Capítulo 1. Aula Conectividade Caminhos

Tamanho: px
Começar a partir da página:

Download "Capítulo 1. Aula Conectividade Caminhos"

Transcrição

1 Capítulo 1 Aula Conectividade Muitos problemas podem ser modelados com caminhos formados ao percorrer as arestas dos grafos. Por exemplo, o problema de determinar se uma mensagem pode ser enviada entre dois computadores usando links intermediários pode ser estudada com um modelo grafo. Problemas de planejamento eficiente de rotas para entrega de correspondências, coleta de lixo, diagnósticos em redes de computadores e assim por diante podem ser resolvidos usando modelos que envolvam caminhos em grafos Caminhos Informalmente, um caminho é uma sequência de arestas que começa em um vértice de um grafo e viaja de vértice para vértice ao longo das arestas do gráfo. À medida que o caminho percorre suas bordas, ele visita os vértices ao longo desse caminho, isto é, os pontos finais dessas arestas. Definição 1. Seja n um inteiro não negativo e G um grafo não orientado. Um caminho de comprimento n de u para v em G é uma sequência de n arestas e 1,..., e n de G para o qual existe uma sequência x 0 = u, x 1,..., x n 1, x n = v de vértices tais que e i tem, para i = 1,..., n, os pontos finais x i 1 e x i. Quando o grafo é simples, denotamos este caminho pela sua sequência de vértices x 0, x 1,..., x n. O caminho é um circuito se começa e termina no mesmo vértice, isto é, se u = v, e tem comprimento maior que zero. O caminho ou circuito é dito passar pelos vértices x 1, x 2,..., x n 1 ou atravessar as arestas e 1, e 2,..., e n. Um caminho ou circuito é simples se não contiver a mesma borda mais de uma vez. 1

2 Exemplo 2. No grafo simples mostrado na Figura 1.1, a, d, c, f, e é um caminho simples de comprimento 4, pois {a, d}, {d, c}, {c, f} e {f, e} são todas as arestas. No entanto, d, e, c, a não é um caminho, pois {e, c} não é uma aresta. Note que b, c, f, e, b é um circuito de comprimento 4 pois {b, c}, {c, f}, {f, e} e {e, b} são arestas, e esse caminho começa e termina em b. O caminho a, b, e, d, a, b, que é de comprimento 5, não é simples pois contém a borda {a, b} duas vezes. Figura 1.1: Grafo simples. Definição 3. Seja n um inteiro não negativo e G um grafo direcionado. Um caminho de comprimento n de u para v em G é uma sequência de arestas e 1, e 2,..., e n de G tal que e 1 está associado a (x 0, x 1 ), e 2 está associado a (x 1, x 2 ), e assim por diante, com e n associado a (x n 1, x n ), onde x 0 = u e x n = v. Quando não há múltiplas arestas no grafo orientado, esse caminho é denotado por sua sequência de vértices x 0, x 1, x 2,..., x n. Um caminho de comprimento maior que zero que começa e termina no mesmo vértice é chamado de circuito ou ciclo. Um caminho ou circuito é chamado simples se não contiver a mesma borda mais de uma vez Conectividade em Grafos Não-Orientados Definição 4. Um grafo não orientado é chamado conectado se houver um caminho entre cada par de vértices distintos do grafo. Um grafo nã orientado que não está conectado é chamado de desconectado. Dizemos que desconectamos um grafo quando removemos vértices ou arestas, ou ambos, para produzir um subgrafo desconectado. Exemplo 5. O grafo G 1 na Figura 1.2 é conectado, porque para cada par de vértices distintos há um caminho entre eles (o leitor deve verificar isso). No entanto, o grafo G 2 na Figura 1.2 não está conectado. Por exemplo, não há caminho de G 2 entre os vértices a e d. 2

3 Figura 1.2: Grafos G 1 e G 2. Teorema 6. Existe um caminho simples entre cada par de vértices distintos de um grafo não orientado conectado. Demonstração. Seja u e v dois vértices distintos do grafo não orientado conectado G = (V, E). Como G está conectado, existe pelo menos um caminho entre u e v. Deixe x 0, x 1,..., x n, em que x 0 = u e x n = v, seja a sequência de vértices de um caminho de menor comprimento. Esse caminho de menor comprimento é simples. Para ver isso, suponha que não seja simples. Então x i = x j para alguns i e j com 0 i j. Isto significa que existe um caminho de u para v de menor comprimento com a sequência de vértices x 0, x 1,..., x i 1, x j,..., x n obtido pela exclusão das arestas correspondentes à sequência de vértices x i,..., x j 1. Exemplo 7. Quais são os componentes conectados do grafo H mostrado na Figura 1.3. Figura 1.3: Grafo H. Solução: As componentes conectadas do grafo H são dadas na Figura 1.4: 3

