INTRODUC AO ` A ALGEBRA



Documentos relacionados
Matemática - Módulo 1

Bases Matemáticas. Daniel Miranda de maio de sala Bloco B página: daniel.miranda

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Relações. Antonio Alfredo Ferreira Loureiro. UFMG/ICEx/DCC MD Relações 1

CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS

CORPOS FINITOS E SEUS GRUPOS MULTIPLICATIVOS

PLANO DE ENSINO DA DISCIPLINA

é um grupo abeliano.

Álge g bra b B ooleana n Bernardo Gonçalves

TEORIA DOS CONJUNTOS

(Equivalência e Implicação lógica aula 10

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

1 Teoria de conjuntos e lógica

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Números Inteiros AULA. 3.1 Introdução

Cálculo proposicional

Fundamentos de Lógica Matemática

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Números naturais e cardinalidade

FABIANO KLEIN CRITÉRIOS NÃO CLÁSSICOS DE DIVISIBILIDADE

FUNÇÕES. 1.Definição e Conceitos Básicos

SUMÁRIO. 1. REVISÃO DE GINÁSIO Critérios de divisibilidade. 2. CONJUNTOS Introdução. Operações de conjuntos. Conjuntos numéricos

8 AULA. Operações com Conjuntos: União e Interseção LIVRO. META: Introduzir algumas propriedades da união e da interseção de conjuntos.

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS

1. À primeira coluna (P), atribui-se uma quantidade de valores V igual à metade do total de linhas

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase

Inversão de Matrizes

1 Noções Primitivas MAT175 - GEOMETRIA ESPACIAL MAT175 - GEOMETRIA ESPACIAL

Métodos Formais. Agenda. Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções. Relações e Funções

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase

Congruências Lineares

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE

A Dança do Embaralhamento. Série Matemática na Escola. Objetivos 1. Introduzir a noção de grupo de permutação; 2. Mostrar uma aplicação de MMC.

Aula 1 Conjuntos Numéricos

Sumário 1. PROBLEMAS DE RACIOCÍNIO INTUITIVO ESPACIAL, NUMÉRICO E VERBAL PROBLEMAS DE ARGUMENTAÇÃO LÓGICA INTUITIVA...55

AGRUPAMENTO DE ESCOLAS DE CASTRO DAIRE Escola Secundária de Castro Daire

Teoria intuitiva de conjuntos

SÍMBOLOS MATEMÁTICOS. adição Lê-se como "mais" Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5.

Sinais e Sistemas Unidade 2 Conceitos de Matemática de Variável Complexa

Para satisfazer mais necessidades, criou-se a necessidade de números racionais, que são aqueles que podem ser escritos na forma m n

PREPARATÓRIO PROFMAT/ AULA 3

CDI-II. Derivadas de Ordem Superior. Extremos. ; k = 1,2,...,n.

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS.

PLANO DE ENSINO DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO 1º BIMESTRE DIRETORIA DE ENSINO REGIÃO CAIEIRAS

Maurício Zahn. Análise Real I

Determinantes. Matemática Prof. Mauricio José

Fórmulas do Traço e o Cálculo de Matrizes Inversas

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Aula 8 Variações da Eliminação de Gauss/Fatoração LU.

condicional tem sentido porque até recentemente as escolas ensinavam que 5

Aula 00. Raciocínio Lógico Quantitativo para IBGE. Raciocínio Lógico Quantitativo Professor: Guilherme Neves

MATRIZ - FORMAÇÃO E IGUALDADE

Prática. Exercícios didáticos ( I)

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

NÚMEROS, ÁLGEBRA E FUNÇÕES

Um pouco da História dos Logaritmos

Matemática Aplicada às Ciências Sociais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO

Revisão da Lei de Anistia: um contraponto

Ficha de Exercícios nº 2

Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.

