Universidade Estadual do Sudoeste da Bahia. 1- Gravitação Física II

Documentos relacionados
Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que se torna mais

Denomina-se gravidade a interação ente dois ou mais corpos devido sua massa. A força da gravidade é uma força de ação à distância, que torna-se mais

Aulas Multimídias Santa Cecília Professor Rafael Rodrigues Disciplina: Física Série: 1º ano EM

Física 1 Mecânica. Instituto de Física - UFRJ

1. GRAVITAÇÃO PARTE I

HISTÓRICO GEOCÊNTRICO MODELOS: HELIOCÊNTRICO

IFRS Câmpus Rio Grande Física IV LISTA I - GRAVITAÇÃO UNIVERSAL

/augustofisicamelo. 16 Terceira Lei de Kepler (2)

Halliday Fundamentos de Física Volume 2

Capítulo 6. Gravitação Universal

Exercícios Gravitação Universal

AS LEIS DE KEPLER A LEI DA GRAVITAÇÃO UNIVERSAL

Gravitação IME. Lista de Exercícios 3

Tarefa online 8º EF. Física - Prof. Orlando

Gravitação Universal. Física_9 EF. Profa. Kelly Pascoalino

Questão 01) TEXTO: 1 - Comum à questão: 2

Dinâmica: Algumas Forças Especiais Parte 1

UNIDADE GRAVITAÇÃO

Fís. Monitor: Arthur Vieira

Estudo da Física. Prof. Railander Borges

Curso de aprofundamento em Física Assunto: Gravitação Universal; Leis de Kepler Prof: Marcelo Caldas Chaves

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Gravitação

Profº Carlos Alberto

FÍSICA MÓDULO 13 GRAVITAÇÃO I. Professor Ricardo Fagundes

Lista de Revisão Prova Mensal de Física 3 o Bimestre Professor Fábio Matos 3 o EM

APÊNDICE D As Leis de Kepler por meio de sequências de atividades (Caderno de Respostas dos Alunos)

Atividades de Lei de Kepler e Gravitação Universal

Lista 1_Gravitação - F 228 1S2010

FÍSICA LEI DA GRAVITAÇÃO DE NEWTON ENGENHARIA

Questões Conceituais

Lista de Gravitação Universal

EAC-082: Geodésia Física. Aula 2: Introdução à Teoria do Potencial

Lista 13: Gravitação NOME:

Exterior. Interior. C = Conjunção O = Oposição Q = Quadratura Oc. = Ocidental (W) Or. = Oriental (E) S = Superior I = Inferior ME = Máxima Elongação

Fís. Leonardo Gomes (Guilherme Brigagão)

Primeira Lei de Kepler: Lei das Órbitas Elípticas. Segunda Lei de Kepler: Lei das áreas

SISTEMA SOLAR: O MOVIMENTO DOS PLANETAS E SATÉLITES

Física 1 Mecânica. Instituto de Física - UFRJ

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 9 (pág. 92) AD TM TC. Aula 10 (pág. 92) AD TM TC. Aula 11 (pág.

o módulo da quantidade de movimento do satélite, em kg m s, é, aproximadamente, igual a: a) b) c) d) e)

Leis de Kepler Miguel Migu Net N a, 2, j 0 a 0 n 8 eiro de 2019 [Imagem:

12/06/2018. Laplace ( ) O demônio de Laplace. Trabalho e Energia Cinética. Conservação de Energia. Conservação de Energia.

SISTEMA SOLAR: O MOVIMENTO DOS PLANETAS E SATÉLITES

GRAVITAÇÃO O QUE É A GRAVIDADE? 09/08/16

Gravitação Universal, Trabalho e Energia. COLÉGIO SÃO JOSÉ FÍSICA - 3º ano Livro Revisional Capítulos 5 e 6

Modelos do Sistema Solar. Roberto Ortiz EACH/USP

Apresentação Outras Coordenadas... 39

FEP-111 Fisica I para Oceanograa. Márcio Katsumi Yamashita. Lista de Exercícios 6 Gravitação

Gab: Mm. a) F =G r. c) 1, kg

Prof. Dr. Ronaldo Rodrigues Pelá. 6 de junho de 2013

Física I Prova 3 7/06/2014

Física Básica RESUMO. Física dos corpos celestes. Física 1

Universidade do Estado do Rio de Janeiro CAp/UERJ - Instituto de Aplicação Fernando Rodrigues da Silveira

Movimento dos Planetas

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO

estudos 3º trimestre. Matemática-Física-Química Orientação de estudos

Fís. Leonardo Gomes (Caio Rodrigues)

Esse planeta possui maior velocidade quando passa pela posição: a) ( ) I b) ( ) II c) ( ) III d) ( ) IV e) ( ) V

FÍSICA - Lucas TB Recuperação 2º Trimestre 3º ano classe: Prof.LUCAS MUNIZ Nome: nº Conteúdo: Conservação de Energia Mecânica e Gravitação.