4 Figura 1.4: Componentes conectadas H 1, H 2 eh 3 do grafo H. Um componente conectado de um grafo G é um subgrafo conectado de G que não é um subgrafo próprio de outro subgrafo conectado de G. Isto é, um componente conectado de um grafo G é um subgrafo conectado máximo de G. Um grafo G não conectado possui dois ou mais componentes conectados que são separados e têm G como sua união Quão Conectado é um Grafo? Suponha que um grafo represente uma rede de computadores. Sabendo que este grafo está conectado nos podemos dizer que quaisquer dois computadores na rede podem se comunicar. No entanto, gostaríamos também de entender o quão confiável é essa rede. Por exemplo, ainda será possível que todos os computadores se comuniquem depois que um roteador ou um link de comunicação falhe? Para responder a esta e outras perguntas semelhantes apresentaremos alguns novos conceitos. Às vezes, a remoção de um vértice de um grafo e de todas as bordas incidentes neste produz um subgrafo com mais componentes conectados que o original. Tais vértices são chamados de vértices de corte (ou pontos de articulação). A remoção de um vértice de corte de um grafo conectado produz um subgrafo não conectado. Analogamente, uma aresta cuja remoção produz um grafo com mais componentes conectados do que no grafo original é chamada de aresta de corte ou ponte. Observe que em um grafo representando uma rede de computadores, um vértice de corte e uma aresta de corte representam um roteador e um link essenciais que não podem falhar para que todos os computadores possam se comunicar. Exemplo 8. Encontre os vértices de corte e as arestas de corte do grafo G 1 mostrado na Figura 1.5. Solução: Os vértices de corte de G 1 são b, c e e. A remoção de um desses vértices (e suas bordas adjacentes) desconecta o grafo. As bordas de corte são {a, b} e {c, e}. A remoção de qualquer uma dessas bordas desconecta G 1. 4

5 Figura 1.5: Grafo Conectado. Nem todos os grafos possuem vértices de corte. Por exemplo, o grafo completo K n, com n 3, não possui vértices de corte. Quando você remove um vértice de K n e todas as bordas incidentes a ele, o subgrafo resultante é o grafo completo K n 1, um grafo conectado. Grafos conectados sem vértices de corte sã chamados de grafos não separáveis e, além disso são considerados mais conectados do que aqueles com um vértice de corte. Podemos estender essa noção definindo uma medida mais precisa de conectividade de grafos baseada no número mínimo de vértices que podem ser removidos para desconectar um grafo. Um subconjunto V do conjunto de vértices V de G = (V, E) é um corte de vértices, ou conjunto de separação, se G V for desconectado. Por exemplo, no grafo da Figura 1, o conjunto {b, c, e} é um corte de vértice com três vértices, como o leitor deve verificar. Definimos a conectividade de vértices de um grafo nã completo G, denotado por κ(g), como sendo o número mínimo de vértices em um corte de vértices. Também podemos medir a conectividade de um grafo conectado G = (V, E) em termos do número mínimo de arestas que podemos remover para desconectá-lo. Se um grafo tiver uma aresta de corte, precisaremos apenas removê-la para desconectar G. Se G não tiver uma aresta de corte, procuramos o menor conjunto de arestas que podem ser removidas para desconectá-lo. Um conjunto de arestas E é chamado de corte de aresta de G se o subgrafo G E é desconectado. A conectividade de aresta de um grafo G, denotada por λ(g), é o número mínimo de arestas em um corte de aresta de G. Isso define λ(g) para todos os grafos conectados com mais de um vértice pois sempre é possível desconectar tal grafo, removendo todas as arestas incidentes em um dos seus vértices. Note que λ(g) = 0 se G é não conectado. Também especificamos que λ(g) = 0 se G é um grafo que consiste em um único vértice. Segue que se G é um grafo com n vértices, então 0 λ(g) n 1. Exemplo 9. Encontre a conectividade de vértices para cada um dos grafos na Figura

6 Figura 1.6: Grafos Conectados. Solução: Cada um dos cinco grafos da Figura 1.6 é conectado e tem mais de um vértice, então cada um desses grafos tem conectividade de vértices positiva. Como G 1 é um grafo conectado com um vértice de corte, como mostrado no Exemplo 8, sabemos que κ(g 1 ) = 1. Da mesma forma, κ(g 2 ) = 1, pois c é um vértice de corte de G 2. Verifique que G 3 não possui vértices de corte mas esse {b, g} é um corte de vértices. Portanto, κ(g 3 ) = 2. Da mesma forma, G 4 tem um corte de vértices de tamanho dois, {c, f}, mas sem vértices de corte. Segue que κ(g 4 ) = 2. O leitor pode verificar que G 5 não possui nenhum corte de vértices de tamanho um ou dois, mas {b, c, f} é um corte de vértice de G 5. Assim, κ(g 5 ) = 3. Exemplo 10. Encontre a conectividade de aresta de cada um dos grafos da Figura 1.6. Solução: Cada um dos cinco grafos da Figura 1.6 é conectado e tem mais de um vértice, portanto sabemos que todos eles têm conectividade de aresta positiva. Como vimos no Exemplo 9, G 1 tem uma aresta de corte, então λ(g 1 ) = 1. O grafo G 2 não tem arestas de corte, como o leitor deve verificar, mas a remoção das duas arestas {a, b} e {a, c} desconecta-o. Portanto, λ(g 2 ) = 2. Da mesma forma, λ(g 3 ) = 2, pois G 3 não possui arestas de corte, mas a remoção 6

