τ τ τ 5 - PROPRIEDADES RESISTENTES DOS SOLOS Lei de Coulomb τ - resistência ao corte c - coesão σ - tensão normal total φ - ângulo de atrito interno

Documentos relacionados
5 - PROPRIEDADES RESISTENTES DOS SOLOS. τ - resistência ao corte c - coesão σ - tensão normal total φ - ângulo de atrito interno

Instituto Superior Técnico Mestrado Integrado em Engenharia Civil Análise de Estruturas Geotécnicas, Setembro 2016

Notas de aula prática de Mecânica dos Solos II (parte 10)

SEGUNDO TRABALHO ENSAIO TRIAXIAL DESCRIÇÃO DO ENSAIO E TRATAMENTO DOS RESULTADOS. Standard Test Method for Unconsolidated Undrained Triaxial

Aulas práticas. Figura do problema 4.3. Mecânica dos Solos Engª Geológica DEC/FCT/UNL 4.1

Ensaios laboratoriais correntes

RESISTÊNCIA AO CISALHAMENTO EXERCÍCIOS PROPOSTOS QUESTÕES TEÓRICAS

Ensaios laboratoriais correntes

Mecânica dos Solos TC 035

Mecânica dos Solos TC 035

Para análise e solução dos problemas mais importantes de engenharia de solos é necessário o conhecimento das características de resistência ao

AULA 13: ESTADO DE TENSÕES E CRITÉRIOS DE RUPTURA. Prof. Augusto Montor Mecânica dos Solos

TEORIA DAS FUNDAÇÕES EXERCÍCIOS DE CÁLCULO DE FUNDAÇÕES PROFUNDAS (2003/04) DEC FCTUC

EXERCÍCIOS DE CÁLCULO DE FUNDAÇÕES DIRECTAS (2003/04)

Estados de Tensão e Critérios de ruptura

LABORATÓRIO de MECÂNICA dos SOLOS - Noções de Resistência à Compressão - Ensaio de Compressão Simples e Diametral

MECÂNICA APLICADA II

Mecânica dos Solos TC 035

Critérios de ruptura e Ensaios de Resistência ao Cisalhamento

Aula 3- Impulsos em Estados de Equilíbrio Limite- Cortes Verticais em Argilas; a Teoria de Coulomb

Tensões geostáticas. 1) Determinar as tensões no solo devidas ao seu peso próprio dadas as condições apresentadas na figura abaixo:

NOTAS DE AULA - 02 / MACIÇOS E OBRAS DE TERRA PROF. SERGIO ANTONIO BORTOLOTI

3. Experimentos de laboratório em halita

log σ 4 - CONSOLIDAÇÃO Cálculo da tensão de pré-consolidação, σ' P,

COMPRESSIBILIDADE E CONSOLIDAÇÃO

EXERCÍCIOS SOBRE O DIMENSIONAMENTO DE MUROS DE SUPORTE (2003/04)

Exercícios para resolução fora do âmbito das aulas teórico-práticas - n os 7 e 8

Variáveis Consideradas no Programa Experimental

Tensão de cisalhamento

6.2 MELHORAMENTO DAS CARACTERÍSTICAS DE GRANULOMETRIA E PLASTICIDADE

ESTADO DE TENSÃO EM MACIÇOS TERROSOS

Aterro Assentamentos ao longo do tempo (consolidação) Programa: MEF Consolidação

Compactação Exercícios

AULA 12: DEFORMAÇÕES DEVIDAS A CARREGAMENTOS VERTICAIS E A TEORIA DO ADENSAMENTO. Prof. Augusto Montor Mecânica dos Solos

Controle de Obras Mecânica dos solos

Profa. Dra. Lizandra Nogami

Solicitações Não Drenadas

Exercícios para resolução fora do âmbito das aulas teórico-práticas - n o 8 Prazo para entrega do exercício resolvido até - 07/06/2002.

UFABC - Universidade Federal do ABC. ESTO Mecânica dos Sólidos I. as deformações principais e direções onde elas ocorrem.

