Geometria Analítica I
|
|
|
- Joana Mirandela Salvado
- 7 Há anos
- Visualizações:
Transcrição
1 Geom. Analítica I Respostas do Módulo I - Aula 21 1 Geometria Analítica I 29/04/2011 Respostas dos Exercícios do Módulo I - Aula 21 Aula a. Trata-se da hipérbole de centro na origem, semi-eixo real vertical de comprimento a = 4 e semi-eixo imaginário horizontal de comprimento b = 3. Assim, o gráfico é b. Trata-se da hipérbole de centro na origem, semi-eixo real vertical de comprimento a = 4 e semi-eixo imaginário horizontal de comprimento
2 Geom. Analítica I Respostas do Módulo I - Aula 21 2 b = 5. Assim, o gráfico é c. Trata-se da hipérbole de centro na origem, semi-eixo real vertical de comprimento a = 2 e semi-eixo imaginário horizontal de comprimento b = 6. Assim, o gráfico é d. Trata-se da hipérbole de centro em (1, 2), semi-eixo real vertical de comprimento a = 3 e semi-eixo imaginário horizontal de comprimento b = 2. Assim, o gráfico é
3 Geom. Analítica I Respostas do Módulo I - Aula 21 3 Como 9(x + 2) 2 + 4(y 3) 2 (x + 2)2 (y 3)2 = 36 + = 1, trata-se da hipérbole de centro em ( 2, 3), semi-eixo real vertical de comprimento a = 3 e semi-eixo imaginário horizontal de comprimento b = 2. Assim, o gráfico é Como 4(x + 2) (y 1) 2 (x + 2)2 (y 1)1 = 4 + = 1, 1 2 (1/2) 2 trata-se da hipérbole de centro em ( 2, 1), semi-eixo real vertical de comprimento a = 1/2 e semi-eixo imaginário horizontal de comprimento b = 1. Assim, o gráfico é 2. Uma vez conhecidos a e b, podemos encontrar c utilizando a relação c 2 = a 2 + b 2, que, reescrita, nos dá c = a 2 + b 2. Como todas as hipérboles do exercício anterior têm eixo real vertical, os focos serão dados por F 1 = (x 0, y 0 c) e F 2 = (x 0, y 0 + c), onde C = (x 0, y 0 ) é o centro. Da mesma forma, os vértices serão V 1 = (x 0, y 0 a), V 2 = (x 0, y 0 +a). A excentricidade
4 Geom. Analítica I Respostas do Módulo I - Aula 21 4 será dada por c/a. a. c = = 5. Assim, Focos: F 1 = (0, c) = (0, 5), F 2 = (0, c) = (0, 5), Vértices: V 1 = (0, a) = (0, 4), V 2 = (0, a) = (0, 4). Excentricidade e = c/a = 5/4. b. c = = 41. Assim, Focos: F 1 = (0, 41), F 2 = (0, 41), Vértices: V 1 = (0, 4), V 2 = (0, 4). Excentricidade e = c/a = 41/4. c. c = = 40 = Assim, Focos: F 1 = (0, 2 10), F 2 = (0, 2 10), Vértices: V 1 = (0, 2), V 2 = (0, 2). Excentricidade e = c/a = 2 10/2. d. c = = 13. Assim, Focos: F 1 = (1, 2 13), F 2 = (1, ), Vértices: V 1 = (1, 2 3) = (1, 5), V 2 = (1, 2 + 3) = (1, 1). Excentricidade e = c/a = 13/3. e. c = = 13. Assim, Focos: F 1 = ( 2, 3 13), F 2 = ( 2, ), Vértices: V 1 = ( 2, 0), V 2 = ( 2, 6) Excentricidade e = c/a = 5/3. f. c = (1/2) = 5/2. Assim, Focos: F 1 = ( 2, 1 5/2), F 2 = ( 2, 1 + 5/2), Vértices: V 1 = ( 2, 1/2), V 2 = ( 2, 3/2) Excentricidade e = c/a = ( 5/2)/1/2) = a. O centro será o ponto médio dos focos ou dos vértices, o que dá na mesma. Assim, o centro é ( 2, 0). A distância entre os focos é 2c = d(( 2, 5), ( 2, 5)) = 10, logo c = 5. A distância entre os vértices é 2a = d(( 2, 3), ( 2, 3)) = 6, logo a = 3. Assim, 5 2 = b 2, logo b = 4. Como o eixo real é vertical, a equação da hipérbole será então y 2 (x + 2)2 =