7 das duas arestas {b, c} e {f, g} desconecta-o. O leitor deve verificar que a remoção de duas arestas quaisquer não desconecta G 4, mas a remoção das três bordas {b, c}, {a, f} e {f, g} o desconecta. Portanto, λ(g 4 ) = 3. Finalmente, o leitor deve verificar que λ(g 5 ) = 3, pois a remoção de quaisquer duas de suas arestas não o desconecta, mas a remoção de {a, b}, {a, g} e {a, h} o faz. Quando G = (V, E) é um grafo conectado incompleto com pelo menos três vértices, o grau mínimo de um vértice de G é um limite superior para a conectividade de vértice de G e a conectividade de aresta de G. Ou seja, κ(g) min v V deg(v) e λ(g) min v V deg(v). Temos, a seguinte inequação: κ(g) λ(g) min v V deg(v) Conectividade em Grafos Orientandos Existem duas noções de conectividade em grafos orientados, dependendo se as direções das bordas são consideradas. Definição 11. Um grafo direcionado é fortemente conectado se houver um caminho de a para b e de b para a sempre que a e b forem vértices no grafo. Definição 12. Um grafo direcionado é conectado fracamente se houver um caminho entre cada dois vértices no grafo não orientado associado. Exemplo 13. Os grafos orientados G e H mostrados na Figura 1.7 estão fortemente conectados? Eles estão fracamente conectados? Figura 1.7: Grafos orientados G e H. Solução: G é fortemente conectado pois existe um caminho entre quaisquer dois vértices neste grafo orientado (o leitor deve verificar isso). Portanto, G também é fracamente conectado. O 7

8 grafo H não é fortemente conectado. Não há caminho orientado de a para b neste grafo. No entanto, H é fracamente conectado, pois existe um caminho entre quaisquer dois vértices no grafo não orientado associado a H (o leitor deve verificar isso). Os subgrafos de um grafo orientado G que estão fortemente conectados, mas não contidos em subgrafos maiores fortemente conectados, isto é, os subgrafos fortemente conectados, são chamados de componentes fortemente conectados ou componentes fortes de G. Note que se a e b são dois vértices em um grafo direcionado, seus componentes fortes são são os mesmos ou são disjuntos. Exemplo 14. O grafo H na Figura 1.7 possui três componentes fortemente conectados, consistindo no vértice a; o vértice e; e o subgrafo consistindo dos vértices b, c, e d e arestas (b, c), (c, d) e (d, b) Caminhos e Isomorfismos Existem várias maneiras pelas quais caminhos e circuitos podem ajudar a determinar se dois grafos são isomórficos. Por exemplo, a existência de um circuito simples de um determinado comprimento é um invariante útil que pode ser usada para mostrar que dois grafos não são isomórficos. Além disso, caminhos podem ser usados??para construir mapeamentos que podem ser isomorfismos. Exemplo 15. Determine se os grafos G e H mostrados na Figura 1.8 são isomórficos. Figura 1.8: Grafos G e H. Solução: Ambos G e H têm seis vértices e oito arestas. Cada um tem quatro vértices de grau três e dois vértices de grau dois. Assim, os três invariantes - número de vértices, número de arestas e graus de vértices - concordam para os dois grafos. Entretanto, H tem um circuito simples de comprimento três, ou seja, v 1, v 2, v 6, v 1, enquanto G não possui um circuito simples 8

9 de comprimento três, como pode ser determinado por inspeção (todos os circuitos simples em G têm comprimento mínimo de quatro). Como a existência de um circuito simples de comprimento três é uma invariante isomórfica, G e H não são isomórficos. Exemplo 16. Determine se os grafos G e H mostrados na Figura 1.9 são isomórficos. Figura 1.9: Grafos G e H. Solução: Tanto G como H têm cinco vértices e seis arestas, ambos têm dois vértices de grau três e três vértices de grau dois, e ambos possuem um circuito simples de comprimento três, um circuito simples de comprimento quatro e um circuito simples de comprimento cinco. Como todos esses invariantes isomórficos concordam, G e H podem ser isomórficos Contando Caminhos Entre Vértices O número de caminhos entre dois vértices em um gráfico pode ser determinado usando sua matriz de adjacência. Teorema 17. Seja G um grafo com matriz de adjacência A em relação à ordenação v 1, v 2,..., v n dos vértices do grafo (com arestas direcionadas ou não direcionadas, com múltiplas arestas e loops). O número de caminhos diferentes de comprimento r de v i para v j, onde r é um inteiro positivo, é igual à entrada (i, j) de A r. Demonstração. O teorema será provado usando indução matemática. Seja G um grafo com a matriz de adjacencia A (assumindo uma ordenação v 1, v 2,..., v n dos vértices de G). O número de caminhos de v i para v j de comprimento 1 é a entrada (i, j) de A, pois esta entrada é o número de arestas de v i parav j. Suponha que a (i, j)-ésima entrada de A r é o número de caminhos diferentes de comprimento r de v i para v j. Esta é a hipótese indutiva. Como A r+1 = A r A, a (i, j)-ésima entrada de A r+1 é igual a b i1 a 1j + b i2 a 2j b in a nj, 9

