômeno caracteriza a difração. O cálculo dos máximos de difração pode ser feito como se cada um dos planos do cristal refletisse o raio-x. As reflexões pelos múltiplos planos geram diferenças de caminho óptico, que produzem padrões de interferência facilmente calculáveis.

Figura 14: A reflexão fictícia dos raios-x incidentes pelos planos da rede. Note que o raio-x não é refletido de fato. Isso é apenas um artifício geométrico para facilitar os cálculos! A difração dos raios pelo cristal é, na verdade, bastante complicada, mas o efeito é equivalente ao fazermos essa idealização. Figura 15: Geometria utilizada para avaliar a diferença de caminho óptico dos feixes refletidos. Por esta geometria, vemos que a diferença total do caminho percorrido pelo raio 2 em relação ao raio 1 é dada por 2dsenθ. Pelo critério de máximos de interferência, a diferença de caminho deve ser um múltiplo inteiro do comprimento de onda, para que haja uma interferência construtiva. Assim, temos que 2dsen(θ) = mλ

Esta relação é conhecida como Lei de Bragg. Por meio dessa equação, podemos, por exemplo, saber a distância interplanar de uma estrutura cristalina, e, por consequência, saber maiores detalhes sobre como os átomos estão arranjados. Por outro lado, se soubermos de antemão a distância interplanar, é possível saber o comprimento de onda de um raio-x incidente que, em princípio, pode ser desconhecido. Essa técnica pode ser usada para estudar a radiação característica de materiais diversos que são usados como alvo na geração de raios-x. Conclusões As redes cristalinas - ou os cristais - são estruturas de muito interesse, tanto para o ser humano quanto para a ciência. O fenômeno de difração é muito importante para o estudo da estrutura cristalina dos materiais, e por meio desses estudos muitos avanços foram possíveis no conhecimento científico. A palavra cristal pode ter conotações vulgares que são bastante distintas do significado técnico. Por isso é importante tomar cuidado com os termos que são usados em certos contextos - no ensino de física, é especialmente importante salientar essas diferenças. Perguntas 1) O que é um cristal? 2) Se quisermos estudar a estrutura cristalina de um material por meio de técnica de difração, em qual faixa do espectro eletromagnético deve estar a onda que incidiremos sobre o material? Por quê? 3) As Nações Unidas escolheram o ano de 2014 para ser o ano internacional da cristalografia. Se você tivesse que defender essa escolha, que argumentos usaria? Referências

Estes livros de Física do Estado Sólido são bastante tradicionais, e possuem comentários bem mais detalhados a respeito das redes de Bravais, da Lei de Bragg e de técnicas de difração adotadas para estudar estruturas cristalinas: MARDER, M. P. Condensed Matter Physics, 2nd ed., John Wiley & Sons, 2010. KITTEL, C. Introduction to Solid State Physics, 8th ed. John Wiley & Sons, 2005. ASHCROFT, N. W., MERMIN, N. D. Solid State Physics. Harcourt, 1976. Este livro é bastante tradicional, introdutório e compreensível. Algumas edições anteriores não possuem o trecho específico de difração de raio-x, por isso indico a versão estendida da 10ª edição: RESNICK, R., HALLIDAY, D., WALKER, J. Fundamentals of Physics Extended, 10th ed. John Wiley & Sons, 2014. Alguns marcos na pesquisa sobre flocos de neve: http://www.its.caltech.edu/~atomic/snowcrystals/earlyobs/earlyobs.htm Artigos da Wikipedia em inglês para visualização das imagens e informações adicionais resumidas: https://en.wikipedia.org/wiki/crystal_structure https://en.wikipedia.org/wiki/solid-state_physics https://en.wikipedia.org/wiki/bragg%27s_law https://en.wikipedia.org/wiki/amorphous_solid https://en.wikipedia.org/wiki/glass https://en.wikipedia.org/wiki/bravais_lattice Por fim, há o website do Prêmio Nobel, que traz as aulas dadas por todos os ganhadores, transcritas, além de várias curiosidades sobre o prêmio: https://nobelprize.org/