Obra Obr s Geotécnicas Geotécnicas Ensaios de de Campo Campo. Correlações Jaime A. Santos

3 - ESCOAMENTOS EM MEIOS POROSOS

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

MECÂNICA DOS SOLOS /1999 COMPRESSIBILIDADE E CONSOLIDAÇÃO DE ESTRATOS DE ARGILA

Faculdade de Engenharia Departamento de Estruturas e Fundações. Lista de Exercicios

Geotecnia de Fundações TC 041

Fundações por estacas Introdução

ISEL. Exame de 1ª Época de MECÂNICA DOS SÓLIDOS I às 14:00H. [MPa] 2 C O 1 > 0

ENSAIOS DE JUNTAS DE ARGAMASSA PARA UM MODELO FÍSICO DE UMA BARRAGEM ABÓBADA A ENSAIAR NA MESA SÍSMICA

Relações entre tensões e deformações

8 Investigação Experimental: Resistência à Compressão e Tração

EMPUXOS DE TERRA E ESTEDO DE TENCOES EM MACISSOS TERROSOS

1. Noção de tensão e de deformação

Caderno de questões. Processo seletivo de ingresso para o 1º. Semestre de 2018 CONHECIMENTOS ESPECIFICOS GEOTECNIA Mestrado e Doutorado

6 Resultado dos Ensaios de Caracterização Mecânica de Rocha

Notas de aulas de Mecânica dos Solos II (parte 11)

6. Análise de Estabilidade

Notas de aulas de Mecânica dos Solos II (parte 9)

Exercícios para resolução fora do âmbito das aulas teórico-práticas - n os 2 e 9

3 Programa Experimental

Carregamentos Combinados

Exercícios para resolução fora do âmbito das aulas teórico-práticas - n os 8 e 9

Exercícios para resolução fora do âmbito das aulas teórico-práticas - n os 2 e 9

Introdução cargas externas cargas internas deformações estabilidade

5 Simulação numérica dos muros reforçados

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída)

CAMPUS BRASÍLIA DEPARTAMENTO DE ENGENHARIA CIVIL. Tópico: EMPUXO PASSIVO E ATIVO

Tensão horizontal de repouso (σ h0 )

PROPRIEDADES MECÂNICAS E CLASSIFICAÇÃO DE SOLOS/ 3. mensurar os deslocamentos recuperáveis nos pavimentos, denominados de

4 Modelo Constitutivo de Drucker-Prager para materiais rochosos

Capítulo 7 Transformação de deformação no plano

IST- OBRAS GEOTÉCNICAS Mestrado em Engenharia Civil 4º Ano - 2º Semestre 1º Exame 30 de Junho de 2009 Sem consulta Duração do exame: 2h30

Capítulo 4 ESTADO DE TENSÕES E DE EQUILÍBRIO DOS SOLOS

Capítulo 5 Percolação

Grupo Quais as fases do estudo geotécnico que acompanham os grandes projectos de Engenharia? Descreva sinteticamente cada uma delas.

7 Ensaios de laboratório

Aula 1 Taludes e Movimentos de Massa. CIV 247 OBRAS DE TERRA Prof. Romero César Gomes

Mecânica dos Solos TC 035

Tensões no Solo Exercícios

Exercícios para resolução fora do âmbito das aulas teórico-práticas - n os 2 e 8. Figura 1

Controle de Obras Mecânica dos solos

Lista de Exercícios de Adensamento

Estado Duplo de Tensão

6 Análise Método Clássico

Obras Geotécnicas TC 066


Transformação da deformação

RESISTÊNCIA DOS MATERIAIS

Geotecnia de Fundações TC 041

Resistência dos Materiais

6 Alteamento da barragem de rejeito Limonar Peru 6.1. Descrição

Estado duplo ou, Estado plano de tensões.

1º TESTE DE TECNOLOGIA MECÂNICA I Licenciatura em Engenharia e Gestão Industrial I. INTRODUÇÃO AOS PROCESSOS DE FABRICO

UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIÊNCIAS E TECNOLOGIA CURSO DE LICENCIATURA EM ENGENHARIA GEOLÓGICA

3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL

Carga axial. Princípio de Saint-Venant

Teórica 3_complementar

Terceira Lista de Exercícios

17/03/2017 FUNDAÇÕES PROFESSORA: ARIEL ALI BENTO MAGALHÃES / CAPÍTULO 2 FUNDAÇÕES RASAS

Transcrição:

5 - PROPRIEDADES RESISTENTES DOS SOLOS Lei de Coulomb τ = c + σ tg φ Representação gráfica τ - resistência ao corte c - coesão σ - tensão normal total φ - ângulo de atrito interno τ τ τ τ = c + σ tg φ τ = σ tg φ τ = c φ φ c σ σ σ Areias Argilas Solos c - φ Em termos de tensões efectivas σ'= σ - u τ = c'+ (σ - u) tg φ' Relações tensões-deformações c' e φ' referidos à tensão efectiva Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.1

Ângulos de atrito: φ φ ' máx ' rot = tan 1 = tan ' ( τ / σ ) máx 1 ' ( τ / σ ) rot Dilatância: ψ = tan 1 ( dε vol / dγ ) Problemas 5.1 - Ensaios na caixa de corte, sobre areia compactada, deram os seguintes resultados, em kn/m : tensão tensão tangencial normal máx. τrot 35 33 9 70 58 45 105 87 67 Determine o ângulo de atrito interno da areia num estado compactado e num estado solto, por acção de corte. 5. - Foi realizado um aterro com uma argila, tendo as seguintes características : c'= 30 kpa e φ'= 6º O peso específico do solo do aterro é de 19, kn/m 3. Calcular a resistência ao corte do solo num plano horizontal situado à profundidade de 0 m, se a pressão intersticial nesse ponto for de 180 kpa. R : τ = 19,5 kpa Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.

5.3 - Um ensaio lento, realizado na máquina de corte directo, deu os resultados apresentados no quadro: Deslocamento horizontal relativo x (mm) Deslocamento vertical y (mm) Tensão de corte 0,00 0,0 0,04 0,06 0,08 0,0 0,3 0,48 0,64 0,80 0,96 1,1 0,000 0,00 0,008 0,016 0,06 0,064 0,18 0,19 0,56 0,88 0,30 0,31 O ensaio foi realizado sobre uma areia seca, a uma tensão normal efectiva de 50 kpa e numa amostra com as dimensões iniciais de 60mm x 60mm de área e 0mm de altura. Desenhe os gráficos: a) τ /γ, determinando o ângulo de atrito máx e o na rotura; b) ε vol / γ, determinando o ângulo de dilatância. 0 19 34 43 47 56 51 46 41 37 34 33 5.4 - Para a avaliação da resistência ao corte de um estrato argiloso colheram-se 3 amostras de solo a 5 e a 10 m de profundidade para realização de ensaios de compressão simples. Com base nos resultados obtidos (ver quadro seguinte) caracterize a resistência ao corte desse solo. Prof. (m) Amostra Tensão de rotura A1 104 5 A 110 A3 108 A4 148 10 A5 153 A6 149 5.5 - Com base nos resultados de um ensaio de compressão triaxial consolidado drenado (CD) que se apresentam no quadro seguinte, determine as características de resistência ao corte da areia ensaiada. Resultados obtidos na rotura Pressão na Tensão de Provete câmara desvio 1 50 690 400 1163 3 650 187 Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.3

5.6 - Um solo compactado foi ensaiado à rotura, sem drenagem, no aparelho de compressão triaxial, tendo sido efectuadas leituras de pressão intersticial. Os resultados do ensaio são os seguintes, em kpa: (1) () Pressão na câmara 100 400 Tensão vertical 370 1000 Pressão intersticial 5 110 Determinar a coesão e o ângulo de atrito interno, referidos a: a) tensões totais; b) tensões efectivas. 5.7 - Os resultados apresentados no quadro seguinte foram obtidos num ensaio triaxial consolidado não drenado (CU), com medição de pressões intersticiais, no qual os provetes foram consolidados anisotropicamente com K o = 0,5 e conduzidos à rotura por diminuição de σ 3. Determine as características de resistência ao corte do solo ensaiado, em termos de tensões totais e de tensões efectivas. Fase de consolidação Fase de corte σ câm u cp σ 1 - σ 3 u medido 500 00 470 95 700 00 780 30 1000 50 1170-5 5.8 - Num ensaio não drenado triaxial, medimos os valores de pressão intersticial. A amostra do material era compactada e os resultados são os seguintes, em kpa: tensão lateral, σ 3 150 450 tensão vertical total, σ 1 400 1000 pressão intersticial, u +30 +15 Determinar a coesão e o ângulo de atrito interno do solo da amostra: a) referidos à tensão total; b) referidos à tensão efectiva. R : a) c u = 36 kpa e φ u = 0 o b) c' = 4 kpa e φ' = 5 o 5.9 - Um solo coerente tem um ângulo de atrito interno φ cu = 15 o e uma coesão de 35 kpa. Se um provete deste solo for sujeito ao ensaio triaxial, por aumento de σ 1, determine o valor da pressão da câmara necessária para que a rotura se dê quando a tensão de compressão axial no provete for de 00 kpa. R : σ 3 = 63 kpa Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.4