10 em que b ik é a (i, k)-ésima entrada de A r. Pela hipótese indutiva, b ik é o número de caminhos de comprimento r de v i para v k. Um caminho de comprimento r + 1 de v i para v j é constituído por um caminho de comprimento r de v i para algum vértice intermediário v k e uma borda de v k para v j. Pela regra do produto para contagem, o número desses caminhos é o produto do número de caminhos de comprimento r de v i para v k, a saber, b ik é o número de arestas de v k para v j, a kj. Quando esses produtos são adicionados para todos os possíveis vértices intermediários v k, o resultado desejado segue a regra de soma para contagem. Exemplo 18. Quantos caminhos de comprimento quatro existem de a para d no grafo simples G na Figura 1.10? Figura 1.10: Grafo G. Solução: A matriz de adjacência de G (ordenando os vértices como a, b, c, d) é: A = Assim, o número de caminhos de comprimento quatro de a para d é (1, 4)-ésima entrada de A A = Portanto, temos 8 caminhos. 10

Departamento de Engenharia de Produção UFPR 57

Departamento de Engenharia de Produção UFPR 57 Departamento de Engenharia de Produção UFPR 57 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas em redes aparecem

Leia mais

Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45

Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Introdução a Grafos Muitos problemas de otimização podem ser analisados utilizando-se uma estrutura denominada grafo ou rede. Problemas

Leia mais

Cortes (cut sets) 2010/2 Teoria dos Grafos (INF 5037/INF2781) CC/EC/UFES

Cortes (cut sets) 2010/2 Teoria dos Grafos (INF 5037/INF2781) CC/EC/UFES Cortes (cut sets) (INF 5037/INF2781) Corte por arestas Em um grafo conexo G, um corte de arestas é um conjunto de arestas cuja remoção de G torna G desconexo, desde que nenhum subconjunto próprio desse

Leia mais

Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T:

Teorema 1 - Todo corte de arestas de um grafo conexo G contém pelo menos uma aresta em comum com qualquer árvore geradora de G. Exemplo 2 - Seja T: 12 - Conjuntos de Corte o estudarmos árvores geradoras, nós estávamos interessados em um tipo especial de subgrafo de um grafo conexo: um subgrafo que mantivesse todos os vértices do grafo interligados.

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 14: Conjuntos de Corte e Conectividade Preparado a partir do texto: Rangel,

Leia mais

Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota.

Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota. Comunicação e redes Aula 2: Teoria dos Grafos Conceitos básicos Professor: Guilherme Oliveira Mota g.mota@ufabc.edu.br Aula passada Redes complexas Grafo G: Conjunto de pontos e linhas ligando esses pontos

Leia mais

GRAFOS Aula 02 Formalização: definições Max Pereira

GRAFOS Aula 02 Formalização: definições Max Pereira Ciência da Computação GRAFOS Aula 02 : definições Max Pereira Um grafo G é um par ordenado G = (V, E) onde V é um conjunto finito e não vazio de elementos e E é um conjunto de subconjuntos de dois elementos

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Circuitos Hamiltorianos

Circuitos Hamiltorianos Circuitos Hamiltorianos Vimos que o teorema de euler resolve o problema de caracterizar grafos que tenham um circuito em que cada aresta apareça exatamente uma vez. Vamos estudar aqui uma questão relacionada.

Leia mais

PCC173 - Otimização em Redes

PCC173 - Otimização em Redes PCC173 - Otimização em Redes Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 27 de abril de 2016 Marco Antonio M. Carvalho

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Automorfismo Um automorfismo de um grafo G é um isomorfismo de G para si próprio. Os automorfismos de G são as permutações de V(G) que podem ser aplicadas a ambas as linhas e colunas

Leia mais

Teoria dos Grafos. Conjuntos de Corte e Conectividade

Teoria dos Grafos. Conjuntos de Corte e Conectividade Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Conjuntos de

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Representação Mostre que todo passeio de u até v contém um caminho de u até v. Considere um passeio de comprimento l de u até v. Se l = 0 então temos um passeio sem nenhuma aresta.

Leia mais

Parte B Teoria dos Grafos

Parte B Teoria dos Grafos 45 Parte B Teoria dos Grafos B. Grafos e Subgrafos Um grafo G é uma tripla ordenada (V(G), E(G), ), constituindo de um conjunto não vazio V(G) de vértices, um conjunto disjunto E(G) das arestas e uma função

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Mais sobre grafos.. Cintura A cintura de um grafo é o comprimento do menor ciclo do grafo. Um grafo sem ciclos tem uma cintura de comprimento infinito. Diâmetro de um grafo O diâmetro

Leia mais

Aula 2 Definições, Conceitos Básicos e Representação Interna de Grafos. Teoria dos Grafos Prof.