Sumário. OS ENIGMAS DE SHERAZADE I Ele fala a verdade ou mente? I I Um truque com os números... 14

RACIOCÍNIO LÓGICO Simplif icado

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período

Capítulo VI Circuitos Aritméticos

PUC-Rio Desafio em Matemática 15 de novembro de 2008

O TEOREMA DE PITÁGORAS E AS RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO COM MATERIAL EMBORRACHADO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

Aula 5: determinação e simplificação de expressões lógicas

SOLUÇÕES N item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

Distribuição Binomial e Normal

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo

Exercícios de revisão para a primeira avaliação Gabaritos selecionados

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Capítulo Bissetrizes de duas retas concorrentes. Proposição 1

Unidade 10 Análise combinatória. Introdução Princípio Fundamental da contagem Fatorial

Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza

Universidade dos Açores Curso de Especialização Tecnológica Gestão da Qualidade Matemática

Planificação do 2º Período

Representação de Circuitos Lógicos

Funções. Pré-Cálculo. O que é uma função? O que é uma função? Humberto José Bortolossi. Parte 2. Definição

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Introdução à Programação com Python

Matemática Discreta - 07

Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2

Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes.

Álgebra Linear Computacional

Conjuntos mecânicos I

a) 2 b) 3 c) 4 d) 5 e) 6

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a

Frente 3 Aula 20 GEOMETRIA ANALÍTICA Coordenadas Cartesianas Ortogonais

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO

Transcrição:

INTRODUÇÃO À ÁLGEBRA Maurício Zahn

Introdução à Álgebra Copyright Editora Ciência Moderna Ltda., 2013 Todos os direitos para a língua portuguesa reservados pela EDITORA CIÊNCIA MODERNA LTDA. De acordo com a Lei 9.610, de 19/2/1998, nenhuma parte deste livro poderá ser reproduzida, transmitida e gravada, por qualquer meio eletrônico, mecânico, por fotocópia e outros, sem a prévia autorização, por escrito, da Editora. Editor: Paulo André P. Marques Produção Editorial: Aline Vieira Marques Assistente Editorial: Amanda Lima da Costa Capa: Cristina Satchko Hodge Várias Marcas Registradas aparecem no decorrer deste livro. Mais do que simplesmente listar esses nomes e informar quem possui seus direitos de exploração, ou ainda imprimir os logotipos das mesmas, o editor declara estar utilizando tais nomes apenas para fins editoriais, em benefício exclusivo do dono da Marca Registrada, sem intenção de infringir as regras de sua utilização. Qualquer semelhança em nomes próprios e acontecimentos será mera coincidência. FICHA CATALOGRÁFICA ZAHN, Maurício. Introdução à Álgebra Rio de Janeiro: Editora Ciência Moderna Ltda., 2013. 1. Matemática 2. Álgebra I Título ISBN: 978-85-399-0289-7 CDD 510 512 Editora Ciência Moderna Ltda. R. Alice Figueiredo, 46 Riachuelo Rio de Janeiro, RJ Brasil CEP: 20.950-150 Tel: (21) 2201-6662/ Fax: (21) 2201-6896 E-MAIL: LCM@LCM.COM.BR WWW.LCM.COM.BR 02/13

Sicut cervus desiderat ad fontes aquarum Ita desiderat anima mea ad te, Deus. Dedico este trabalho à Lisiane Ramires Meneses, minha sempre companheira, meu amor.

Prefácio Este livro é fruto de notas de aula da disciplina de Introdução à Álgebra que ministrei na Universidade Federal de Pelotas (UFPel) no segundo semestre de 2009, para o curso de Licenciatura em Matemática. Neste trabalho apresentamos os primeiros conceitos da álgebra Abstrata: noções sobre teoria dos conjuntos, relações e funções, grupos e anéis. Propomos uma quantidade razoável de exercícios após cada conteúdo apresentado para desafiar o estudante a resolvê-los, a fim de treinarem os conhecimentos adquiridos e, até mesmo, esclarecer eventuais dúvidas e refinar o aprendizado. Os exercícios indicados com um asterísco (*) estão resolvidos no anexo ao final do livro. Naturalmente este livro deve possuir algumas imperfeições. É extremamente difícil escrever um livro de Matemática sem cometer algum erro, por parte do autor. Quanto a isto peço desculpas e estou aberto a críticas e sugestões para melhorar cada vez mais este trabalho. Interessados podem escrever para mauricio.zahn@ufpel.edu.br Se houver alguma errata do livro a mesma será postada na página www.ufpel.edu.br/ mauricio.zahn Aproveito a oportunidade para agradecer à minha ex-aluna Gabrielle S. Nornberg por emprestar suas notas das aulas às quais estavam bem organizadas e pude então latecar e ampliar este trabalho. Também agradeço ao meu amigo Alex Sandro Ferreira da Silva pela revisão ortográfica e ao professor Fábio Botelho por ter usado estas notas num curso posterior e pelas suas sugestões. Por fim, quero agradecer à minha amada esposa Lisiane R. Meneses, que sempre tem me dado muito apoio e incentivo para escrever e também pela revisão técnica feita. Pelotas, junho de 2012. Maurício Zahn