Lista de exercícios Gravitação

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Gravitação

Assistir aos vídeos aulas Kepler e Gravitação (resolução de exercícios)

Lista 14: Gravitação

10 m s. d) A ordem de grandeza da distância entre a Próxima Centauri e o sistema solar é igual a 12

INSCREVA-SE: CANAL FISICA DIVERTIDA GRAVITAÇÃO UNIVERSAL

Unidade IX: Gravitação Universal

-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.

GRAVITAÇÃO UNIVERSAL

Isaac Newton ( )

Um móvel descrevendo um movimento retilíneo tem sua velocidade dada pelo gráfico abaixo

FÍSICA LISTA 4 QUANTIDADE DE MOVIMENTO, GRAVITAÇÃO UNIVERSAL E EQUILÍBRIO

t RESOLUÇÃO COMECE DO BÁSICO = 0,1 cm/min . Para as frequências temos: v v 2 f r 2 f r f 1,5 r f r f 1,5 f.

Problemas com o modelo de Ptolomeu.

FÍSICA. A resultante das forças que atuam num corpo em equilíbrio é igual a zero.

telescópios, apenas utilizando intrumentos inspirados nos instrumentos gregos e das grandes navegações para medidas precisas das posições de

Energia potencial (para um campo de forças conservativo).

Modelos do Sistema Solar. Roberto Ortiz EACH/USP

Unidade IX: Gravitação Universal

ROTEIRO PARA RECUPERAÇÃO PARALELA DO 3º TRIMESTRE 1º EM A e B Professor: Fernando Augusto Disciplina Física A

Gravitação. Escreva a expressão da massa M 1 da estrela E 1, em função de T, D e da constante universal da gravitação G.

FIS-26 Prova 03 Maio/2011

Curso Astronomia Básica. O sistema solar. Marcelo Moura. Abril Centro de Estudos Astronômicos de Minas Gerais

Ensino de Astronomia

-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.

Física 1 Mecânica. Instituto de Física - UFRJ

BANCO DE QUESTÕES - FÍSICA - 2ª SÉRIE - ENSINO MÉDIO ==============================================================================================

-Tales de Mileto (585 a.c.) geometria dos egípcios aplicada ao céu- previsão de um eclipse solar em 5 de Maio de 585 a.c. -Pitágoras (500 a.c.

Gravitação. Aron Maciel

FIS-26 Resolução Lista-11 Lucas Galembeck

REFORMULAÇÃO DA LEI DOS PERÍODOS A PARTIR DOS PRINCÍPIOS NEWTONIANOS

Movimento dos Planetas

a) identifique uma das leis do mundo natural proposta por ele;

1Colégio Santa Cruz - Profª Beth

das primeiras galáxias estrelas Idade das trevas Galáxias modernas 380 mil anos 300 milhões de anos 1 bilhão de anos Hoje

GRAVITAÇÃO. I) GRAVITAÇÃO UNIVERSAL A) INTRODUÇÃO:

Processo Avaliativo AVP - 4º Bimestre/2016 Disciplina: Física 1ª série EM A Data: Nome do aluno Nº Turma

Ensino de Astronomia. Curso de extensão Ensino de Astronomia no ABC

~é a força normal do bloco de cima sobre o bloco de baixo É o peso do bloco de cima (baixo)

Transcrição:

Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Naturais 1- Gravitação Física II Ferreira

ÍNDICE 1) - Introdução; 2) - Força Gravitacional; 3) - Aceleração Gravitacional; 4) - Energia Potencial Gravitacional; 5) - Velocidade de Escape; 6) - Leis de Kepler; 7) - Satélites Órbitas e Energias; 8) - Gravitação de Einstein; 9) - Conclusão. 2

OBJETIVO GERAL Alcançar um entendimento das leis de Kepler e da lei da Gravitação Universal assim como suas aplicações práticas, através de abordagens históricas, conceituais e demonstrações matemáticas. 3

1 - Gravitação Universal Um breve histórico Geocentrismo Grécia antiga 4000 a. C. Ptolomeu. II d.c. Geocentrismo Obra: Almagesto. Idade Média. Copérnico. XVI d.c. Heliocentrismo Obra: De revolutionibus orbium coelestium. Idade Média. 4

1 - Gravitação Universal Um breve histórico Isaac Newton. XVII d.c. 5

Poeira das estrelas parte 4 6

1 - Gravitação Universal A lei do quadrado inverso RT 60 RT 1 3600 1 60² 7

1 - Gravitação Universal A lei da Gravitação explica questões do tipo: Se a Terra atrai a Lua, então porque a Lua não cai na Terra? ou porque a Terra não cai no Sol? Newton descreve a Força que explica estas questões, com as premissas: 1.Massa atrai massa; 2.Quanto mais afastados os corpos, menor é essa força; 8