5 Geom. Analítica I Respostas do Módulo I - Aula 21 5 b. O centro é o ponto médio dos extremos de cada eixo, logo, o centro é dado por (6, 1) (ponto médio de (3, 1) e (9, 1), ou de (6, 1) e (6, 3)). O comprimento dos eixos são 2b = d((3, 1), (9, 1)) = 6 e 2a = d((6, 1), (6, 3)) = 4, logo, b = 3, a = 2. Assim a equação será (x 6)2 (y 1)2 + = c. Como os comprimentos dos eixos real e imaginário são, respectivamente, 2a = 10 e 2b = 6, temos a = 5, b = 3. Assim, como o centro é (2, 3) e o eixo real é vertical, (x 2)2 (y + 3)2 + = d. O centro é o ponto médio dos vértices ( 1, 4) e ( 1, 4), logo o centro é ( 1, 0). A distância entre os vértices é 2a = d(( 1, 4), ( 1, 4)) = 8, logo, a = 4. Além disso, o comprimento do eixo imaginário é 2b = 8, logo b = 4. Como o centro é ( 1, 4) e o eixo real vertical, temos (x + 1)2 + y = 1. 2 e. O centro é ( 1, 1), e um dos focos é ( 1, 7/2), logo, c = d(( 1, 1), ( 1, 7/2)) = 5/2. Como o centro e o foco dado estão em uma mesma reta vertical, o eixo real será vertical, logo temos como assíntotas as retas (x + 1) = ± b a (y 1) x = ± b a y b a 1. Uma destas assíntotas é paralela à reta y = 3 x, que é equivalente a 4 x = 4 y. Assim, 3 b a = 4 3 b = 4 3 a. (Um erro comum aqui é concluir que b = 4 e a = 3, o que não é necessariamente verdade!) Como c 2 = a 2 + b 2, temos ( ) 2 ( ) = a a 25a2 9 = 25 4 a = 3 2,
6 Geom. Analítica I Respostas do Módulo I - Aula 21 6 logo b = 2. Com isso, a equação da hipérbole é (x + 1)2 (y 1)2 + = (3/2) 2 4. a. Como 4x 2 y 2 + 8x + 6y + 11 = 0 4(x 2 + 2x) (y 2 6y) + 11 = 0 4(x 2 +2x+1) (y 2 6y+9) = 0 4(x+1) 2 (y 3) 2 = 16 (x + 1)2 (y 3)2 + = temos a hipérbole de eixo real vertical, centro ( 1, 3), a = 4, b = 2, c = 2 5. Assim, os focos são F 1 = ( 1, 3 2 5), F 2 = ( 1, ). Os vértices serão ( 1, 1), ( 1, 7). As assíntotas serão (x + 1) = ± 1 (y 3), 2 e os eixos de simetria serão as retas horizontal e vertical contendo o centro, dadas por x = 1 e y = 3. b. Como 9x y 2 90x + 32y 353 = 0 c : (y + 1)2 (x + 5)2 = 1, temos a hipérbole de eixo real vertical, centro ( 5, 1), focos F 1 = ( 5, 6), F 2 = ( 5, 4), vértices ( 5, 2), ( 5, 4), assíntotas (x + 5) = ± 4 (y + 1) 3 e eixos de simetria x = 5 e y = 1. c. Como 4x 2 + 9y 2 32x 36y 64 = 0 d : (y 2)2 (x + 4)2 = temos a hipérbole de eixo real vertical, centro ( 4, 2), focos F 1 =
7 Geom. Analítica I Respostas do Módulo I - Aula 21 7 ( 4, 2 13), F 2 = ( 4, ), vértices ( 4, 0), ( 4, 4), assíntotas (x + 4) = ± 3 (y 2) 2 e eixos de simetria x = 4 e y = 2. d. Como x 2 4y 2 + 6x + 24y 31 = 0 d : (x + 3)2 (y 3)2 = 1, temos a hipérbole de eixo real horizontal, centro ( 3, 3), focos F 1 = ( 3 sqrt5, 3), F 2 = ( 3 + 5, 3), vértices ( 5, 3), ( 1, 3), assíntotas (y 3) = ± 1 (x + 3) 2 e eixos de simetria x = 3 e y = x 2 4y 2 = 4 :
8 Geom. Analítica I Respostas do Módulo I - Aula x 2 y 2 = 9 : x 2 y 2 = 1 : Note que neste último caso, as retas a e b da construção coincidem.