Conteúdo 1 Conjuntos e funções 1 1.1 Conjuntos e operações..................... 1 1.2 Família de conjuntos...................... 14 1.3 Relações binárias........................ 17 1.3.1 Representação gráfica................. 18 1.3.2 Relação inversa..................... 20 1.3.3 Tipos de relações.................... 20 1.4 Funções............................... 30 1.4.1 Primeiros conceitos................... 30 1.4.2 Funções injetiva, sobrejetiva e bijetiva....... 35 1.4.3 Composição de funções................. 39 1.4.4 Inversa de uma função................. 41 2 Grupos 49 2.1 Operações............................. 49 2.2 Grupo: definição e exemplos................. 53 2.3 Subgrupos............................. 60 2.4 Grupos cíclicos.......................... 65 2.5 Subgrupo gerado por um conjunto............. 68 2.6 Ordem de um grupo...................... 69 2.7 Classes laterais e o teorema de Lagrange......... 71 2.7.1 Consequências do teorema de Lagrange...... 75 2.8 Subgrupos normais....................... 79 2.8.1 A congruência módulo H, comh G........ 81 2.9 Homomorfismos de grupos.................. 84

viii Introdução à Álgebra 2.10 O teorema dos isomorfismos................. 95 3 Anéis 105 3.1 Definição e exemplos...................... 105 3.2 Subanéis.............................. 110 3.3 Ideais................................ 111 3.3.1 Operações com ideais.................. 114 3.3.2 A congruência módulo um ideal I.......... 116 3.4 Homomorfismos de anéis.................... 120 3.5 O teorema dos isomorfismos para anéis.......... 123 4 Anexo: Resolução de alguns exercícios 127 Índice 143 Bibliografia 145

Capítulo 1 Conjuntos e funções Neste capítulo vamos estudar as primeiras noções da teoria de conjuntos, tais como as relações de pertinência e contenção e operações entre conjuntos. Também faremos um breve estudo sobre os principais tópicos referentes a relações e funções. São noções básicas, porém, extremamente importantes para o estudo de álgebra. 1.1 Conjuntos e operações Não definimos o que vem a ser um conjunto. É simplesmante um sinônimo para uma coleção de elementos. Para relacionar conjunto com elemento, usamos a relação de pertinência, anotada pelo símbolo. Elementos de um conjunto são representados, normalmente, por letras minúsculas de nosso alfabeto e os conjuntos são normalmente representados por letras maiúsculas de nosso alfabeto. Assim, para dizer que um elemento x pertence a um conjunto A escrevemos x A e para dizer que um elemento y não pertence ao conjunto A escrevemos y A. Uma maneira de expressar um conjunto X é dizendo qual a regra que decide se um dado elemento pertence ou não pertence ao referido conjunto. Por exemplo, seja X o conjunto de todas as matrizes quadradas de ordem 2 cuja diagonal principal não tenha zeros. Desta maneira, temos que ( ) ( ) ( ) 1 0 2 0 0 3 I 2 = X, X, mas X. 0 1 5 3 2 1

2 Introdução à Álgebra Uma maneira simples de representar o conjunto X dado acima é X = {A =(a ij ) 2 2 : a kk 0}. De maneira geral, dado X um conjunto qualquer cujos elementos de X satisfazem uma propriedade p, escrevemos X = {x : x satisfaz propriedade p}. Vamos utilizar os símbolos clássicos para denotar os conjuntos numéricos: N para o conjunto dos naturais, Z para o conjunto dos inteiros, Q para o conjunto dos racionais, I para o conjunto dos números irracionais, R para o conjunto dos números reais e C para o conjunto dos números complexos. Apenas por convenção, não vamos considerar o número inteiro zero (0) como sendo um número natural. Assim, N = {1, 2, 3,...}. Queremos considerar o conjunto de todos os conjuntos que ocorrem numa dada discussão. A este conjunto chamamos de conjunto universo ou espaço fundamental E. Na teoria dos conjuntos também é importante a noção de conjunto vazio. O conjunto vazio é o conjunto que não possui elementos. Ele é representado pelo símbolo ou por {}. O conjunto vazio aparece em diversos contextos, como por exemplo, = {n N : n n}. é importante observar que não se deve confundir com { }. O primeiro trata-se do conjunto vazio e, portanto, não tem elemento algum; já o segundo é um conjunto que possui um elemento: o conjunto vazio. Para relacionar conjuntos usamos o símbolo de contenção, c.f. a definição abaixo. Definição 1.1 Sejam A e B dois conjuntos em um universo E. Dizemos que A está contido em B, e escrevemos A B, setodoelementodea for elemento de B. Mais precisamente, A B ( x)[x A x B]. Quando A B dizemos que A éumsubconjunto ou parte de B.