1- Lei da Gravitação Universal Dois Corpos atraem-se com forças proporcionais a suas massas e inversamente proporcionais ao quadrado da distância entre seus centros. Constante Gravitacional 11 N m² G 6,67 10 kg² (1) Embora a lei da gravitação se aplique estritamente a partículas, podemos aplicá-la a objetos reais desde que os tamanhos destes objetos sejam pequenos em comparação com suas distâncias. 9

1º Problema: Considere um anel fino homogêneo de Massa M e raio externo R como na figura abaixo. Qual é a atração gravitacional que o anel exerce sobre uma partícula de massa m localizada no eixo central do anel a uma distância x do centro do anel? 10

1.1 A Lei da Gravitação para corpos de tamanhos muito distintos Exemplo: A Terra e a maçã. Newton resolveu o problema da atração entre a Terra e a maçã provando o teorema conhecido como o teorema das cascas. Uma casca esférica uniforme de matéria atrai uma partícula que se encontra fora da casca como se toda a massa da casca estivesse concentrada no seu centro. 11

1.2 - A Gravitação no Interior da Terra Uma casca uniforme de matéria não exerce força gravitacional resultante sobre uma partícula localizada no seu interior. 12

2º Problema: Dado a figura abaixo, onde m1= 6,0kg, m2=m3 = 4,0kg; com a = 2,0 cm. Qual é a força gravitacional resultante F que as outras partículas exercem sobre a partícula 1? 3 2a 2 1 a 13

2 - Força Peso e Força Gravitacional Força Peso e Força Gravitacional são iguais? A resposta é: Não. Mas são bem próximas. Isso Por que: 1. A massa da Terra não está uniformemente distribuída; 2. A Terra não é uma esfera; 3. A Terra está girando. 3º Problema: Desprezando as duas primeiras situações. Prove que a rotação da Terra faz com que o peso medido em um caixote na superfície da Terra seja menor que a Força Gravitacional sobre ele. 15

4º Problema: Mostre a diferença entre (g e ag). Usem, 2rad, t = 24horas em t 6 segundos e o raio médio da Terra é 6,38x10 m. Percebam que a diferença é de 0,034 m/s². Por este fato podemos considerar que, para um corpo de massa m próximo à superfície da Terra: F P F g GMm m. a g 2 r GMm m. a g 2 r a g GM 2 r m = Massa do corpo pequeno. M = Massa da Terra. G = Constante Gravitacional. ag = Aceleração da gravidade. r = Distância entre o corpo e o centro da Terra. Percebam que (ag) não depende da massa do corpo. (2) 16

5º Problema: Mostrem a partir da equação para a aceleração da gravidade que seu valor na superfície da Terra é aproximadamente 9,83 m/s². Considere: 6 Raio da Terra = 6,38x10 m. 24 Massa da Terra = 5,974x10 kg. 6º Problema: Calculem a aceleração da gravidade em um ponto onde orbita o ônibus espacial. A altura em relação à superfície da Terra é: 400 km. 17

3 - Energia Potencial Gravitacional É dado pela fórmula: U GMm r (U) tende a zero quando (r) tende ao infinito. Em distâncias finitas a energia é negativa. Demonstração da equação (3). r F dr P R Pelo conceito de Trabalho: W F( r) dr R F( r) dr F( r) dr cos O ângulo entre F e dr é 180º. (4) (5) (3) M 18

Como o cos de 180º = -1. E a força Fr é a força gravitacional,temos: F( r) dr GMm r² Substituindo (6) em (4): 1 W GMm 2 r R W U U GMm 1 2 r R dr dr U W GMm W R dr GMm r R GMm R (6) (7) (8) (9) (10) 19

4 - Energia Potencial e a Força Deduzimos a força em (m) partindo da energia potencial. Sendo: du (11) Subst. (3) em (11): F( r) dr d F ( r) dr F O sinal negativo indica que a força está direcionado para dentro do corpo. GMm 2 r GMm r Força Gravitacional de Newton (12) (13) 20

5 - Velocidade de Escape É a velocidade mínima necessária para que um corpo escape completamente do planeta. Levando em consideração a conservação da energia temos que: K U1 K U 1 (13) 7º Problema: A partir da equação (13), prove que a velocidade de escape fica: 2GM R Onde (M) é a massa do planeta e (R) é o raio. v (14) 21

6 Leis de Kepler 1.ª LEI DE KEPLER (LEI DAS ÓRBITAS) As órbitas dos planetas em torno do Sol são elipses nas quais ele ocupa um dos focos. Numa elipse existem dois focos e a soma das distâncias aos focos é constante.

a + b = c + d a b Foco Foco c d ELIPSE

2.ª LEI DE KEPLER (LEI DAS ÁREAS) A área descrita pelo raio vetor de um planeta (linha imaginária que liga o planeta ao Sol) é diretamente proporcional ao tempo gasto para descrevê-la. Velocidade Areolar velocidade com que as áreas Afélio são descritas.

