FÍSICA MODERNA I AULA 06
|
|
|
- Victor Pinho Nunes
- 7 Há anos
- Visualizações:
Transcrição
1 Universidade de São Paulo Instituto de Física FÍSICA MODERNA I AULA 06 Profa. Márcia de Almeida Rizzutto Pelletron sala 220 [email protected] 1o. Semestre de 2015 Monitor: Gabriel M. de Souza Santos Página do curso: 13/03/2015
2 Dualidade onda-partícula da radiação eletromagnética Em 1921 Einstein recebe o Prêmio Nobel por ter previsto teoricamente o efeito fotoelétrico A luz é uma onda eletromagnética e uma partícula (fóton) ao mesmo tempo A luz se propaga como onda e interage como partícula
3 Dualidade onda-partícula Os experimentos de Lenard e as explicações de Einstein se referiam a luz visível, UV, IV. Podemos perguntar se este comportamento onda-partícula é característico de todo o espectro eletromagnético? Os raios X (descoberto por Roentgen (1895) tem este mesmo comportamento? Todas a radiação eletromagnética se comporta da mesma forma, ora partícula ora onda? Em 1922 Compton respondeu esta questão.
4 O experimento de Compton Arthur H. Compton (1923) publicou seus trabalhos realizados desde 1918: Phys. Rev. 21, 483; 22,409 (1923) Compton fez incidir raios X (proveniente do material molibdênio) (l=0.0709nm) sobre uma alvo sólido (carbono) e mediu a intensidade do raios X espalhado. Usando um cristal, ele mediu o comprimento de onda dos raios-x em ângulos diferentes. Resultados surpreendentes
5 O experimento de Compton visto classicamente Onda eletromagnética vai interagir com os elétrons livres do material, excitá-los e será reemitida a onda com um comprimento de onda um pouco maior ou frequência um pouco menor. O comprimento de onda deveria depender da intensidade da radiação incidente e do tempo de exposição
6 O experimento de Compton O espalhamento Compton para os diferentes ângulos: O pico NÃO deslocado é causado pelo espalhamento dos raios X pelo elétron fortemente ligado ao átomo de carbono. A massa do átomo de carbono é vezes a massa de um elétron
7 O experimento de Compton Observou por exemplo em 90º que os raios X espalhados têm máximos de intensidade em dois comprimentos de onda: Um deles é o mesmo que o comprimento de onda incidente (l=0.0709nm) e o outro l é maior que l por uma quantidade Dl (chamado de deslocamento de Compton)
8 O experimento de Compton Esquematicamente podemos dizer que o fóton incidente fornece parte de sua energia ao elétron. O elétron sofre um recuo, sendo emitido em um ângulo F com energia E e e momento p e O fóton é espalhado em um ângulo q com menor energia E (maior comprimento de onda l ) que o fóton incidente.
9 O termo O experimento de Compton É conhecido como comprimento de onda de Compton do elétron. h m c e h m c e hc m c e 2 0,00243nm 1240eV. nm 3 6 2,426x10 x10 nm 0,511MeV O comprimento de onda dos raios X é l=0.200nm e incide sobre um bloco de carbono. Os raios X espalhados são observados no ângulo de 45º em relação ao feixe incidente. Calcule a aumento do comprimento de onda dos raios X espalhados neste ângulo. Dl h m c hc m c 1240 Dl (1 cos45) 0,00243(1 0,707) 511 l l 0,000711nm o e (1 cosq ) l 0,200 0, ,200711nm e 2 (1 cosq )
10 Exercício Raios X de comprimento de onda 0,050nm incidem sobre um alvo de Au. Pode-se ter um espalhamento Compton de um elétron ligado por uma energia de 62keV? E E E RX RX RX h c 1240eV. nm h l 0.050nm eV 24keV Não será possível ocorrer o espalhamento Compton do elétron ligado pois a energia do raio X não é suficiente para deslocar este elétron ligado.