Conjuntos e funções 3 Para dizer que A não está contidoem B basta exibir um elemento de A que não esteja em B, ou seja, A B ( x 0 A) talque[x 0 B]. Uma propriedade que segue imediatamente da definição de contenção é a descrita na proposição que segue. Proposição 1.1 O conjunto vazio é subconjunto de qualquer conjunto. Demonstração. Seja A um conjunto qualquer em um universo E. Por absurdo, suponhamos que A. Assim, x 0 tal que x 0 A. Mas x 0 é um absurdo, pois viola a definição de conjunto vazio. Portanto, A, qualquer que seja o conjunto A. A seguir, definimos a igualdade de conjuntos. c.q.d. Definição 1.2 Dizemos que dois conjuntos A e B em um universo E são iguais se todo elemento de A for elemento de B etodoelementodeb for elemento de A. Mais precisamente, A = B A B e B A. Proposição 1.2 Sejam A, B e C conjuntos em um universo E. Então, valem as seguintes propriedades 1 para a contenção de conjuntos: (i) reflexiva: A A; (ii) anti-simétrica: se A B e B A, então A = B; (iii) transitiva: se A B e B C, então A C. Demonstração. Sejam A, B e C conjuntos em um universo E. Mostramos cada item da proposição acima. (i) Reflexiva: A A: de fato, dado x A um elemento qualquer em A, segue, por repetição, que x A. Portanto, A A, ou seja, segue a reflexividade. (ii) Anti-simétrica: segue diretamente da definição de igualdade de conjuntos dada acima. 1 Mais tarde veremos que estas propriedades formam uma relação de equivalência.

4 Introdução à Álgebra (iii) Transitiva: Sejam A, B e C em E tais que A B e B C. ComoA B, segue que dado um x A, implica que x B. Porém, como B C, segue que x C. Como este x é um elemento qualquer em A, temos provado que A C e a prova da transitividade está completa. c.q.d. Definição 1.3 Chama-se diagrama de Venn toda figura fechada usada para representar graficamente um conjunto, onde os elementos no interior da figura serão elementos pertencentes ao dado conjunto e elementos fora da figura serão elementos não pertencentes ao conjunto em questão. Abaixo apresentamos, em diagramas de Venn, uma representação para ilustrar A B. Note que o retângulo que os contêm também é um diagrama de Venn, e está representando o conjunto universo E. Também destacamos dois elementos a e b, onde a A e b A, masb B. Definição 1.4 Seja X um conjunto qualquer em um universo E. Definimos o conjunto das partes de X, e denotamos por P(X), o conjunto P(X) ={A E : A X}. Em outras palavras, o conjunto P(X) denota o conjunto de todos os subconjuntos do conjunto X. Da definição acima temos que A P(X) A X. Observeque P(X) está bem definido. Realmente, como, por proposição, X e pela reflexividade da contenção X X, segue que P(X) ex P(X). Logo, o conjunto das partes de um conjunto sempre possui pelo menos dois elementos: o conjunto vazio e o próprio conjunto. Proposição 1.3 Seja X um conjunto finito com n elementos. Então, o número de elementos de P(X) é 2 n.