Geometria Analítica: Cônicas
Geometria Analítica: Cônicas 1 Geometria Analítica: Cônicas 1. Parábola Definição: Considere em um plano uma reta d e um ponto F não pertencente à d. Parábola é o lugar geométrico formado pelo conjunto
DEFINIÇÃO. Dados dois pontos F 1 e F 2 chamamos elipse o conjunto dos pontos P do plano tais que d(p,f 1 )+d(p,f 2 )=2a. Cônicas 4
CÔNICAS Cônicas ELIPSE Cônicas 3 DEFINIÇÃO Dados dois pontos F 1 e F chamamos elipse o conjunto dos pontos P do plano tais que d(p,f 1 )+d(p,f )=a. Cônicas 4 ELIPSE Cônicas Elipse é o conjunto dos pontos
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 11 Conceito e Elementos Definição 1 Sejam l uma reta e F um ponto não pertencente a l Chamamos parábola de diretriz l e foco F o conjunto dos
Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza
Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza Hipérbole É o conjunto de todos os pontos de um plano cuja diferença das distâncias, em valor absoluto, a dois pontos fixos desse plano é constante.
Mat. Mat. Monitor: Gabriella Teles
Mat. Professor: Alex Amaral Monitor: Gabriella Teles Geometria analítica plana: hipérbole e parábola 16 nov RESUMO Parábola Consideremos em um plano uma reta diretriz e um ponto Foco não pertencente a
GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco
GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA 03/01/2013 - GGM - UFF Dirce Uesu Pesco CÔNICAS Equação geral do segundo grau a duas variáveis x e y onde A, B e C não são simultaneamente
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares
Notas de Aulas 3 - Cônicas Prof Carlos A S Soares 1 Parábolas 1.1 Conceito e Elementos Definição 1.1 Sejam l uma reta e F um ponto não pertencente a l. Chamamos parábola de diretriz l e foco F o conjunto
Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas
Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização - 005 1ª lista - Cônicas 1 0 ) Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos
Vetores e Geometria Analítica
Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 4 de maio de 2016 Círculo Denição Círculo é o conjunto de pontos P (x, y) a uma distância a, chamada de raio, de um ponto C (x o, y
3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Hipérbole ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole b) (y 1)2 (x + )2 1 Exercícios Introdutórios Exercício 1. de equação a) (1, 2). O ponto que representa o centro da
Geometria Analítica - Aula
Geometria Analítica - Aula 18 228 IM-UFF K. Frensel - J. Delgado Aula 19 Continuamos com o nosso estudo da equação Ax 2 + Cy 2 + Dx + Ey + F = 0 1. Hipérbole Definição 1 Uma hipérbole, H, de focos F 1
MÓDULO 1 - AULA 21. Objetivos
Aula 1 Hipérbole - continuação Objetivos Aprender a desenhar a hipérbole com compasso e régua com escala. Determinar a equação reduzida da hipérbole no sistema de coordenadas com origem no ponto médio
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 7 1 Geometria Analítica I 01/03/2011 Respostas dos Exercícios do Módulo I - Aula 7 Aula 7 1. a. Procedendo como nos Exemplos 7.1 e 7.2, ou a Proposição 7.15
7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).