11 Raios X Temos falado sobre os raios X, mas fica a pergunta: O QUE ELES SÃO? COMO PODEMOS PRODUZI-LOS? Roentgen descobriu os raios X em 1895 e recebeu o Prêmio Nobel em 1901 por esta descoberta. W. Roentgen observou: 1)As substâncias são mais os menos transparentes aos raios X. Observou fluorescência mesmo através de: Livro de 100 páginas, madeira (2-3cm), 15mm de alumínio. 2) Alguns materiais são fluorescentes sob a ação do RX: fósforo, compostos de cálcio, sal de rochas 3) Os raios X não sofrem deflexão por campos magnéticos ou elétricos e se propagam em linha reta
12 Raios X COMO PODEMOS PRODUZI-LOS? Classicamente temos que uma carga acelerada emite um espectro contínuo de radiação eletromagnética Espectro contínuo emitido pelos raios X de um alvo de tungstênio para 4 valores diferentes de ev (energia dos elétrons incidentes 20keV, 30keV, 40keV e 50keV) Ao observamos este espectro notamos que temos um l min para cada valor de energia. Por exemplo para E de 40keV temos um l min de 0,311Angstrons. Não conseguimos explicar classicamente a razão de ter um valor mínimo de comprimento de onda no espectro
13 Raios X COMO PODEMOS PRODUZI-LOS? Temos que tratar os raios X como partículas. Os raios X são produzidos na desaceleração brusca de elétrons ao penetrarem um sólido. Os elétrons eram acelerados por uma ddp e freados ao atingir o alvo. O elétron acaba perdendo rapidamente sua energia cinética em sucessiva colisões com os núcleos dos átomos emitindo radiação em cada colisão (bremsstrahlung). Ficando com uma energia final E f Radiação (strahlung) de freamento (brems) Como o núcleo é muito pesado, podemos desprezar o recuo sofrido por ele.
14 Raios X COMO PODEMOS PRODUZI-LOS? Postulando que a diferença de energia do elétron é usado para criar um fóton de radiação. E i E f h hc l Os elétrons eram acelerados por uma ddp e freados ao atingir o alvo. E i =ev Portanto se o elétron perder toda a sua energia, temos E f =0 e ai: E i l 0 min ev hc ev hc l min
15 Bremsstrahlung e Efeito fotoelétrico Produção de raios X: Elétrons desacelerados na matéria produzem espectro contínuo de radiação Além dos espectro contínuo temos picos (o que são??) Os elétrons podem se chocar com os elétrons do átomo do material e arrancá-los por decorrência há emissão de raios X característicos Será que é possível fótons produzirem elétrons da mesma maneira que elétrons produzem fótons?
16 Produção de Pares Além dos efeitos fotoelétrico e Compton há um outro processo que os fótons perdem energia devido a interação com a matéria. Pode-se converter energia cinética de um fóton em massa de uma partícula e vice-versa??? Será que é possível fótons produzirem elétrons, da mesma maneira que elétrons produzem fótons? Se nenhuma das leis de conservação forem violada Sim, é possível
17 Produção de Pares Este fenômeno e observado e é denominado por produção de pares. Se um fóton pode criar um elétron, deve-se também criar uma carga positiva para balancear a conservação de carga Em 1933 C.D. Anderson observou em elétron de carga positiva (e + ) em uma radiação cósmica Partícula foi chamada de pósitron e já tinha sido previsto por Dirac O pósitron tem a mesma massa do elétron (m=0,511mev/c 2 ), mas carga oposta. Ele é observado quando raios gamas (fótons) de alta energia passam através da matéria g e + + e -
18 Produção de Pares A única maneira desse processo conservar momento e energia é se o núcleo atômico estiver presente no processo de interação e absorver parte da energia e momento do fóton. Se um núcleo está próximo, o núcleo pode absorver momento linear suficiente para permitir que o processo ocorra. e + é conhecido como pósitron e é encontrado da na natureza através da detecção de raios cósmicos e em produtos radioativos de vários elementos radioativos Vivem pouco pois interagem com os e -
19 Produção de Pares A conservação de energia neste caso: h E h h ( m c o 2m c o E 2 2 K K KE( núcleo) ) ( m c K o 2 K ) Muito pequena por causa da grande massa do núcleo Onde K são as energias cinéticas do e - e do e + A energia do fóton deve ser de no mínimo igual a 2m e c 2 para criar as massas : h 2mec MeV A probabilidade de produção de par aumenta drasticamente : 1) ENERGIA DO FÓTON 2) AUMENTO DO NÚMERO ATÔMICO Z DO NÚCLO PRÓXIMO
RAIOS-X (RAIOS RÖNTGEN)
RAIOS-X (RAIOS RÖNTGEN) Descobertos por Wilhelm Röntgen (1895) Primeiro prêmio Nobel em física (1901) Radiação extremamente penetrante (
RAIOS-X (RAIOS RÖNTGEN)