Círculo de Mohr Estado plano de tensão: Qualquer ponto desta circunferência representa o estado de tensão num plano que faz um ângulo α com a direcção do plano onde actua a tensão principal máxima. Convenção de sinais: As tensões de compressão são positivas, marcando-se para a direita da origem. As tensões tangenciais são negativas marcando-se para baixo no eixo das ordenadas. A inclinação α de qualquer plano, relativamente ao plano em que actua σ 1, é marcada no sentido contrário ao dos ponteiros do relógio, a partir do ponto de irradiação dos planos, no eixo das abcissas. τ σ 1 σ 3 σ 3 τ σ α σ 1 τ = c + σ tg φ σ T τ N σ 0 c φ O σ 3 B α E C α D σ σ 1 Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.5

Tensões normal e tangencial σ 1+ σ 3 σ = OC CE = r.cos( 180 α) σ1+ σ 3 σ1 σ 3 = + cos( α ) σ1+ σ 3 σ1 σ 3 = + ( 1 sin α) σ1+ σ 3 σ1 σ 3 σ1 σ 3 = + sin α = σ1 σ1sin α + σ 3sin α = σ 1( 1 sin α) + σ 3sin α = σ1cos α + σ 3sin α τ α α σ σ 1 = TE = rsin( 180 ) = rsin = sin α Equação de rotura Mohr-Coulomb ND NB = σ0+ σ1 = σ + σ mas, 0 3 NC+ CD NC - CB σ 0 = que substituindo em (1) : 1 3 NC+ CT = NC - CT = 1+r 1-r = 1+ sinφ 1-sinφ c tgφ = ( 1+ sinφ σ σ )+ c. cosφ 1-sinφ 1-sinφ (1) Representação gráfica - diagrama s, t Representa-se apenas o ponto correspondente à tensão tangencial máxima, usando como eixos coordenados, p e q. σ σ1 σ 1 + σ 3 t = ± 3 Assim, num estado plano de deformação, tem-se: s = A envolvente tangente aos círculos de Mohr, na representação de Mohr, definida pelos parâmetros c e φ, é representada no diagrama s, t pela envolvente transformada definida pelos parâmetros a e α. c = a cosφ sinφ = tgα Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.6

5.10 - Os resultados que a seguir se indicam foram obtidos num ensaio não drenado com amostras de uma argila arenosa numa caixa de corte, em kpa: tensão normal 00 300 400 tensão tangencial 113 141 167 a) calcular o valor da coesão e do ângulo de atrito; b) se uma amostra desse solo fosse sujeita a um ensaio triaxial com uma tensão lateral de 75 kpa encontrar a tensão normal total a que se daria a rotura. R : a) c u = 60 kpa e φ u = 15 o b) σ 1 = 610 kpa 5.11 - Um dado solo rompeu sob a tensão principal máxima de 88 kpa e a correspondente tensão mínima de l00 kpa. Se, para o mesmo solo, a tensão principal mínima tivesse sido de 00 kpa determinar a tensão principal máxima na rotura sendo a) φ = 0 o b) c = 0 R : a) σ 1 = 580 kpa b) σ 1 = 388 kpa 5.1 - O quadro contém valores obtidos num ensaio consolidado-não drenado sobre uma argila branda. Determine os parâmetros de resistência ao corte, em termos de tensões efectivas. Um provete diferente do mesmo solo é ensaiado numa câmara triaxial (ensaio não drenado) com σ 3 =150 kpa e rompe quando a tensão de desvio (σ 1 -σ 3 ) é 75 kpa. Calcular a tensão intersticial da amostra na rotura. Tensão lateral durante a Rotura consolidação e o corte (σ 1 -σ 3 ) u 00 117 110 400 4 7 800 468 455 R : c'= 0 φ'= 5 o u = 99 kpa 5.13 - Os resultados que se seguem foram obtidos de uma série de ensaios triaxiais não drenados em amostras intactas dum solo: Tensão lateral Carga adicional na rotura (N) 00 34 400 388 600 465 Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.7

