APRENDENDO RACIOCÍNIO LÓGICO
|
|
|
- Yago Laranjeira Godoi
- 7 Há anos
- Visualizações:
Transcrição
1 APRENDENDO RACIOCÍNIO LÓGICO
2 QUESTÕES DE HIPÓTESES, VERDADE e MENTIRAS
3
4 PREFEITURA DE PORTO ALEGRE 2016 A palavra que completa o grupo formado por maçã, mamão, manga, maracujá, melancia é: a) Jabuticaba. b) Ameixa. c) Melão. d) Abacate. e) Pêssego.
5 Fernanda, Juliana e Márcia estão em um baile de máscaras dançando com seus respectivos namorados. Em certo momento, elas trocam entre si as máscaras e os acompanhantes. Cada uma está com a máscara de uma segunda e com o namorado de uma terceira. A pessoa que está com a máscara de Fernanda está com o namorado de Juliana. Nessas condições, pode se afirmar que: a) Márcia está com o namorado de Fernanda. b) Fernanda está com o namorado de Juliana. c) Juliana está com o namorado de Fernanda. d) Márcia está com a máscara de Juliana. e) Juliana está com a máscara de Fernanda.
6 Carlos, Flávio e Vladimir chegaram ao trabalho ao mesmo tempo, estacionaram seus carros lado a lado e notaram que seus carros tinham modelos começando com as letras de seus nomes: Corsa, Fiat e Voyage. Então, Flávio disse: "Os modelos dos nossos carros começam com a mesma letra dos nossos nomes, mas nenhum dos três tem carro cuja primeira letra do modelo combine com seu próprio nome". "E daí?", respondeu o dono do Corsa. Com essas informações, pode se afirmar que: a) Flávio tem um Corsa. b) Vladimir tem um Corsa. c) Carlos tem um Voyage. d) Vladimir tem um Fiat e Carlos tem um Voyage. e) Flávio tem um Voyage e Vladimir tem um Fiat.
7 Luís, Manuel e Clóvis são três amigos cujas profissões são motorista, porteiro e faxineiro, mas não se sabe ao certo qual é a profissão de cada um deles. Sabese, no entanto, que apenas uma das seguintes afirmações é verdadeira: I. Luís é motorista. II. Manuel não é faxineiro. III. Clóvis não é motorista. As profissões de Luís, Manuel e Clóvis são, respectivamente, a) faxineiro, porteiro e motorista. b) faxineiro, motorista e porteiro. c) porteiro, faxineiro e motorista. d) porteiro, motorista e faxineiro. e) motorista, faxineiro e porteiro.
8 Roberto, Sílvio e Túlio pintaram suas casas com as cores verde, amarela ou branca, não necessariamente nesta mesma ordem. Além de as três casas terem cores distintas, sabe se que apenas uma das afirmações a seguir é verdadeira. I. A casa de Roberto foi pintada de branco. II. A casa de Sílvio não foi pintada de branco. III. A casa de Túlio não foi pintada de verde. Então, as cores das casas de Roberto, Sílvio e Túlio são, respectivamente, a) amarela, branca, verde. b) amarela, verde, branca. c) branca, verde, amarela. d) verde, amarela, branca. e) verde, branca, amarela.
9 Na mesa de um bar estão cinco amigos: Arnaldo, Belarmino, Cleocimar, Dionésio e Ercílio. Na hora de pagar a conta, eles decidem dividi la em partes iguais. Cada um deles deve pagar uma quota. O garçom confere o valor entregue por eles e nota que um deles não entregou sua parte, consegue detê los antes que deixem o bar e os interroga, ouvindo as seguintes alegações: I. Não fui eu nem o Cleocimar, disse Arnaldo; II. Foi o Cleocimar ou o Belarmino, disse Dionésio; III. Foi o Ercílio, disse Cleocimar; IV. O Dionésio está mentindo, disse Ercílio; V. Foi o Ercílio ou o Arnaldo, disse Belarmino. Considerando se que apenas um dos cinco amigos mentiu, pode se concluir que quem não pagou a conta foi? a) Arnaldo. b) Belarmino. c) Cleocimar. d) Dionésio. e) Ercílio.