RAIOS-X (RAIOS RÖNTGEN) Descobertos por Wilhelm Röntgen (1895) Primeiro prêmio Nobel em física (1901) Radiação extremamente penetrante (
Introd. Física Médica
Introd. Física Médica O Efeito Foto Elétrico (EFE) Introdução a Física Médica O Efeito Foto Elétrico (EFE) Introdução a Fís sica Médica Heinrich HERTZ descobriu o Efeito FotoElétrico (1887): Quando a luz
Instituto de Física USP. Física V - Aula 14. Professora: Mazé Bechara
Instituto de Física USP Física V - Aula 14 Professora: Mazé Bechara Aula 14 - Efeito Compton ou o espalhamento dos Raios-X na interação com a matéria 1. Efeito ou espalhamento Compton o que é.. As características
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Primeira Edição junho de 2005 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso
Uma breve história do mundo dos Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Tópicos da Segunda Aula Abordagem histórica Radiação de corpo negro Efeito fotoelétrico Espalhamento Compton
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de janeiro de 2009 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
PRODUÇÃO DE RAIOS X. Produção de raios X Tubo de raios X. Produção de raio x Tubo de raios X
PRODUÇÃO DE RAIOS X Prof. André L. C. Conceição DAFIS Curitiba, 17 de abril de 2015 Produção de raios X Tubo de raios X Os raios X são uma das maiores ferramentas médicas de diagnóstico desde sua descoberta
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de novembro de 2011 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
O Efeito Fotoelétrico
O Efeito Fotoelétrico O efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) suficientemente energética, ou seja,
Espectro Eletromagnético. Professor Leonardo
Espectro Eletromagnético VÉSPERA- VERÃO 2010 EFEITO FOTO ELÉTRICO VÉSPERA- VERÃO 2010 VÉSPERA- VERÃO 2010 Efeito Fotoelétrico Problemas com a Física Clássica 1) O aumento da intensidade da radiação incidente
Instituto de Física USP. Física Moderna I. Aula 10. Professora: Mazé Bechara
Instituto de Física USP Física Moderna I Aula 10 Professora: Mazé Bechara Aula 10 - Efeito Compton ou o espalhamento dos Raios-X na interação com a matéria 1. O Efeito Compton o que é.. As características
Interação da radiação com a matéria
Interação da radiação com a matéria 8 a aula/9 ª aula i - INTRODUÇÃO ii - IONIZAÇÃO, EXCITAÇÃO, ATIVAÇÃO E RADIAÇÃO DE FRENAGEM iii RADIAÇÕES DIRETAMENTE IONIZANTES iv RADIAÇOES INDIRETAMENTE IONIZANTES
Estrutura da Matéria BIK Prof. Fernando Carlos Giacomelli (Turma A)
Estrutura da Matéria BIK0102-15 Prof. Fernando Carlos Giacomelli (Turma A) [email protected] Bloco A - Sala 613-3 Torre 3 - CCNH - Santo André Dualidade Onda-Partícula: Descrição Clássica
Dosimetria e Proteção Radiológica
Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade
SEL FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel (Sub-área de Imagens Médicas)
SEL 5705 - FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS Prof. Homero Schiabel (Sub-área de Imagens Médicas) 5. INTERAÇÃO DOS RAIOS X COM A MATÉRIA 5.1. Atenuação e Absorção ATENUAÇÃO:
CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO
FÍSICA QUÂNTICA: FÓTONS E ONDAS DE MATÉRIA - II Prof. André L. C. Conceição DAFIS CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO Fótons e ondas de matéria Revisão O) Fóton: 1905 Einstein: luz quantizada fóton
CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS
CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS Walter Siqueira Paes DIVISÃO DE HIGIENE, SEGURANÇA E MEDICINA DO TRABALHO SETOR DE PROTEÇÃO RADIOLÓGICA PROGRAMAÇÃO
CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS
CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS COORDENADORIA DE ADMINISTRAÇÃO GERAL DIVISÃO DE SAÚDE OCUPACIONAL SEÇÃO TÉCNICA DE PROTEÇÃO RADIOLÓGICA PROGRAMAÇÃO
2. Propriedades Corpusculares das Ondas
2. Propriedades Corpusculares das Ondas Sumário Revisão sobre ondas eletromagnéticas Radiação térmica Hipótese dos quanta de Planck Efeito Fotoelétrico Geração de raios-x Absorção de raios-x Ondas eletromagnéticas
SEL PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel
SEL 397 - PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS Prof. Homero Schiabel Max Planck (1901): teoria dos quanta E depende da freqüência de radiação (ou de λ): E = h ν ν = c / λ E = h c / λ 4. PRODUÇÃO
Aula 1 Conceitos Básicos sobre Radiação. F 107 Física para Biologia 1º Semestre de 2010 Prof.Dr. Edmilson JT Manganote
Aula 1 Conceitos Básicos sobre Radiação Introdução O que vamos discutir? Tipos e características das radiações Teoria dos quanta Dualidade onda-partícula Microscópio eletrônico A radiação é a propagação