Lista 3: Cônicas - Engenharia Mecânica Professora Elisandra Bär de Figueiredo 1. Determine a equação do conjunto de pontos P (x, y) que são equidistantes da reta x = e do ponto (0, ). A seguir construa
SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva
SECÇÕES CÔNICAS E SUPERFÍCIES QUÁDRICAS Prof. Vasco Ricardo Aquino da Silva SECÇÕES CÔNICAS Usando o programa winplot visualize as cônicas disponíveis em nosso AVA Moodle. 1. Elementos da Elipse: F1, F2:
APLICAÇÕES DE CÔNICAS NA ENGENHARIA
O que você deve saber sobre APLICAÇÕES DE CÔNICAS NA ENGENHARIA As equações das curvas chamadas cônicas recebem esse nome devido à sua origem (a intersecção de um cone por um plano) e podem ser determinadas
CÔNICAS - MAT Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira ELIPSE
CÔNICAS - MAT 103 - Complementos de Matemática para Contabilidade FEAUSP - Diurno 2 o semestre de 2015 Professor Oswaldo Rio Branco de Oliveira No plano euclidiano consideremos dois pontos (focos) distintos
Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira
Universidade Federal de Ouro Preto Departamento de Matemática MTM11 - T8 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira 1. Determine a equação geral da elipse que satisfaça as condições
Questão 2: Considere a hipérbole descrita pela equação 9x 2 16y 2 = 144. vértices, focos e esboce seu gráco.
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 8 - Cônicas e Quádricas
Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas
Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 0 a Lista - Cônicas. Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos dados: (a) foco F (,
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner
Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 5 - Complementos De onde veio o nome seção cônica? Seções cônicas são as seções formadas pela interseção
c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)
Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =
Aula 19 Elipse - continuação
MÓDULO 1 - AULA 19 Aula 19 Elipse - continuação Objetivos Desenhar a elipse com compasso e régua com escala. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio
Porque?
Porque? 6 Parábola Dados um ponto F e uma reta d, com F d, seja p = d(f,d). Chamamos parábola o conjunto dos pontos P do plano que são equidistantes de F e d, i. é., d(p,f)= d(p,d). 7 Elementos da Parábola
Mat. Monitor: Roberta Teixeira
1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE
Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.
Aula Exemplos diversos. Exemplo 1
Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os
Ricardo Bianconi. Fevereiro de 2015
Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
soma das distâncias que separam um ponto da elipse aos focos são dados.
LISTA 4 Geometria Analítica Professor Eudes Fileti PARTE A ELIPSE 1) Deduzir a equação da elipse a partir da definição. 2) Obtenha uma equação da elipse cujos focos ( e ) e vértices ( e ) são dados abaixo.
INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016
INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a
Aula Elipse. Definição 1. Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis:
Aula 18 Nosso objetivo agora é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Vamos considerar primeiro os casos em que B = 0. Isto é,
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática GAX1 - Geometria Analítica e Álgebra Linear Lista de Exercícios: Estudo Analítico de Cônicas e Quádricas Prof.
ELIPSE. Figura 1: Desenho de uma elipse no plano euclidiano (à esquerda). Desenho de uma elipse no plano cartesiano (à direita).
QUÁDRICAS/CÔNICAS - Cálculo II MAT 147 FEAUSP Segundo semestre de 2018 Professor Oswaldo Rio Branco de Oliveira [ Veja também http://www.ime.usp.br/~oliveira/ele-conicas.pdf] No plano euclidiano consideremos
18REV - Revisão. LMAT 3B-2 - Geometria Analítica. Questão 1
18REV - Revisão LMAT 3B-2 - Geometria Analítica Questão 1 (Unicamp 2017) Seja i a unidade imaginária, isto é, i 2 = 1. O lugar geométrico dos pontos do plano cartesiano com coordenadas reais (x, y) tais
c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)
Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =
GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu
GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co
Capítulo 3 - Geometria Analítica
1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza
Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza É o lugar geométrico dos pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano é constante. Considere dois pontos distintos
Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?