10 O próximo número da sequência 32, 63, 125, 249, é a) 497. b) 476. c) 398. d) 354. e) 297.
11 Uma empresa costuma enviar informações estratégicas aos seus funcionários por e mail. Para garantir a confidencialidade, protege os arquivos com senha, informando previamente a fórmula para decodificação, conforme especificado a seguir: I = 9; II = 14; III = 12; IV = 62; V. 5 2 = 6; VI. 7 4 = 6; VII. 8 6 = 4; VIII = 22. Alberto recebeu um e mail com um arquivo anexado, cuja mensagem trazia a seguinte operação: ( ) 154 A operação dentro dos parênteses deve ser realizada primeiro seguindo a fórmula apresentada acima. Qual é a senha que abrirá o arquivo recebido por Alberto? a) b) c) d) e) 5160
12 Observe, atentamente, os quadros a seguir: Que número ocupa o canto inferior direito no 50º quadro? a) b) c) d) e)
13 Analise a sequência de quadros a seguir. Cada quadro é dividido em nove casas numeradas, dispostas em linhas e colunas. A posição que o número 1008 ocupa, no seu respectivo quadro, é: a) Linha 1, coluna 3. b) Linha 2, coluna 2. c) Linha 2, coluna 3. d) Linha 3, coluna 1. e) Linha 3, coluna 3.
14 Em uma caixa, havia várias bolas coloridas, sendo 8 pretas, 7 amarelas, 4 vermelhas, 3 azuis e 2 brancas. Retirando se quatro dessas bolas e sabendo se que nenhuma delas era preta, nem branca e nem amarela, pode se afirmar que: a) Pelo menos uma é vermelha. b) Duas são vermelhas e duas são azuis. c) Três são vermelhas e uma é azul. d) Pelo menos uma é azul. e) São todas da mesma cor.
15 Gabarito: C C B A E E A D D B A
Raciocínio Lógico Matemático
Raciocínio Lógico Matemático Diagramas lógicos Todo Sinônimos: qualquer um ou outra similar. Representação: Conclusão: Todo A é B. Alguns elementos de B são A ou existem B que são A. Negação: Trocar TODO
1 Segundo Simulado de Raciocínio lógico e quantitativo para o teste ANPAD Edição setembro 2016
1 www.cursoeduardochaves.com 1 Segundo Simulado de Raciocínio lógico e quantitativo para o teste ANPAD Edição setembro 2016 QUESTÃO 01- A afirmação: João não chegou ou Maria está atrasada equivale logicamente
Equivalê ncia Ló gica
Equivalê ncia Ló gica Duas proposições (simples ou compostas) são equivalentes se suas tabelas verdades são idênticas Indicamos que duas proposições e são equivalentes da seguinte maneira Exemplos Condicional
Exame Analítico Questão 1: Se não fumo, bebo. Se estou cansado, fumo. Se fumo, não estou cansado. Se não estou cansado, não bebo.