Física Experimental C. Coeficiente de Atenuação dos Raios Gama
Carlos Ramos (Poli USP)-2016/Andrius Poškus (Vilnius University) - 2012 4323301 Física Experimental C Coeficiente de Atenuação dos Raios Gama Grupo: Nome No. USP No. Turma OBJETIVOS - Medir curvas de atenuação
Raios-x. Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA
Raios-x Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA Materiais Radioativos 1896 o físico Francês Becquerel descobriu que sais de Urânio emitia radiação capaz de produzir sombras de
FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 11-04/11/2017 TURMA: A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM
FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 11-04/11/2017 TURMA: 0053- A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM 1 Introdução à Física Moderna 2 Objetivos do Aprendizado Explicar a absorção e emissão da
AS RADIAÇÕES NUCLEARES 4 AULA
AS RADIAÇÕES NUCLEARES 4 AULA Nesta Aula: Caracterização das radiações Nucleares Caracterização das radiações Nucleares UM POUCO DE HISTÓRIA... O físico francês Henri Becquerel (1852-1908), em 1896, acidentalmente
Dosimetria e Proteção Radiológica
Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade
INSTRUMENTAÇÃO NUCLEAR INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA. Claudio C. Conti
INSTRUMENTAÇÃO NUCLEAR INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA Claudio C. Conti 1 Interação da Radiação com a Matéria A operação de qualquer tipo de detector é baseada no tipo da interação da radiação com
FNC375N: Lista 3. Caráter corpuscular da radiação. 13 de outubro de 2004
FNC375N: Lista 3 13 de outubro de 2004 Caráter corpuscular da radiação Einstein ampliou a idéia de Planck, que quantizou a energia dos osciladores em equilíbrio com a radiação, considerando a quantização
Disciplina: Física IV Física Moderna
Disciplina: Física IV Física Moderna Instrutor: Prof. Carlos Eduardo Souza - Cadu Sala: A2-15 (IF, andar 1P) Email: [email protected] Site do curso: http://cursos.if.uff.br/fisicaiv_xxi_0216/
Cap. 38 Fótons e ondas de matéria
Cap. 38 Fótons e ondas de matéria Problemas com a mecânica clássica: Radiação de corpo negro; Efeito fotoelétrico; O fóton; Efeito fotoelétrico explicado; Exemplo prático: fotoemissão de raios-x; Efeito
QUESTÕES DE FÍSICA MODERNA
QUESTÕES DE FÍSICA MODERNA 1) Em diodos emissores de luz, conhecidos como LEDs, a emissão de luz ocorre quando elétrons passam de um nível de maior energia para um outro de menor energia. Dois tipos comuns
INTERAÇÃO DA RADIAÇÃO COM A MATERIA
INTERAÇÃO DA RADIAÇÃO COM A MATERIA Prof. André L. C. Conceição DAFIS Curitiba, 4 de abril de 015 Interação de Radiação Eletromagnética com a matéria Interação da radiação com a matéria Radiação incide
Max Planck Pai da Física Quantica
A Mecânica Quântica é a parte da física que estuda o movimento dos corpos microscópicos em altas velocidades. As principais conclusões da Física Quântica são que, em estados ligados, a energia não se troca
AULA METAS: Introduzir o conceito de fóton no contexto. usar a teoria de Einstein para o efeito fotoelétrico
METAS: Introduzir o conceito de fóton no contexto da teoria de Einstein para o efeito fotoelétrico. Introduzir a teoria elementar do efeito Compton. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes
Capítulo 7 Interação da Radiação gama e X com a matéria
Física das Radiações e Dosimetria Capítulo 7 Interação da Radiação gama e X com a matéria Dra. Luciana Tourinho Campos Programa Nacional de Formação em Radioterapia Introdução Há cinco tipos de interação
Física D Extensivo V. 8
Física D Extensivo V. 8 Exercícios 0) C f R X > f WZ 0) B 03) E 04) E raios X > luz Raios X são radiações eletromagnéticas com um comprimento de onda muito curto, aproximadamente de 0,06 até 0 Å. Formam-se
SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO
FÍSICA IV PROF. DR. DURVAL RODRIGUES JUNIOR SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO Como na Biblioteca do Campus I e do Campus II temos bom número de cópias do Halliday e poucas do Serway, os
Introdução às interações de partículas carregadas Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa
Introdução às interações de partículas carregadas Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Introdução Radiação diretamente ionizante Partículas carregadas rápidas pesadas Partículas carregadas
Tópicos. Difração de Raios X e do Elétron.