X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões
Geometria Analítica I
Geom. Analítica I Respostas do Módulo I - Aula 14 1 Geometria Analítica I 10/03/011 Respostas dos Exercícios do Módulo I - Aula 14 Aula 14 1. a. A equação do círculo de centro h, k) e raio r é x h) + y
Curso de Geometria Analítica. Hipérbole
Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 03 - Cônicas- Circunferência, Elipse, Hipérbole e Parábola
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar 2º. BIMESTRE
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar º. BIMESTRE I PORCENTAGEM 1. Qual o montante, após dois anos, em uma aplicação que rende 10% ao semestre ( juros compostos), sabendo que o capital
0 < c < a ; d(f 1, F 2 ) = 2c
Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,
GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu
GGM0016 Geometria Analítica I 19/04/01- Turma M1 Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co
de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).
UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma
Preliminares de Cálculo
Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números
Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica
1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e
Lista de exercícios de GA na reta e no plano Período de Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 2017
Lista de GA no plano 1 Lista de exercícios de GA na reta e no plano Período de 016. - Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 017 1 Retas no plano 1.1) Determine os dois pontos, que chamaremos
Objetivos. Aprender a propriedade reflexiva da parábola.
Aula 16 Parábola - continuação MÓDULO 1 - AULA 16 Objetivos Descrever a parábola como um lugar geométrico, determinando a sua equação reduzida nos sistemas de coordenadas com eixo y paralelo à diretriz
Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio
Material Teórico - Módulo Cônicas Eercícios Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios Resolvidos Neste último material, resolvemos
GEOMETRIA ANALÍTICA 2017
GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -
Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1
MAT 105- Lista de Exercícios
1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero
Aula 4. Coordenadas polares. Definição 1. Observação 1
Aula Coordenadas polares Nesta aula veremos que há outra maneira de expressar a posição de um ponto no plano, distinta da forma cartesiana Embora os sistemas cartesianos sejam muito utilizados, há curvas
MAT Poli Roteiro de Estudos sobre as Cônicas
MAT25 - Poli - 2003 Roteiro de Estudos sobre as Cônicas Martha Salerno Monteiro Departamento de Matemática IME-USP Uma equação quadrática em duas variáveis é uma equação da forma a + by 2 + cxy + dx +
Lista de Exercícios de Geometria
Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)
SISTEMA DE EIXOS COORDENADOS
PET FÍSICA SISTEMA DE EIXOS COORDENADOS Aula 6 TATIANA MIRANDA DE SOUZA VICTOR ABATH DA SILVA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento
Geometria Anaĺıtica. Prof. Dr. Thadeu Alves Senne ICT - UNIFESP
Geometria Anaĺıtica Prof. Dr. Thadeu Alves Senne ICT - UNIFESP [email protected] Superfícies Quádricas Definição: Uma superfície quádrica Ω é um conjunto de pontos (x, y, z) R 3 que satisfazem uma equação
ESTUDO DAS CÔNICAS POR MEIO DA DEFINIÇÃO UNIFICADA E A UTILIZAÇÃO DO GEOGEBRA
ESTUDO DAS CÔNICAS POR MEIO DA DEFINIÇÃO UNIFICADA E A UTILIZAÇÃO DO GEOGEBRA Juracélio Ferreira Lopes Instituto Federal de Minas Gerais Ouro Preto [email protected] Wladimir Seixas Universidade
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
É o lugar geométrico dos pontos P que equidistam de um ponto dado F (foco) e de uma reta dada L (diretriz)
MA23 - Unidade 7-1 Parábola Resumo elaborado por Ralph Costa Teixeira: Livro Texto J. Delgado, K. Frensel e L. Crissaff. Geometria Anaĺıtica. Col PROFMAT Resumo elaborado por Ralph Costa Teixeira: Livro
A B C A 1 B 1 C 1 A 2 B 2 C 2 é zero (exceto o caso em que as tres retas são paralelas).
MAT 105- Lista de Exercícios 1. Prolongue o segmento com extremos em (1, -5) e (3, 1) de um comprimento de (10) unidades. Determine as coordenadas dos novos extremos. 2. Determine o centro e o raio da
UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:
5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u
A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor
Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,
TÓPICOS DE MATEMÁTICA I. O Curso está dividido em três unidades, temos que concluir todas.