Exame Analítico 2009 Questão 1: Se não fumo, bebo. Se estou cansado, fumo. Se fumo, não estou cansado. Se não estou cansado, não bebo. Logo, a) Não fumo, estou cansado e não bebo. b) Fumo, estou cansado
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática e Raciocínio Lógico da prova de Auditor Fiscal da SEFAZ/RS 2014,
Raciocínio Lógico Prova ANPAD - Fevereiro 2007
Raciocínio Lógico Prova ANPAD - Fevereiro 2007 1- Uma urna contém bolinhas de gude de várias cores: oito amarelas, doze vermelhas, cinco brancas, treze azuis e sete verdes. A quantidade mínima de bolinhas
B) R$ 6, 50 C) R$ 7, 00 D) R$ 7, 50 E) R$ 8, 00
1 Matemática Q1. (OBMEP) Joãozinho escreveu os números 1, 2 e 3 como resultados de operações envolvendo exatamente quatro algarismos 4, como nos exemplos a seguir: 1 = (4 + 4) (4 + 4) 2 = 4 4 + 4 4 3 =
TESTES LÓGICOS FECHADOS
TESTES LÓGICOS FECHADOS 1) (UFPE) Considerando que em uma festa existem 15 pessoas, não podemos afirmar que a) pelo menos duas nasceram no mesmo mês do ano. b) pelo menos três nasceram no mesmo dia da
RACIOCÍNIO LÓGICO
RACIOCÍNIO LÓGICO 01- Analise as premissas e a conclusão do argumento a seguir e responda se é VÁLIDO ou NÃO. "Basta ser estudioso para vencer no concurso; ora, todos os alunos do curso Degrau Cultural
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA E RACIOCÍNIO LÓGICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática e Raciocínio Lógico da prova de Técnico Tributário da SEFAZ/RS
Prova da segunda fase - Nível 3
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
Agente Penitenciário
Agente Penitenciário Questões La Salle Raciocínio Lógico Prof. Edgar Abreu Raciocínio Lógico QUESTÕES LA SALLE MUNICÍPIO DE CANOAS 2015 TÉCNICO EM TRÂNSITO E TRANSPORTES 1. A negação da proposição "Arthur
Sumário Psicotécnico... 3 Gabarito... 8
2 Sumário Psicotécnico... 3 Gabarito... 8 ALÔ, VOCÊ! Este é um material de acompanhamento de Aulas Gratuitas transmitidas pelo AlfaCon em seu Canal Oficial no Somos mais de 1,4 Mihão de inscritos! Inscreva-se
8ª série / 9º ano do Ensino Fundamental
8ª série / 9º ano do Ensino Fundamental Instruções: 1. Você deve estar recebendo um caderno com dez questões na 1ª parte da prova, duas questões na 2ª parte e duas questões na 3ª parte. Verifique, portanto,
Ficha de trabalho - Combinatória. a) De quantas maneiras distintas se podem colocar os sete sabores no recipiente?
12º Ano - Matemática A Ficha de trabalho - Combinatória 1. No balcão de uma geladaria existe um recipiente com dez compartimentos, cinco à frente e cinco atrás, para colocar gelado. Em cada compartimento
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO
4. Seja A o acontecimento associado a uma experiência aleatória em que o espaço amostral é Quais as igualdades necessariamente falsas?
mata. Lançou-se 70 vezes um dado em forma de tetraedro com as faces numeradas de a e obteve-se vezes a face, 0 vezes a face, vezes a face e as restantes a face. Determine a frequência relativa dos acontecimentos:
MATEMÁTICA APLICADA. 3 + está entre e 1. A Demonstre que a soma. < y? Justifique a sua resposta. B Se x e y são dois números reais positivos tais que
1 A Demonstre que a soma 7 1 3 + está entre e 1. 8 9 4 B Se x e y são dois números reais positivos tais que x < y e x y = 100, é correto afirmar que x < 10 < y? Justifique a sua resposta. 1 1 7 1 7 1 A
A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha.
XXII OLIMPÍADA BRASILEIRA DE MATEMÁTIA Primeira Fase Nível 1 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº4 - Probabilidades - 12º ano Exames de 2011 a 2014
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº4 - Probabilidades - 12º ano Exames de 2011 a 2014 1. Seja o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos
24 de outubro de 2012
Escola Básica de Santa Catarina Ficha de Avaliação de Matemática 24 de outubro de 2012 A PREENCHER PELO ALUNO 9ºano 90m Nome: nº Turma C A PREENCHER PELO PROFESSOR Classificação: Nível: ( ) Rubrica do
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de
A v a mæe
N@o mæe@: D@a@t@a@: A v a l@i@a@ç@ã@o @d@o 1.º @t r@i mæe s@t ræe@ M@a@tæe m@á@t@i@c@a@ 4.º @a n@o I n f o r m@a@ç@ã@o : 1. O João, a Maria, a Carla, a Joana e o Rui fizeram um jogo, utilizando cinco cartões
Resolução da Prova de Raciocínio Lógico da Agente Penitenciário/MA, aplicada em 24/04/2016.
de Raciocínio Lógico da gente Penitenciário/M, aplicada em 24/04/206. - sentença Se Maria é médica, então Silvio é engenheiro. é logicamente equivalente a () se Maria é médica, então Silvio é engenheiro.