Difração de Raios X e do Elétron. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Instituto de Física. Departamento de Física. Física do Século XXB (FIS1056). Prof. César Augusto Zen Vasconcellos. Lista 9 (Site:
A Dualidade Onda-Partícula
A Dualidade Onda-Partícula O fato de que as ondas têm propriedades de partículas e viceversa se chama Dualidade Onda-Partícula. Todos os objetos (macroscópicos também!) são onda e partícula ao mesmo tempo.
Aula 7 INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA
INTERAÇÃO DA RADIAÇÃO COM A MATÉRIA Aula 7 META Neta aula o aluno aprenderá os mecanismos envolvidos quando a radiação eletromagnética ou corpuscular interage com a matéria. Os conceitos contidos nesta
Efeito Fotoelétrico. Dosimetria e Proteção Radiológica. Efeito Fotoelétrico
Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade
Física Moderna. A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico.
Física Moderna A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico. Efeito fotoelétrico Quando uma radiação eletromagnética incide sobre a superfície de um metal, elétrons podem ser
Fótons e ondas de matéria
Fótons e ondas de matéria Um novo mundo Física quântica Por que as estrelas brilham? Tabela periódica Dispositivos microeletrônica Cobre bom condutor Vidro isolante Bioquímica etc O espectro de corpo negro
Introdução à Química Moderna
Introdução à Química Moderna Prof. Alex Fabiano C. Campos, Dr Radiação de Corpo Negro Objeto com T 0K:emite radiação eletromagnética. T 0K Física Clássica: vibração térmica dos átomos e moléculas, provoca
O espectro eletromagnético
Difração de Raios X O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Raios Absorção, um fóton de energia é absorvido promovendo
Instituto de Física USP. Física V - Aula 21. Professora: Mazé Bechara
Instituto de Física USP Física V - Aula 1 Professora: Mazé Bechara Aula 1 A dimensão nuclear em experimentos de Rutherforad. A questão estabilidade do átomo nucleado e as hipóteses de Niels Bohr 1. A mínima
Interação da Radiação Eletromagnética com a Matéria Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa
Interação da Radiação Eletromagnética com a Matéria Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa RADIAÇÃO ELETROMAGNÉTICA E < 1,4 ev - UV A, B e C - Visível - Infra-vermelho - Microondas - Ondas de
Difração de raios X. Ciência dos Materiais
Difração de raios X Ciência dos Materiais A descoberta dos raios X Roentgen 1895 Mão da Sra. Roentgen Mão do Von Kolliker 1ª radiografia da história Tubo de Crookes 3-99 DIFRAÇÃO DE RAIOS X Difração de
Física Experimental V Experimentos com raios X
4300313 Raios X EMY -2 Física Experimental V 4300313 Experimentos com raios X Os objetivos principais dos experimentos se relacionam à produção de raios X (por Bremsstrahlung e por fluorescência), à atenuação
Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 5 Origens da Teoria Quântica
Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 5 Origens da Teoria Quântica 1) Calcule a energia de um quantum de luz de comprimento de onda
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva O Efeito Compton Einstein, em 1919, concluiu que um fóton de energia E se desloca em uma única direção (diferentemente de uma onda esférica) e é portador de um momento
Energia certa significa: quando a energia do fóton corresponde à diferença nos níveis de energia entre as duas órbitas permitidas do átomo de H.