Conjuntos e funções 5 Demonstração. Seja X um conjunto finito com n elementos. De acordo com a Análise Combinatória, temos que onúmero de subconjuntos com nenhum elemento será C n,0 = 1 (refere-se ao conjunto vazio); onúmero de subconjuntos com um elemento será C n,1 = n; onúmero de subconjuntos com dois elementos será C n,2 ;... onúmero de subconjuntos com todos os n elementos será C n,n =1(o próprio conjunto X). Assim, lembrando no estudo de Binômio de Newton, a soma de todos os elementos da linha n do triângulo de Pascal é2 n, temos que o que prova a proposição. C n,0 + C n,1 + C n,2 +... + C n,n =2 n, c.q.d. Exercícios 1. Construir possíveis diagramas de Venn: (a) de dois conjuntos A e B tais que A B e A B; (b) dois conjuntos A e B não comparáveis 2. 2. Dado o conjuntoa = {2, 3, {4, 5}, 4}, assinale as afirmativas abaixo como verdadeiras ou falsas, justificando. (a) 5 A. (b) {4, 5} A. (c) {4, 5} A. (d) {{4, 5}} A. (e) {3, {4, 5}} A. (f) { } A. 3. Sabendo que X é um conjunto qualquer de um espaço E, diga quais das sentenças abaixo são verdadeiras, justificando: (a) X P(X). (b) X P(X). (c) {X} P(X). (d) {X} P(X). 2 Dizemos que dois conjuntos A e B são comparáveis quando A B ou B A. Elessão não-comparáveis quando A B e B A.

6 Introdução à Álgebra 4. Sejam X e Y conjuntos em um universo E. Mostreque,seX Y,então P(X) P(Y ). 5. Seja A = {1, 2, {1, 2}}. (a) Quantos elementos possui P(A)? Liste-os. (b) As afirmações {1, 2} A e {1, 2} A são ambas verdadeiras. Por quê? A seguir, apresentamos as principais operações entre conjuntos, bem como suas propriedades. Definição 1.5 Sejam A e B conjuntos de um universo E. Definimos a união entre A e B, e anotamos por A B, o conjunto dos elementos de E que pertencem a pelo menos um dos dois conjuntos. Mais precisamente, A B = {x E : x A ou x B}. Abaixo temos uma representação em diagrama de Venn, onde a parte sombreada ilustra A B. Para mostrar que um dado elemento não está na união entre A e B é preciso mostrar que este elemento não está em nenhum deles, ou seja, x 0 A B x 0 A e x 0 B. Proposição 1.4 Sejam A e B conjuntos em E. Então A A B e B A B. Demonstração. Faremos apenas a prova da primeira contenção, visto que a outra éanáloga. Por absurdo, se A A B, então x 0 A tal que x 0 A B. Mas então x 0 A e x 0 B. Logo, x 0 A e x 0 A. Absurdo! Portanto, A A B. c.q.d.

Conjuntos e funções 7 Definição 1.6 Chama-se intersecção entredois conjuntosa e B, e escrevemos A B, ao conjunto dos elementos comuns a A eab. Mais precisamente, A B = {x E : x A e x B}. Da definição acima temos que para um elemento não pertencer à intersecção basta ele não pertencer a pelo menos um dos conjuntos, ou seja, x 0 A B x 0 A ou x 0 B. Abaixo temos uma representação em diagramas de Venn para A B, que encontra-se sombreado. Deixaremos para o leitor a prova da proposição seguinte. Proposição 1.5 Sejam A e B conjuntos em um universo E. Então A B A e A B B. A seguir apresentamos as principais propriedades envolvendo a união e a intersecção de conjuntos. Proposição 1.6 Sejam A, B, C, M e N conjuntos em um universo E. Valem as seguintes propriedades: (a) A A = A; A A = A. (b) A = A; A =. (c) A B = B A; A B = B A (comutatividades). (d) A (B C) =(A B) C; A (B C) =(A B) C. (associatividades da união e da intersecção) (e) Se A B e M N, então A M B N. Se A B e M N, então A M B N. (monotonicidades da união e da intersecção em relação à contenção)