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO N.º2 DE MATEMÁTICA Data: Outubro de 2009 Turmas: 12ºA e 12ºB TÉCNICAS DE CONTAGEM: Arranjos com repetição ; Arranjos sem repetição;
Polos Olímpicos de Treinamento. Aula 3. Curso de Combinatória - Nível 2. Paridade. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 3 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
RACIOCÍNIO LÓGICO. 03. Atente para a sucessão seguinte e determine o valor de x : 2; 10; 12; 16; 17; 18; 19; x. a) 100 b) 200 c) 300 d) 400 e) 500
RACIOCÍNIO LÓGICO 01. Qual o valor de x na sucessão: 1; 2; 6; 39; x? a) 1522 b) 1523 c) 1524 d) 1525 e) 1526 02. Considerando os onze primeiros elementos do conjunto dos números naturais foi escrita a
12.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) PROBABILIDADES E COMBINATÓRIA VERSÃO 2
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A A 12.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos 7/Dezembro/2006
Raciocínio Lógico
Raciocínio Lógico 01. João reuniu-se com seus 12 irmãos na ceia de Natal. Das afirmações abaixo, referentes aos membros da mesma família reunidos, a única necessariamente verdadeira é: a) pelo menos uma
12.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) PROBABILIDADES E COMBINATÓRIA VERSÃO 4
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A A 12.º Ano de Escolaridade (Decreto-Lei n.º 74/2004, de 26 de Março) Duração da Prova: 90 minutos 7/Dezembro/2006
ANALISANDO O EDITAL RELAÇÕES ARBITRARIAS SEQUENCIAS RACIOCINIO. MATEMATICA BASICA..
ANALISANDO O EDITAL RELAÇÕES ARBITRARIAS SEQUENCIAS RACIOCINIO. MATEMATICA BASICA.. ASSOCIAÇÕES LOGICAS 1) Três Agentes Administrativos - Almir, Noronha e Creuza - trabalham no Departamento Nacional de
LÉO MATOS INFORMÁTICA + RACIOCÍNIO LÓGICO
LÉO MATOS INFORMÁTICA + RACIOCÍNIO LÓGICO LÉO MATOS FUNÇÕES DE TEXTO + ASSOCIAÇÕES LÓGICAS PRINCIPAIS FUNÇÕES DE TEXTO =CONCATENAR (texto1;texto2...) Agrupa várias cadeias de texto em uma única sequência
ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO
ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO Teste 1 Matemática 9.º C Nome: n.º Data: 14/10/2016 Classificação: Professor: Instruções gerais Não é permitido o uso de corretor. É permitido a utilização
Prova da primeira fase - Nível II
Instruções: O tempo de duração da prova é de uma hora e trinta minutos. Este é um teste de múltipla escolha. Cada questão é seguida por cinco opções (a, b, c, d, e). Somente uma resposta é correta. Marque
A CASA DO SIMULADO DESAFIO QUESTÕES MINISSIMULADO 45/360
1 DEMAIS SIMULADOS NO LINK ABAIXO CLIQUE AQUI REDE SOCIAL SIMULADO 45/360 RLM INSTRUÇÕES TEMPO: 30 MINUTOS MODALIDADE: CERTO OU ERRADO 30 QUESTÕES CURTA NOSSA PÁGINA MATERIAL LIVRE Este material é GRATUITO
Espaço para logotipos de patrocinador/ colaborador, se houver.