TÓPICOS DE MATEMÁTICA I Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática I. Neste curso estudaremos os sistemas de numeração, operações
LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO
LISTA DE REVISÃO PROVA TRIMESTRAL GEOMETRIA 2º ANO 1) Um ponto P é da forma P(2a + 4, a 6). Determine P nos seguintes casos: a) P pertence ao eixo das abscissas. b) P pertence ao eixo das ordenadas. c)
GEOMETRIA ANALÍTICA Respostas da 10 a Lista de exercícios. a) x 2 = 8y b) y 2 = 8x c) x 2 = 12y. d) y 2 = 12x e) x 2 = 4y f) 3x 2 + 4y = 0
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza 1. GEOMETRIA ANALÍTICA Respostas da 10 a
Geometria Analítica I - MAT Lista 2 Profa. Lhaylla Crissaff
1. Encontre as equações paramétricas das retas que passam por P e Q nos casos a seguir: (a) P = (1, 3) e Q = (2, 1). (b) P = (5, 4) e Q = (0, 3). 2. Dados o ponto P = (2, 1) e a reta r : y = 3x 5, encontre
Geometria Analítica Exercícios Cônicas em posição geral
Geometria Analítica Exercícios Cônicas em posição geral Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Soluções Turmas E1 e E3 1 / 16 Resolução dos exercícios da aula 15 Classique
FÍSICA A Aula 12 Os movimentos variáveis.
FÍSICA A Aula 12 Os movimentos variáveis. TIPOS DE MOVIMENTO O único tipo de movimento estudado até agora foi o movimento uniforme, em que temos velocidade constante durante todo percurso ou todo intervalo
Hipérbole. Sumário. 6.1 Introdução Hipérbole Forma canônica da hipérbole... 6
6 Hipérbole Sumário 6.1 Introdução....................... 2 6.2 Hipérbole........................ 2 6.3 Forma canônica da hipérbole............. 6 6.3.1 Hipérbole com centro na origem e reta focal coincidente
Aula 13 de Bases Matemáticas
Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função
Elevando ambos os membros desta equação ao quadrado e simplificando o resultado, obtemos, finalmente, Exercícios
Cónicas 61 Elevando ambos os membros desta equação ao quadrado e simplificando o resultado, obtemos, finalmente, que não contém radicais e é do segundo grau. 40x 2 + 33y 2-24xy + 168x - 168j - 200 = 0,
Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada
1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da
Coordenadas Cartesianas
1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos
5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R.
G1 de Álgebra Linear I 20072 5 de setembro de 2007 Gabarito 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas r: (2 t, 1 t, 1 + t), t R (a) Determine a equação cartesiana do plano
Portal OBMEP. Material Teórico - Módulo Cônicas. Terceiro Ano do Ensino Médio
Material Teórico - Módulo Cônicas Parábolas Terceiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Introdução ω Nesta aula vamos revisar o conceito
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA
DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA CURSO: Licenciatura em Matemática PROFESSOR: Katia Arcaro E-mail: [email protected] 2017/2 1 Definições Preliminares 1. Desenho Geométrico: figura
Aula 8 Cônicas - Translação de sistemas de coordenadas
Aula 8 Cônicas - Translação de sistemas de coordenadas MÓDULO 1 - AULA 8 Objetivos Entender a mudança de coordenadas pela translação do sistema cartesiano. Identificar uma cônica transladada a partir da
1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.
3. AS CÔNICAS CÁLCULO VETORIAL - 2017.2 3.1 A circunferência 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa pelos pontos A (5; 1) ;
Matemática B Extensivo v. 8
Matemática B Etensivo v. 8 Eercícios y = Eio real = a = a = C = A + B ( = ( + B B = a y b = D C y = y = 6 9 Daí, a = 6 e b = 9 c = a + b c = 9 + 6 c = c = c = Portanto, a distância focal é dada por: c
Geometria Analítica. Matemática Monitores: Lívia Lisandro e João Rodrigues 13/10/2014. Material de Apoio para Monitoria
Geometria Analítica Material de Apoio para Monitoria 1. (ENEM 2013) Nos últimos anos, a televisão tem passado por uma verdadeira revolução, em termos de qualidade de imagem, som e interatividade com o
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi
LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 18 Esboço de gráficos de funções [01] Verdadeiro ou falso? Se f : R R é uma função de classe C e f (p)