Cada amostra, que tinha originalmente 76 mm de altura e 38 mm de diâmetro, experimentou uma deformação na vertical de 5,1 mm. Desenhe a recta de Coulomb em termos de tensões totais e escreva a sua equação. R : C u = 100 kpa e φ u = 7 o Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.8

5.14 - Uma amostra intacta de solo, de 110 mm de diâmetro e 0 mm de altura, foi ensaiada no aparelho de compressão triaxial. A amostra rompeu sob uma carga adicional de 3,35 kn com uma deformação vertical de 1mm. O plano de rotura tinha uma inclinação de 50 º com a horizontal e a pressão de câmara era de 300 kn/m. a) Desenhar o círculo de Mohr que representa as condições acima descritas e a partir dele, determinar: 1 - a equação da recta de Coulomb para a resistência ao corte do solo, em termos de tensões totais; - a intensidade e a direcção da tensão resultante no plano de rotura; b) Outra amostra intacta de solo foi ensaiada na caixa de corte, sob as mesmas condições de drenagem do ensaio anterior. Se a área da caixa fosse de 3600 mm e a carga axial de 500 N, qual seria a tensão tangencial a esperar, na rotura? R : a) τ = 80 + 0,1763σ e 465 kpa b) τ = 105 kpa 5 Várias sondagens revelaram a existência de um estrato de pequena espessura de silte aluvionar à profundidade de 15 m. O solo acima desse nível tem um peso específico seco médio de 15,5 kn/m 3 e um teor em água médio de 30%. O nível freático coincide aproximadamente com a superfície exterior. Ensaios de provetes de silte intactos deram os seguintes resultados: C u = 50 kpa e φ = 13 o C d = 40 kpa e φ = 3 o Determinar a tensão de corte de rotura num plano horizontal quando a) a tensão de corte aumenta rapidamente; b) a tensão de corte aumenta lentamente. R : a) 10 kpa b) 105 kpa 53 - Os parâmetros de resistência ao corte de um solo argiloso são: c = 40 kpa e φ = 18 o a) Qual a altura mínima de uma amostra cilíndrica com diâmetro da base D = 4 cm, para que o plano de rotura, num ensaio de compressão simples, não corte as bases do prisma; b) Qual o valor da carga de rotura. Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.9

R : a) 5,5 cm b) 138 N 54 -Num ensaio triaxial, com simetria axial, um provete foi consolidado sob uma tensão de confinamento de 800 kpa e sob uma contrapressão de 400 kpa. Em seguida, sob condições não drenadas, a pressão de confinamento na câmara foi subida para 900 kpa e a pressão intersticial da água subiu para 498 kpa. Mantendo a pressão na câmara em 900 kpa, aplicou-se uma tensão axial através do êmbolo de 585 kpa de que resultou a rotura do provete com uma pressão intersticial da água de 660 kpa. a) Calcule os parâmetros de pressões intersticiais da água A e B. b) Um outro provete foi consolidado sob uma pressão de confinamento de 170 kpa e sob a mesma contrapressão de 400 kpa. Em seguida, sob condições não drenadas, a pressão de confinamento foi subida para 1370 kpa, tendo a pressão intersticial da água subido para 497 kpa. Para obter a rotura, em condições não drenadas, reduziu-se a pressão na câmara de 1370 kpa para 567 kpa, aplicando-se simultaneamente através do êmbolo uma tensão axial de 803 kpa. Na rotura registou-se uma leitura da pressão intersticial de 3 kpa. Calcule os parâmetros de pressões intersticiais da água A e B. c) Sabendo de outros ensaios sobre o mesmo solo que este não exibe coesão, calcule os valores dos ângulos de atrito interno em termos de tensões efectivas. d) Trace as envolventes de Mohr, em termos de tensões totais e efectivas, admitindo c=c =0. e) Comente os resultados obtidos, referindo em especial se são compatíveis e porquê. Mecânica dos Solos C Engª Geológica DEC/FCT/UNL 5.10