SUGESTÃO 1 Camiseta preta (Fatec ou Etec) SUGESTÃO 2 Camiseta azul (Fatec ou Etec) SUGESTÃO 3 Camiseta branca (Fatec ou Etec) SUGESTÃO 4 Camiseta amarela (Fatec ou Etec) SUGESTÃO 5 Camiseta verde (Fatec
Avaliação - Problemas Pré-Algoritmicos
Algoritmos e Estruturas de Dados 1 Professores: Marcos Castilho e Daniel Weingaertner Doutorando: Alexander Robert Kutzke Data: 06 de Março de 201. UNIVERSIDADE FEDERAL DO PARANÁ Setor de Ciências Exatas
RLM Material de Apoio Professor Jhoni Zini
1 - José, Luís e Mário são funcionários públicos nas funções de auditor, analista e técnico, não necessariamente nessa ordem. Sabe-se que José não é analista, que o técnico será o primeiro dos três a se
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/06 MATEMÁTICA APLICADA 0. Para a construção de uma janela na sala de um teatro, existe a dúvida se ela deve ter a forma de um retângulo, de um círculo
Prova da segunda fase - Nível 2
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
DOUGLAS LÉO RACIOCÍNIO LÓGICO MATEMÁTICO
DOUGLAS LÉO RACIOCÍNIO LÓGICO MATEMÁTICO 1 - (FEPESE - CAU-SC ASSISTENTE ADMINISTRATIVO -2013 ) Um pintor dispõe de tinta em 7 cores diferentes para pintar 3 paredes. Sabendo-se que cada parede deve ser
Quantas Cores? Atividade 1: Rastreador de cores
Quantas Cores? Quantas cores você pode comer hoje? Alimentos saudáveis são constituídos por vitaminas e nutrientes que produzem frutas e legumes em cores vibrantes. Ao comer uma variedade de alimentos
Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 5 de junho de 2018
Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 5 de junho de 2018 1 QUESTÃO 1 A primeira mamadeira (na ilustração) marca 250 ml, enquanto a segunda marca 75 ml. Para saber quanto Zezé mamou, basta
Maçăs e Pêras CORES DA TERRA
Maçăs e Pêras CORES DA TERRA 12 Maçă Mini Pequena Média Grande Super Extra I Super Extra II Escultural Escultural II Branca 5010 5003 5006 5009 6006 6055 31001 31026 Preta Verde 5032 5011 5031 5001 5030
RACIOCÍNIO LÓGICO. Problemas Lógicos. Parte 2. Prof. Renato Oliveira
RACIOCÍNIO LÓGICO Problemas Lógicos. Parte 2. Prof. Renato Oliveira Antônio, Benedito e Camilo são clientes de uma agência bancária. Certo dia, os três entraram na agência e pegaram senhas para atendimento
ACLÉSIO MOREIRA RACIOCÍNIO LÓGICO
ACLÉSIO MOREIRA RACIOCÍNIO LÓGICO 01) (PR-4 UFRJ 2015) Numa seção de ensino são registradas e verificadas as inscrições em disciplinas dos alunos de um certo curso. Em cada período os alunos se inscrevem
Simulado Aula 05 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto
Simulado Aula 05 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Considere que os termos da sucessão seguinte foram obtidos segundo determinado padrão. (20, 21, 19, 22, 18, 23, 17,...)
Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução
Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma
Produção Brasileira de Melão por Estado 2007 Estados Área (ha) Volume (Ton) Valor (Mil R$) Rio Grande do Norte Ceará 6.
Produção Brasileira de Abacaxi por Estado 2007 Pará 15.462 701.948 125.596 Paraíba 11.600 625.527 150.054 Minas Gerais 7.593 596.668 127.597 Bahia 6.430 282.634 63.185 São Paulo 3.620 271.380 76.161 Rio
EXERCÍCIOS CONTAGEM 3
EXERCÍCIOS CONTAGEM 3 1. (OBMEP 2011 N2Q13 1ª fase) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto
Matemática. Questão 1. 6 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO:
EF AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 6 o ano do Ensino Fundamental Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 1 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Observe
a) 20 b) 16 c) 12 d) 10 e) 4
Uma loja vende barras de chocolate de diversos sabores. Em uma promoção, era possível comprar três barras de chocolate com desconto, desde que estas fossem dos sabores ao leite, amargo, branco ou com amêndoas,
Instruções para a Prova de MATEMÁTICA APLICADA:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é
Professor(a): Francine Morini Miranda. 1- Qual o esporte que mais te interessa? Você pratica algum esporte? Se sim qual?