ESPECTROSCOPIA II A relação da luz com as linhas espectrais O que acontece se átomos de H forem bombardeados por fótons? R. Existem três possibilidades: 1) a maioria dos fótons passa sem nenhuma interação
01. (ITA ) A tabela abaixo mostra os níveis de energia de um átomo do elemento X que se encontra no estado gasoso.
01. (ITA - 1999) A tabela abaixo mostra os níveis de energia de um átomo do elemento X que se encontra no estado gasoso. E 0 0 E 1 7,0 ev E 2 13,0 ev E 3 17,4 ev Ionização 21,4 ev Dentro das possibilidades
Instituto de Física USP. Física V - Aula 15. Professora: Mazé Bechara
Instituto de Física USP Física V - Aula 15 Professora: Mazé Bechara Aula 15 Espectros de absorção e emissão atômica e modelo atômico de Thomson. 1. Evidências experimentais da existência de estrutura nos
Aula 12 - Capítulo 38 Fótons e Ondas de Matéria
Aula 12 - Capítulo 38 Fótons e Ondas de Matéria Física 4 Ref. Halliday Volume4 Sumário Introdução O Fóton (quantum de luz) Radiação térmica O Efeito Fotoelétrico Os Fótons possuem Momento A luz como uma
Aplicações da Mecânica Quântica
Aplicações da Mecânica Quântica LASER I Amplificação da luz por emissão estimulada da radiação As bases teóricas para o laser foram estabelecidas por Einstein em 1917. O primeiro laser foi construído em
Física VIII Ondas eletromagnéticas e Física Moderna
Física VIII Ondas eletromagnéticas e Física Moderna Aula 5: Difração Parte II 1 Baseado no material preparado por Sandro Fonseca de Souza Helena Malbouisson Redes de difração Grande número de fendas (ranhuras)
Professor: Renan Oliveira
Professor: Renan Oliveira TEXTO: 1 - Comum à questão: 1 Além do efeito fotoelétrico, o efeito Compton é também um experimento que pode ser prontamente explicado em termos do modelo de fóton para a luz,
Descoberta dos Raios-X
Descoberta dos Raios-X 1895 - Wilhelm Conrad Roentgen Experimentos com tubo de raios catódicos brilho em um cristal fluorescente perto do tubo mesmo mantendo o tubo coberto Raios invisíveis, natureza desconhecida:
QUÍMICA I. Teoria atômica Capítulo 6. Aula 2
QUÍMICA I Teoria atômica Capítulo 6 Aula 2 Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com a matéria. A radiação eletromagnética se movimenta
https://sites.google.com/site/estruturabc0102/
Estrutura da Matéria Aula 6: Dualidade Onda Partícula Princípio da incerteza E-mail da turma: [email protected] Senha: ufabcsigma https://sites.google.com/site/estruturabc0102/ A luz é realmente uma onda?