Aula 2 Definições, Conceitos Básicos e Representação Interna de Grafos. Teoria dos Grafos Prof. Teoria dos Grafos Aula 2 Definições, Conceitos Básicos e Representação Interna de Grafos Jorge Figueiredo Aula 2-1 Definições Dois tipos de elementos: Vértices ou nós. Arestas. v3 v1 v2 v4 v5 v6 Jorge

Leia mais

Teoria dos Grafos AULA 2

Teoria dos Grafos AULA 2 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 2 Subgrafos, Operações com Grafos Preparado a partir

Leia mais

Teoria dos Grafos AULA 3

Teoria dos Grafos AULA 3 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 3 Trajetos, Caminhos, Circuitos, Grafos Conexos Preparado

Leia mais

Combinando relações. Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações

Combinando relações. Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações 1 / 11 Combinando relações Combinando relações Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações R 1 = {(1, 1), (2, 2), (3, 3)} e R 2 = {(1, 1), (1, 2), (1, 3), (1, 4)} podem ser combinadas para

Leia mais

Projeto de Algoritmos por Indução

Projeto de Algoritmos por Indução Projeto de Algoritmos por Indução Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Projeto de Algoritmos por Indução junho - 2018 1 / 40 Este material é preparado

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 20: Decomposições de Arestas Preparado a partir da ref.: J.M. Aldous, R. Wilson,

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 16: Grafos Planares. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 16: Grafos Planares Preparado a partir do texto: Rangel, Socorro. Teoria do

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Isomorfismo Dois grafos G e G' são isomorfos, ou seja, apresentam as mesmas propriedades estruturais. se eles Definição: Dois grafos G e G' são isomorfos se existe uma função bijetora

Leia mais

AULA 11 PROJETO E ANÁLISE DE ALGORITMOS. Conceitos básicos e representação de grafos Karina Valdivia Delgado

AULA 11 PROJETO E ANÁLISE DE ALGORITMOS. Conceitos básicos e representação de grafos Karina Valdivia Delgado AULA 11 PROJETO E ANÁLISE DE ALGORITMOS Conceitos básicos e representação de grafos Karina Valdivia Delgado Roteiro Motivação Conceitos básicos Representação Motivação Um grafo é uma abstração que permite

Leia mais

Teoria dos Grafos. Árvores

Teoria dos Grafos.  Árvores Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Preparado a partir

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 5: Grafos Conexos. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 5: Grafos Conexos Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 09: Representação de Grafos Preparado a partir do texto: Rangel, Socorro. Teoria

Leia mais

Grafo planar: Definição

Grafo planar: Definição Grafo planar Considere o problema de conectar três casas a cada uma de três infraestruturas (gás, água, energia) como mostrado na figura abaixo. É possível fazer essas ligações sem que elas se cruzem?

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 11: Grafos Eulerianos. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 11: Grafos Eulerianos. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 11: Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro. Teoria do

Leia mais

TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO

TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO TEORIA DOS GRAFOS TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS MATEMÁTICA DISCRETA II PROFº MARCOS NASCIMENTO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo: Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos

Leia mais

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47

MATEMÁTICA DISCRETA. Patrícia Ribeiro 2018/2019. Departamento de Matemática, ESTSetúbal 1 / 47 1 / 47 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 47 1 Combinatória 2 Aritmética Racional 3 3 / 47 Capítulo 3 4 / 47 não orientados Um grafo não orientado

Leia mais

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações?

GRAFOS. Prof. André Backes. Como representar um conjunto de objetos e as suas relações? 8/0/06 GRAFOS Prof. André Backes Definição Como representar um conjunto de objetos e as suas relações? Diversos tipos de aplicações necessitam disso Um grafo é um modelo matemático que representa as relações

Leia mais

Teoria dos Grafos. Coloração de Vértices

Teoria dos Grafos. Coloração de Vértices Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Coloração de

Leia mais

Teoria dos Grafos Aula 1 - Introdução

Teoria dos Grafos Aula 1 - Introdução Teoria dos Grafos Aula 1 - Introdução Profa. Sheila Morais de Almeida Mayara Omai Universidade Tecnológica Federal do Paraná - Ponta Grossa 2018 Sheila Almeida e Mayara Omai (UTFPR-PG) Teoria dos Grafos

Leia mais

Teoria dos Grafos Aula 2

Teoria dos Grafos Aula 2 Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo

Leia mais

Introdução a Grafos Letícia Rodrigues Bueno

Introdução a Grafos Letícia Rodrigues Bueno Introdução a Grafos Letícia Rodrigues Bueno UFABC Teoria dos Grafos - Motivação Objetivo: aprender a resolver problemas; Como: usando grafos para modelar os problemas; Grafos: ferramenta fundamental de

Leia mais

Teoria dos Grafos AULA 1

Teoria dos Grafos AULA 1 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br AULA 1 Introdução,

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes As arestas possuem a função de indicar o relacionamento(espacial, comportamental, temporal) entre os elementos de um grafo. Em diversas situações esta relação não é simétrica, ou seja, par

Leia mais

Introdução à Teoria dos Grafos. Isomorfismo

Introdução à Teoria dos Grafos. Isomorfismo Isomorfismo Um isomorfismo entre dois grafos G e H é uma bijeção f : V (G) V (H) tal que dois vértices v e w são adjacentes em G, se e somente se, f (v) e f (w) são adjacentes em H. Os grafos G e H são

Leia mais

15 - Coloração Considere cada um dos grafos abaixo:

15 - Coloração Considere cada um dos grafos abaixo: 15 - Coloração Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual é o número

Leia mais

Cap. 2 Conceitos Básicos em Teoria dos Grafos

Cap. 2 Conceitos Básicos em Teoria dos Grafos Teoria dos Grafos e Aplicações 8 Cap. 2 Conceitos Básicos em Teoria dos Grafos 2.1 Grafo É uma noção simples, abstrata e intuitiva, usada para representar a idéia de alguma espécie de relação entre os

Leia mais

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de:

Planaridade AULA. ... META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Planaridade AULA META Introduzir o problema da planaridade de grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Distinguir grafo planar e plano; Determinar o dual de um grafo; Caracterizar

Leia mais

Teoria dos Grafos AULA 1

Teoria dos Grafos AULA 1 Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br AULA 1 Introdução, Conceitos Iniciais, Isomorfismo Preparado

Leia mais

CONCEITOS BÁSICOS EM GRAFOS

CONCEITOS BÁSICOS EM GRAFOS Um grafo (simples) G é formado por um conjunto de vértices, denotado por V(G), e um conjunto de arestas, denotado por E(G). Cada aresta é um par (não ordenado) de vértices distintos. Se xy é uma aresta,

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos direcionados (Digrafos) Preparado a partir do texto:

Leia mais

TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher

TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar

Leia mais

Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6

Gabriel Coutinho DCC035 - Pesquisa Operacional Lista 6 Lista 6 Exercício. O objetivo deste exercício é modelar o problema de emparelhamento em um grafo bipartido como um problema de fluxo, e verificar que o Teorema de Konig é essencialmente o Teorema de Fluxo

Leia mais

Capítulo 1 Conceitos e Resultados Básicos

Capítulo 1 Conceitos e Resultados Básicos Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 1 Conceitos e Resultados Básicos Um grafo é um par ordenado (V, A), onde V e A são conjuntos disjuntos, e cada elemento

Leia mais

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem

Leia mais

Instituto de Computação Universidade Federal Fluminense. Notas de Aula de Teoria dos Grafos. Prof. Fábio Protti Niterói, agosto de 2015.

Instituto de Computação Universidade Federal Fluminense. Notas de Aula de Teoria dos Grafos. Prof. Fábio Protti Niterói, agosto de 2015. Instituto de Computação Universidade Federal Fluminense Notas de Aula de Teoria dos Grafos Niterói, agosto de 2015. Conteúdo 1 Conceitos Básicos 5 1.1 Grafos, vértices, arestas..................... 5 1.2

Leia mais

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios

Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem

Leia mais

MODELAGEM MATEMÁTICA E A CONTEXTUALIZAÇÃO DO ESTUDO DE GRAFOS E MATRIZES NO ENSINO MÉDIO

MODELAGEM MATEMÁTICA E A CONTEXTUALIZAÇÃO DO ESTUDO DE GRAFOS E MATRIZES NO ENSINO MÉDIO MODELAGEM MATEMÁTICA E A CONTEXTUALIZAÇÃO DO ESTUDO DE GRAFOS E MATRIZES NO ENSINO MÉDIO RESUMO Maria Eliana Barreto Druzian Dr. MarcioViolante Ferreira Este trabalho aborda a teoria de grafos e pretende

Leia mais

UNIP - Ciência da Computação e Sistemas de Informação. Estrutura de Dados. AULA 8 Grafos. Estrutura de Dados 1

UNIP - Ciência da Computação e Sistemas de Informação. Estrutura de Dados. AULA 8 Grafos. Estrutura de Dados 1 UNIP - Ciência da Computação e Sistemas de Informação Estrutura de Dados AULA 8 Grafos Estrutura de Dados 1 Grafos - Motivação Muitas aplicações em computação necessitam considerar conjunto de conexões

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA - Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Definição 1 Um Grafo G = (V, E) consiste em V, um conjunto não

Leia mais

Capítulo 1. Aula Caminhos de Euler e Hamilton Caminhos de Euler e Circuitos

Capítulo 1. Aula Caminhos de Euler e Hamilton Caminhos de Euler e Circuitos Capítulo 1 Aula 8 1.1 Caminhos de Euler e Hamilton Podemos percorrer as margens de um grafo iniciando em um vértice e retornando a ele percorrendo cada borda do grafo exatamente uma vez? Da mesma forma,

Leia mais

Árvores: Conceitos Básicos e Árvore Geradora

Árvores: Conceitos Básicos e Árvore Geradora Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:

Leia mais

Grafos Direcionados. > Grafos Direcionados Representações Computacionais 1/36

Grafos Direcionados. > Grafos Direcionados Representações Computacionais 1/36 Grafos Direcionados > Grafos Direcionados Representações Computacionais 1/36 Grafos Direcionados Em muitas aplicações, é importante ter direção nas arestas: Ruas de mão única Grafos modelando páginas da

Leia mais

Introdução à Teoria dos Grafos

Introdução à Teoria dos Grafos Capítulo 1 Introdução à Teoria dos Grafos 1.1 História O primeiro problema cuja solução envolveu conceitos do que viria a ser teoria dos grafos, denominado "problema das pontes de Königsberg", foi resolvido

Leia mais

GRAFOS: UMA INTRODUÇÃO

GRAFOS: UMA INTRODUÇÃO GRAFOS: UMA INTRODUÇÃO Vilmar Trevisan -Instituto de Matemática - UFRGS Junho de 2006 Grafos: uma introdução Informalmente, um grafo é um conjunto de pontos no plano ligados entre por flechas ou por segmentos

Leia mais

GRAFOS. Introdução Conceitos Fundamentais

GRAFOS. Introdução Conceitos Fundamentais GRAFOS Introdução Conceitos Fundamentais Uma aplicação do produto de matrizes Agora é a sua vez... Considere o diagrama seguinte Determine, o número de formas diferentes de ir de a 1 até e 2 e de a 2