REVISA DE ARTE 6 ANO Nome: Professor(a): Francine Morini Miranda Turma: Data: / / 1- Qual o esporte que mais te interessa? Você pratica algum esporte? Se sim qual? 2- Recorte e cole nesse espaço pessoas
Exame Analítico. a) 0 b) 1 c) 3 d) 4 e) 5. 2) Qual é o próximo número da seqüência? {4, 5, 26/3, 33/2,...} a) 102/4 b) 55/3 c) 66/4 d) 162/5 e) 62/4
Exame Analítico 1) Você deverá analisar a seqüência das 5 próximas frases para concluir a afirmativa correta: (1) Vou lhe dizer 5 verdades; (2) A frase anterior é mentira; (3) A frase anterior é mentira;
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 1o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Organizando todos os resultados possíveis para os dois números possíveis de observar,
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução da prova 1 a fase Nível de agosto de 2017
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução da prova 1 a fase
Paridade. Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas deste capítulo.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 5 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
Prova de Raciocínio Lógico da banca CETRO
Prova de Raciocínio Lógico da banca CETRO 01- Se a afirmação existem professores que não são pedagogos é falsa, então é verdade que: a) Nenhum professor é pedagogo. b) Todo professor é pedagogo. c) Nem
2a Olimpı ada Vic osense de Matema tica
2a Olimpı ada Vic osense de Matema tica Banco de Questo es - Nı vel 1-1a Fase OLIMPÍADA LIM IMPÍADA VIÇ VIÇOSENSE SE DE MAT MA MATEMÁTICA TE 1. (OMM-2005) Quantos nu meros naturais N de 4 algarismos satisfazem
Resposta: b) Quais são os números divisíveis por 3? Justifique sua resposta. Resposta:
NOME: TURMA: UNIDADE: NOTA: DATA DE ENTREGA: 14 / 06 / 2017 1. (1,2) Observe os números abaixo e responda. 11820 1000 14649 72048 1980 6930 42345 14214 16664 3924 1500 a) Quais são os números divisíveis
MANUAL IMPORTAÇÃO DE FRETES ELETRÔNICOS.
MANUAL IMPORTAÇÃO DE FRETES ELETRÔNICOS. Procedimentos de importação dos CTE (conhecimento de frete eletrônico), para alimentar o financeiro e posteriormente participar do rateio de custo quando ocorrer
GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /
1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 04 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br
Dante Então, nas férias,
1. Nas férias, Carmem não foi ao cinema. Sabe-se que sempre que q Denis viaja, Denis fica feliz. Sabe-se, também, que nas férias, ou Dante vai à praia ou vai à piscina. Sempre que Dante vai à piscina,
Nesse capítulo vamos abordar exemplos envolvendo sequências numéricas, sequências com letras e com palavras e padrões geométricos.
Nesse capítulo vamos abordar exemplos envolvendo sequências numéricas, sequências com letras e com palavras e padrões geométricos. Sequências numéricas 1. O próximo número na sequência 1001, 991, 971,
Prova de UFRGS
Prova de UFRGS - 212 1 Considere que o corpo de uma determinada pessoa contém 5,5 litros de sangue e 5 milhões de glóbulos vermelhos por milímetro cúbico de sangue Com base nesses dados, é correto afirmar
10,00 (dez) pontos distribuídos em 20 itens
QUESTÃO ÚNICA PAG - 1 MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 1.