8 Introdução à Álgebra (f) A (B C) =(A B) (A C); A (B C) =(A B) (A C). (distributividades) Demonstração. Faremos a demonstração de algumas, deixando as demais ao encargo do leitor. (a) Mostraremos que A A = A. Para provar esta igualdade precisamos provar duas contenções: A A A e A A A. Faremos isto em duas afirmações. Af 01. A A A: Segue diretamente pela proposição 1.4. Af 02. A A A: Por absurdo, suponhamos que A A A. Assim, segue que x 0 A A tal que x 0 A. Masdex 0 A A segue que x 0 A. Logo, x 0 A e x 0 A. Absurdo! Portanto, A A A. Pelas afirmações 01 e 02 segue o resultado. (c) Mostraremos A B = B A, i.e., a comutatividade da intersecção. Af 01. A B B A: Dado x A B, segue que x A e x B, ou seja, x B e x A e, portanto, x B A. Af 02. B A A B: Se prova analogamente. Portanto, vale a comutatividade da intersecção. (e) Provaremos que A B e M N A M B N. Suponhamos que A B e M N. Precisamos mostrar que A M B N. Para tanto, basta mostrar que dado um elemento no primeiro conjunto, este deve estar no segundo. Assim, seja x 0 A M. Logo, x 0 A B ou x 0 M B (as contenções são devidas às hipóteses). Logo, temos x 0 B N, o que prova o que queríamos. (f) Provaremos que A (B C) =(A B) (A C). Af 01. A (B C) (A B) (A C): Seja x 0 A (B C). Assim, x 0 A ou x 0 B C. Se x 0 A, pela proposição 1.4 temos que x 0 A A B etambém x 0 A C. Portanto, x 0 (A B) (A C) evaleaafirmação 01. Por outro lado, se x 0 B C, segue que x 0 B B C e x 0 C A C e, portanto, x 0 (A B) (A C) evaleaafirmação 01. Af 02. (A B) (A C) A (B C): Por absurdo, suponhamos que (A B) (A C) A (B C). Assim,

Conjuntos e funções 9 x 0 (A B) (A C) talquex 0 A (B C). Assim, Como x 0 A (B C) segue que Por (1.1) e (1.2) temos x 0 A B e x 0 A C (1.1) x 0 A e x 0 B C (1.2) x 0 B e x 0 C x 0 B C Mas isto é um absurdo, pois contradiz (1.2). Logo, vale a afirmação 02. As afirmações 01 e 02 provam a igualdade requerida. c.q.d. Definição 1.7 Sejam A e B conjuntos não vazios em um universo E. Definimos a diferença entre A e B, e escrevemos A \ B ou A B, por A \ B = {x E : x A e x B}. Em outras palavras, a diferença A \ B é o conjunto dos elementos de A que não estão em B. Abaixo temos uma representação em diagrama de Venn, onde A \ B está sombreado. Convém observar que a diferença entre conjuntos não é comutativa, ou seja, em geral, A \ B B \ A. Deixamos para o leitor a confirmação deste fato. Quando B A, a diferença entre A e B, é chamada de complementar de B em relação a A, e escrevemos A B = A \ B. Neste caso, se considerarmos A como sendo o conjunto universo, temos a definição que segue.

10 Introdução à Álgebra Definição 1.8 Seja B um conjunto qualquer em um universo E. Definimos o complementar de B, e escrevemos B, ao conjunto de todos os elementos que estão fora de B, ou seja, B = E B = E \ B = {x E : x B}. Na proposição abaixo apresentamos as principais propriedades do complementar de um conjunto. Proposição 1.7 Sejam A e B dois conjuntos em um universo E. valem as seguintes propriedades: Então (a) A A = E; A A =. (b) (A ) = A (idempotência). (c) A B B A. (d) (A B) = A B ; (A B) = A B. (leis de De Morgan). (e) A = A = E. Demonstração. (a) Mostraremos que A A = E. Note que A A E éóbvio, c.f. definição de espaço fundamental. Resta mostrar que E A A. Por absurdo, se E A A, segue que x 0 E tal que x 0 A A. Então x 0 A e x 0 A.Masx 0 A x 0 A. Absurdo. Logo, E A A. Portanto, vale que A A = E. (b) Podemos provar as duas contenções simultaneamente: x A x A x (A ). (c) Suponhamos que A B. Precisamos mostrar que B A. Dado x 0 B, temos que x 0 B. Como A B, segue que x 0 A, ou seja, x 0 A. Logo, B A. Reciprocamente, suponhamos que B A. Vamos mostrar que A B. Por absurdo, se A B, então x 0 A tal que x 0 B. Mas x 0 B equivale a x 0 B. Assim, pela hipótese de que B A, segue que x 0 A, ou seja, x 0 A. Mas isto é um absurdo, pois x 0 A. Logo A B. Isto conclui a prova desta propriedade.