Leia mais

GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira

GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira Ciência da Computação GRAFOS Aula 08 Árvore Geradora Mínima: Algoritmos de Kruskal e Prim-Jarnik Max Pereira Árvore Geradora (spanning tree) É um subconjunto de um grafo G que possui todos os vértices

Leia mais

Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ

Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ Fábio Protti - UFF Loana T. Nogueira - UFF Sulamita Klein UFRJ Suponha que temos um grupo de pessoas (funcionário de uma empresa) que serão submetidos a um treinamento. Queremos identificar os grupos de

Leia mais

Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013

Teoria dos Grafos. Aula 5 - Estruturas de Dados para Grafos. Profª. Alessandra Martins Coelho. março/2013 Teoria dos Grafos Aula 5 - Estruturas de Dados para Grafos Profª. Alessandra Martins Coelho março/2013 Estrutura é o que caracteriza o próprio grafo e independe da forma como ele é representado. A representação

Leia mais

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado.

ESTRUTURAS DISCRETAS (INF 1631) GRAFOS. 1. O que é um grafo? Defina um grafo orientado. Defina um grafo não-orientado. PUC-Rio Departamento de Informática Profs. Marcus Vinicius S. Poggi de Aragão Período: 0. Horário: as-feiras e as-feiras de - horas de maio de 0 ESTRUTURAS DISCRETAS (INF 6) a Lista de Exercícios Procure

Leia mais

Teoria dos Grafos. Grafos Eulerianos

Teoria dos Grafos.  Grafos Eulerianos Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Grafos Eulerianos

Leia mais

Matemática Discreta 10

Matemática Discreta 10 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas

Leia mais

Teoria dos Grafos Aula 3 - Planaridade

Teoria dos Grafos Aula 3 - Planaridade Teoria dos Grafos Aula 3 - Planaridade Profa. Sheila Morais de Almeida Mayara Omai Universidade Tecnológica Federal do Paraná - Ponta Grossa 2018 Sheila Almeida e Mayara Omai (UTFPR-PG) Teoria dos Grafos

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 2001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications, 1993; Kaufmann,

Leia mais

Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:

Grafos AULA META. Introduzir noções elementares da teoria dos grafos. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de: Grafos META Introduzir noções elementares da teoria dos grafos. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Representar grafos por meio de matrizes e diagramas; Caracterizar uma árvore; Identificar

Leia mais

Grafos. Rafael Kazuhiro Miyazaki - 21 de Janeiro de 2019

Grafos. Rafael Kazuhiro Miyazaki - 21 de Janeiro de 2019 21 de Janeiro de 2019 1 Definições Definição 1. (Grafo) Um grafo G = (V, A) é constituido por um conjunto V de vértices e um conjunto A V V de arestas. Usualmente representamos o conjunto V como pontos

Leia mais

Prof. Marco Antonio M. Carvalho

Prof. Marco Antonio M. Carvalho Prof. Marco Antonio M. Carvalho Lembretes! Lista de discussão! Endereço:! programaacao@googlegroups.com! Solicitem acesso:! http://groups.google.com/group/programaacao! Página com material dos treinamentos!

Leia mais

GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira

GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Ciência da Computação GRAFOS Aula 04 Caminhos, Conexidade e Distância Max Pereira Um grafo é dito conexo se for possível visitar qualquer vértice, partindo de um outro qualquer, passando pelas suas arestas.

Leia mais

apenas os caminhos que passam só por vértices em C, exceto, talvez, o próprio v A Figura 1 a seguir ilustra o significado do conjunto C edovalordist.

apenas os caminhos que passam só por vértices em C, exceto, talvez, o próprio v A Figura 1 a seguir ilustra o significado do conjunto C edovalordist. CAMINHO DE CUSTO MÍNIMO Dados dois pontos A e B, em muitos problemas práticos fazemos 2 perguntas: 1. existe um caminho de A para B? ou 2. se existe mais de um caminho de A para B, qual deles é o mais

Leia mais

GRAFOS ORIENTADOS. PSfrag replacements. Figura 1: Exemplo de um grafo orientado.

GRAFOS ORIENTADOS. PSfrag replacements. Figura 1: Exemplo de um grafo orientado. Introdução à Teoria dos Grafos Bacharelado em Ciência da Computação UFMS, 2005 GRAFOS ORIENTAOS Resumo Existem ocasiões onde grafos não são apropriados para descrever certas situações. Por exemplo, um

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Grafos Enumeração de Passeios/Caminhos O processo associado à enumeração de caminhos de um grafo/dígrafo é semelhante ao processo de contagem com a diferença de que usaremos uma matriz de

Leia mais

INF 1010 Estruturas de Dados Avançadas

INF 1010 Estruturas de Dados Avançadas INF Estruturas de Dados Avançadas Grafos // DI, PUC-Rio Estruturas de Dados Avançadas. Aplicações de grafos grafo vértices arestas Cronograma tarefas restrições de preferência Malha viária interseções