IBGE- RACIOCÍNIO LÓGICO & MATEMÁTICA. Josimar Padilha
IBGE- RACIOCÍNIO LÓGICO & MATEMÁTICA Josimar Padilha 01- Ano: 2016 Banca: FGV João olhou as dez bolas que havia em um saco e afirmou: Todas as bolas desse saco são pretas". Sabe-se que a afirmativa de
22 de Outubro de 2012
Escola Básica de Santa Catarina Ficha de Avaliação de Matemática 22 de Outubro de 2012 A PREENCHER PELO ALUNO 9ºano Nome: nº Turma A PREENCHER PELO PROFESSOR Classificação: Nível: ( ) Rubrica do professor:
Lista de Matemática e interpretação de texto 5 o ano de 14 a 18/03/2016
Lista de Matemática e interpretação de texto 5 o ano de 14 a 18/03/2016 Deus é o nosso refúgio e fortaleza. (Salmos 46:01) SEGUNDA-FEIRA 1. Efetue as divisões: a) 868 4 b) 1736 2 c) 912 3 d) 34 139 8 e)
Raciocínio Lógico (Professor Uendel)
Raciocínio Lógico (Professor Uendel) Material (01); SEFAZ; JULHO DE 2017 (Álgebra das Proposições) PROPOSIÇÃO Denomina-se proposição a toda sentença, expressa em palavras ou símbolos, que exprima um pensamento
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Uma pessoa lança um dado cúbico, com as faces numeradas de 1 a 6, e regista o número da face que ficou
pontas desta estrela: caroço do abacate: lápis: pássaros nos galhos: insetos: gatos:
. COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA EXERCÍCIO COMPLEMENTAR - 1º TRIMESTRE DISCIPLINA: MATEMÁTICA PROFESSOR (A): ALUNO(A):. DATA DE RETORNO: / /2017 SÉRIE: 2 ANO. 1.Escreva o número de: pontas desta
Permutação; Fatorial; Resolução de exercícios de contagem. Assuntos:
Assuntos: Permutação; Fatorial; Resolução de exercícios de contagem. Prof. Hudson Sathler Delfino Exercícios Ciclo 5 N1 1º ENCONTRO. Exercício 1. (a) Quantos são os anagramas da palavra BOLA? (b)e quantos
( ) ( ) Questões tipo exame. O número pedido é: Questões tipo exame Pág Os algarismos 1 e 2 podem ocupar 5 A. posições diferentes.
Questões tipo exame Pág. 6.. Os algarismos e podem ocupar A posições diferentes. Os restantes lugares são ocupados por três algarismos escolhidos de entre oito, portanto, existem A maneiras diferentes
Disciplina: MATEMÁTICA Prof(a): ALEXANDRE Nota:
Colégio J. R. Passalacqua Colégio Santo Antonio de Lisboa Colégio São Vicente de Paulo Penha Colégio Francisco Telles Colégio São Vicente de Paulo Jundiaí Aluno: Nº: Data: / / Avaliação de Recuperação
NÚMEROS E OPERAÇÕES. Sistema de Numeração Decimal. Exercícios Resolvidos
1 NÚMEROS E OPERAÇÕES Sistema de Numeração Decimal O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional Na base 10, dispomos de 10 algarismos
4) Quantas alternativas contêm uma palavra com mais letras que a palavra na alternativa correta? A) Duas B) Três C) Quatro D) Cinco E) Seis
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 8º ou 9º ano Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
+ 1, segue que o 103º termo dessa sequência é
1 N1Q1 a) A sequência é 415 537 810 91 10 1 b) Os seis primeiros termos são 995 1814 995 1814 995 1814 c) Os primeiros termos da sequência são 33333 6666 111 33333 6666 e vemos que os termos se repetem
Matemática 4 Módulo 9
Matemática 4 Módulo 9 ANÁLISE COMBINATÓRIA I COMENTÁRIOS ATIVIDADES PARA SALA (n + )! (n + )(n )!. I. Dada a função ƒ (n). Simplificando, temos: n! + (n )! (n + ).n.(n )! (n + ).(n )! (n )