A 2 A 1 Cada planeta mantém sua velocidade areolar constante ao longo de sua órbita elíptica. Logo: A1 t1 A2 t2

A lei das áreas fica áreaa1 áreaa2 Prove partido da segunda lei de Kepler que o momento angular do planeta se conserva. 33

A lei das áreas fica da 1 2 d 1 2 r r w dt 2 dt 2 2 L rp rmv rmwr mr w da dt L 2m Se a variação da área em relação ao tempo é constante então, pela expressão acima o momento angular é constante. Se conserva. 34

Afélio Afélio ponto de maior afastamento entre o planeta e o Sol

Periélio Periélio ponto de maior proximidade entre o planeta e o Sol

A 2 A 1 Com isso, tem-se que a velocidade no periélio é maior que no afélio.

3.ª LEI DE KEPLER (LEI DOS PERÍODOS) O quadrado do período da revolução de um planeta em torno do Sol é diretamente proporcional ao cubo do raio médio de sua elipse orbital. Raio Médio média aritmética entre as distâncias máxima e mínima do planeta ao Sol. 2 3 T KR

2 3 T KR T = Período de translação dos planetas. R = Raio médio das órbitas planetárias. K = Constante que depende apenas da massa (M) do corpo central em torno do qual o planeta gira. Para orbitas elíptica, substitui-se (R) por (a). 8º Problema: Como se escreve a expressão entre as orbitas da Terra e de Venus? OBS: Considere as orbitas circulares. T ² T ² R³ Terra R³ 40 Venus

2 3 T KR T = Período de translação dos planetas. R = Raio médio das órbitas planetárias. K = Constante que depende apenas da massa (M) do corpo central em torno do qual o planeta gira. 9º Problema: A partir da 3º lei de Kepler associada ao conceito da gravitação. Prove 2 que a constante K vale 4 onde M = Massa do Sol. GM Reescreva a lei dos períodos. 41

Planeta T (dias terrestres) R (km) T 2 /R 3 Mercúrio 88 5,8 x 10 7 Vênus 224,7 1,08 x 10 8 Terra 365,3 1,5 x 10 8 Marte 687 2,3 x 10 8 Júpiter 4343,5 7,8 x 10 8 4,0 x 10-20 Saturno 10767,5 1,44 x 10 9 Urano 30660 2,9 x 10 9 Netuno 60152 4,5 x 10 9 Plutão 90666 6,0 x 10 9

10º Problema: Estrelas se movem lentamente. Porém. Porque S2 dá uma volta em torno de SargitáriusA em 15,2 anos? Qual a (M) de SgrA? Considere (R=a) a = 5,5 dias luz Que equivale a 1,42x10 14 m 44

7 - Satélites: Órbitas e Energias Para determinar a energia cinética de um satélite em órbita circular, partimos da 2ª lei de Newton para a força centrípeta e ac= v²/r. Levando em consideração que a conservação da energia é: E K U (15) F m. a F m. g a c GMm m. 2 r Sabemos que: v r 2 K 2 mv 2 GMm r então: 2 m.v (16) mv 2 2K (17) 45

Substituindo (17) em (16): E GMm 2r GMm 2 K r 1 K 2 K U GMm r U 2 GMm r Substituindo (19) e (21) em : GMm r ou -U E K U E 2 Para orbitas elíptica: U U E (18) (19) (20) (21) E K (22) GMm 2a (23) 46

11º Problema: Pretende-se lançar um satélite artificial que irá descrever uma órbita circular a 1,6 x 10³ km de altura. Sabendo que o raio e a massa da Terra 24 são RT= 6,4 x10³ km e M= 5,974x10 kg, determine a velocidade de translação que deve ser impressa ao satélite, naquela altura, para obter-se a órbita desejada. Dado a constante Gravitacional: G 6,67 10 11 N m² kg² Obs: Não é velocidade de escape, é a velocidade escalar do satélite. 47

Einstein e a Gravitação 49

Newton - Einstein 50

Poeira das estrelas parte 5 51

Conclusão Embora a força gravitacional ainda não esteja totalmente compreendida, o ponto de partida para o nosso entendimento é a lei a gravitação de Isaac Newton. A gravidade de fato existe, nós podemos senti-la. Mas fica o questionamento? Devemos atribuir a gravitação à curvatura do espaço-tempo devido a presença de massa ou a uma força entre massas? Ou devemos atribuí-la à ação de um tipo de partícula elementar chamado gráviton? 52