Leia mais

GRAFOS Aula 03 Representações de Grafos Max Pereira

GRAFOS Aula 03 Representações de Grafos Max Pereira Ciência da Computação GRAFOS Aula 03 Representações de Grafos Max Pereira A maior vantagem de um grafo é a sua representação visual da informação. Mas para a manipulação e armazenamento em um computador,

Leia mais

Teoria dos Grafos Introdu c ao

Teoria dos Grafos Introdu c ao Teoria dos Grafos Introdução Referências P. O. Boaventura Netto, Grafos: Teoria, Modelos e Algoritmos, São Paulo, E. Blucher 001; R. J. Trudeau, Introduction to Graph Theory, New York, Dover Publications,

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

O grau de saída d + (v) de um vértice v é o número de arcos que tem

O grau de saída d + (v) de um vértice v é o número de arcos que tem Grafos Direcionados Definição (Grau de Entrada) O grau de entrada d (v) de um vértice v é o número de arcos que tem v como cabeça. Definição (Grau de Saída) O grau de saída d + (v) de um vértice v é o

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE543 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

14 Coloração de vértices Considere cada um dos grafos abaixo:

14 Coloração de vértices Considere cada um dos grafos abaixo: 14 Coloração de vértices Considere cada um dos grafos abaixo: a) Quantas cores são necessárias para colorir os vértices de um grafo de maneira que dois vértices adjacentes não recebam a mesma cor? b) Qual

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 13: Árvores. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Capítulo 13: Árvores. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo Departamento de Matemática Aplicada Capítulo 13: Árvores Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos,

Leia mais

Teoria dos Grafos. Teoria dos Grafos. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. agosto

Teoria dos Grafos. Teoria dos Grafos. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. agosto Teoria dos Grafos Introdução Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2017 O que é Grafo? Definição formal Um grafo G = (V (G), E(G)) é uma estrutura matemática que consiste de dois conjuntos:

Leia mais

Teoria dos Grafos. Edson Prestes

Teoria dos Grafos. Edson Prestes Edson Prestes Introdução Grafo Estrela Um grafo estrela é um grafo bipartido de n vértices que possui um conjunto independente com um único vértice e o outro com n-1 vértices Quantos grafos estrelas podemos

Leia mais

Teoria dos Grafos. Grafos Planares

Teoria dos Grafos. Grafos Planares Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Silvio A. de Araujo Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br, saraujo@ibilce.unesp.br Grafos Planares

Leia mais

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto.

A resposta para este problema envolve a partição do conjunto de arestas de tal forma que arestas adjacentes não pertençam a um mesmo conjunto. 6 - oloração de restas e Emparelhamentos onsidere o seguinte problema: Problema - o final do ano acadêmico, cada estudante deve fazer um exame oral com seus professores. Suponha que existam 4 estudantes

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/29 5 - RELAÇÕES 5.1) Relações e Dígrafos 5.2) Propriedades

Leia mais

Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho

Teoria dos Grafos Caminhos. Profª. Alessandra Martins Coelho Teoria dos Grafos Caminhos Profª. Alessandra Martins Coelho junho/2014 Conexidade Em grande parte de aplicações do modelo em grafos, as relações que envolvem os vértices formam uma estrutura contínua;

Leia mais

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II

01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II 01 Grafos: parte 1 SCC0503 Algoritmos e Estruturas de Dados II Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir Instituto de Ciências Matemáticas e de Computação USP 2011/1 Moacir Ponti Jr. (ICMCUSP) 01

Leia mais

Conceitos Básicos Isomorfismo de Grafos Subgrafos Passeios em Grafos Conexidade

Conceitos Básicos Isomorfismo de Grafos Subgrafos Passeios em Grafos Conexidade Conteúdo 1 Teoria de Grafos Conceitos Básicos Isomorfismo de Grafos Subgrafos Passeios em Grafos Conexidade > Teoria de Grafos 0/22 Conceitos Básicos Inicialmente, estudaremos os grafos não direcionados.

Leia mais

Alguns passos da prova do Teorema de Runge

Alguns passos da prova do Teorema de Runge Alguns passos da prova do Teorema de Runge Roberto Imbuzeiro Oliveira 15 de Junho de 2011 1 Os principais passos da prova Teorema 1 Sejam U C aberto, K U compacto e f : U C holomorfa Seja A C \U tal que

Leia mais

Definição e Conceitos Básicos

Definição e Conceitos Básicos Definição e Conceitos Básicos Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes fhcnunes@yahoo.com.br 1 Conceitos Básicos Em grafos ocorrem dois tipos de elementos: Vértices ou nós;

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilceunespbr, socorro@ibilceunespbr Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada

Teoria dos Grafos. Valeriano A. de Oliveira, Socorro Rangel, Silvio A. de Araujo. Departamento de Matemática Aplicada Teoria dos Grafos Valeriano A de Oliveira, Socorro Rangel, Silvio A de Araujo Departamento de Matemática Aplicada Capítulo 12: Grafos Hamiltonianos Preparado a partir do texto: Rangel, Socorro Teoria do

Leia mais

Aula 1: Introdução ao curso

Aula 1: Introdução ao curso Aula 1: Introdução ao curso MCTA027-17 - Teoria dos Grafos Profa. Carla Negri Lintzmayer carla.negri@ufabc.edu.br Centro de Matemática, Computação e Cognição Universidade Federal do ABC 1 Grafos Grafos

Leia mais