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva Espectros atômicos Toda substância a uma certa temperatura emite radiação térmica, caracterizada por uma distribuição contínua de comprimentos de onda. A forma da
Física Aplicada Aula 13
Universidade de São Paulo Instituto de Física Física Aplicada Aula 13 Profa. Márcia de Almeida Rizzutto Edifício Oscar Sala sala 220 [email protected] http://disciplinas.stoa.usp.br/course/view.php?id=24279
Interação de partículas carregadas rápidas com a matéria parte 3. FÍSICA DAS RADIAÇÕES I Paulo R. Costa
Interação de partículas carregadas rápidas com a matéria parte 3 FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Partículas carregadas leves Poder de freamento por colisão para elétrons e pósitrons Poder
INTERPRETAÇÃO DO EXPERIMENTO DE FRANCK E HERTZ EM CONTRAPOSIÇÃO À INTERPRETAÇÃO DE NEILS BOHR E ALBERT EINSTEIN
INTERPRETAÇÃO DO EXPERIMENTO DE FRANCK E HERTZ EM CONTRAPOSIÇÃO À INTERPRETAÇÃO DE NEILS BOHR E ALBERT EINSTEIN LUIZ CARLOS DE ALMEIDA O experimento e suas interpretações dentro de uma visão da quantização
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 4 MODELOS ATÔMICOS Primeira Edição junho de 2005 CAPÍTULO 4 MODELOS ATÔMICOS ÍNDICE 4.1- Modelo de Thomson 4.2- Modelo de Rutherford 4.2.1-
MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site:
BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace MODELOS ATÔMICOS Professor Hugo Barbosa Suffredini [email protected] Site: www.suffredini.com.br Ondas (uma breve revisão...) Uma onda é uma perturbação
Análise de alimentos II Introdução aos Métodos Espectrométricos
Análise de alimentos II Introdução aos Métodos Espectrométricos Profª Drª Rosemary Aparecida de Carvalho Pirassununga/SP 2018 Introdução Métodos espectrométricos Abrangem um grupo de métodos analíticos
Física básica das radiografias convencionais
Física básica das radiografias convencionais Dra. Claudia da Costa Leite, Dr. Edson Amaro Júnior, Dra. Maria Garcia Otaduy Os princípios físicos dos raios-x foram descobertos por Wilhelm Conrad Roentgen
EFEITO FOTOELÉTRICO. Propriedade corpuscular da radiação eletromagnética Reforço à teoria quântica de Planck (quanta de energia)
EFEITO FOTOELÉTRICO Elétrons são emitidos da matéria após absorverem a energia de uma radiação eletromagnética (de baixos comprimentos de onda visível ou UV) que incida sobre ela. Descoberto acidentalmente
Introdução a cristalografia de Raios-X
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE QUÍMICA - DQMC Introdução a cristalografia de Raios-X Prof Karine P. Naidek Introdução a cristalografia de Raios-X
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de junho de 2014 CAPÍTULO 2 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 2.1- Radiação
AULA 01 TEORIA ATÔMICA COMPLETA
AULA 01 TEORIA ATÔMICA COMPLETA - ESTRUTURA ATÔMICA; - MODELOS ATÔMICOS; - ESPECTROSCOPIA ATÔMICA; - PROPRIEDADES ONDULATÓRIAS DOS ELÉTRONS; - NÚMEROS QUÂNTICOS E DISTRIBUIÇÃO ELETRÔNICA. Estrutura Eletrônica
MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site:
BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace MODELOS ATÔMICOS Professor Hugo Barbosa Suffredini [email protected] Site: www.suffredini.com.br Ondas (uma breve revisão...) Uma onda é uma perturbação
CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO
FÍSICA QUÂNTICA: FÓTONS E ONDAS DE MATÉRIA Prof. André L. C. Conceição DAFIS CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO Fótons e ondas de matéria Revisão 1) Relatividade: Do Tempo: (dilatação temporal) Das
1. (Fuvest-SP) Resolução
1. (Fuvest-SP) Na estratosfera, há um ciclo constante de criação e destruição do ozônio. A equação que representa a destruição do ozônio pela ação da luz ultravioleta solar (UV) é O gráfico representa
Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker
Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker 1) Qual é o nome das partículas associadas ao campo eletromagnético? a) Fônons. b)
Instituto de Física USP. Física V - Aula 11. Professora: Mazé Bechara
Instituto de Física USP Física V - Aula 11 Professora: Mazé Bechara AVISOS 1. A aula de 21/3, quinta-feira será uma aula de aplicações. Excepcionalmente não haverá a sessão monitoria às 13h. 2. Na página
4º bimestre - Volume 3, Capítulo 19
Página 1 de 7 4º bimestre - Volume 3, Capítulo 19 Testes propostos 4º bimestre 1 (Uneb-BA) De acordo com o físico Max Planck, que introduziu o conceito de energia quantizada, a luz, elemento imprescindível
EFEITO FOTOELÉTRICO. Propriedade corpuscular da radiação eletromagnética Reforço à teoria quântica de Planck (quanta de energia)
EFEITO FOTOELÉTRICO Elétrons são emitidos da matéria após absorverem a energia de uma radiação eletromagnética (de baixos comprimentos de onda visível ou UV) que incida sobre ela. Descoberto acidentalmente
O Elétron como Onda. Difração de Bragg
O Elétron como Onda Em 1924, de Broglie sugeriu a hipótese de que os elétrons poderiam apresentar propriedades ondulatórias além das suas propriedades corpusculares já bem conhecidas. Esta hipótese se
