Planejamento de Misturas
|
|
|
- Benedito Ramires Caldeira
- 7 Há anos
- Visualizações:
Transcrição
1 Na maioria dos planejamentos os níveis dos fatores são independentes. As propriedades de uma mistura são determinadas pelas proporções de seus ingredientes, e não por valores absolutos. Planejamento de Misturas A soma das proporções dos diversos componentes de uma mistura é sempre 100%.
2 Planejamento de Misturas Para especificar a composição da mistura, só precisamos fixar as proporções de n 1 componentes. Diagramas binários.
3 Diagramas Ternários
4 Diagramas Ternários Q x1 = 50% x2 = 10% x3 = 40% P x1 = 20% x2 = 50% x3 = 30% S x1 = 60% x2 = 30% x3 = 10%
5 Planejamentos de Misturas O modelo matemático escolhido define qual é o planejamento mais adequado. Os modelos mais utilizados são: Linear. Quadrático. Cúbico completo. Cúbico especial. Existem duas classes principais de planejamentos de mistura: Planejamento simplex-lattice. Planejamento simplex-centroid.
6 Modelos de Misturas Modelos de mistura para p componentes: Linear Efeito Principal Quadrático Efeito de Interação Binária Cúbico completo Cúbico especial Efeito de Interação Ternária
7 Interação entre os Ingredientes As interações entre os componentes geram curvaturas no modelo de mistura e podem ser de dois tipos: Interação de efeito sinérgico. Interação de efeito antagônico.
8 Simplex-Lattice {p, m} Simplex-Lattice: p componentes, com m + 1 pontos igualmente espaçados. Todas as combinações possíveis dos pontos são utilizadas. {2, 1} X1 X Qual modelo de mistura posso usar?
9 Simplex-Lattice {2, 2} X1 X2 0 1 ½ ½ 1 0 Modelo de mistura???
10 Simplex-Lattice {3, 2} X1 X2 X ½ ½ 0 ½ 0 ½ 0 ½ ½ Qual modelo de mistura posso usar? Para usar o modelo cúbico completo seriam necessários quantos experimentos? Como seria representado o planejamento?
11 Simplex-Lattice
12 Simplex-Lattice
13 Simplex-Lattice A quantidade de pontos em um planejamento simplex-lattice {p, m} é: O planejamento simplex-lattice permite a obtenção de modelos cúbicos completos.
14 Simplex-Centroid É uma alternativa ao planejamento simplexlattice que permite a construção de modelos cúbicos especiais. Um planejamento simplex-centroid para p componentes possui 2 p 1 pontos. Componentes Formulações Simplex-lattice Simplex-centroid
15 Simplex-Centroid O planejamento é composto por: p permutações (1, 0, 0,..., 0). permutações (½, ½, 0,..., 0). permutações (1/3, 1/3, 1/3, 0,..., 0). Centróide (1/p, 1/p,..., 1/p). 2 p 3 p!!! k n k n k n
16 Simplex-Centroid
17 Planejamentos Simplex Para os planejamentos do tipo simplex a maioria dos pontos experimentais estão no contorno da região experimental e envolvem apenas p 1 componentes. É recomendável a utilização de pontos internos (axiais) além do centróide.
18 Simplex-Centroid com pontos internos Meia distância entre o componente puro e o centróide Eixo do componente 3
19 Mistura de dois componentes O modelo mais simples para uma mistura de dois componentes é o modelo aditivo, ou linear: ŷ b0 b1 x1 b2 x2 x 1x2 1 Os fatores x 1 e x 2 não são mais independentes e, portanto, a matriz X t X é singular.
20 Dois Componentes Modelo Linear A restrição de mistura pode ser utilizada para produzir modelos mais fáceis de interpretar. ŷ b0 b1 x1 b2 x2 x 1x2 1 ŷ b x x b x b x * * ŷ b b x b b x b x b x
21 Dois Componentes Modelo Linear O modelo linear de mistura para dois componentes possui apenas dois coeficientes, assim, são necessários apenas dois experimentos distintos. Os coeficientes do modelo são as próprias respostas para os respectivos componentes puros. X1 X É possível aumentar a precisão do modelo fazendo repetições dos ensaios.
22 Dois Componentes Modelo Quadrático A ampliação mais simples do modelo linear é o modelo quadrático: ŷ b b x b x b x b x b x x x x 1 x x 1 x x x 1 x yˆ b x x b x b x b x 1 x b x 1 x b x x ŷ b b b x b b b x b b b x x ŷ b x b x b x x * * *
23 Mistura de três componentes Modelo linear: ŷ b x b x b x * * *
24 Mistura de três componentes Modelo quadrático: ŷ b x b x b x b x x b x x b x x * * * * * *
25 Mistura de três componentes Modelo cúbico completo (simplex lattice): ŷ b x b x b x b x x b x x b x x d x x x x * * * * * * * d x x x x d x x x x b x x x * * * Modelo cúbico especial (simplex centróide): ŷ b x b x b x b x x b x x b x x b x x x * * * * * * *
26 Avaliação Estatística dos Modelos A construção de modelos de mistura é um caso particular de ajuste por mínimos quadrados. A significância estatística desses modelos deve ser avaliada com uma análise de variância. Um modelo com mais parâmetros explicará uma soma quadrática maior. Ao acrescentar um termo um grau de liberdade do resíduo é transferido para a regressão. O teste F indica se a ampliação do modelo é necessária.
27 Estudo de Caso 1 Planejamento de mistura para três componentes: formulação de um achocolatado em pó com substituição de 42% dos sólidos do leite por uma mistura de proteínas (Castro, I. A.; Silva, R. S. F.; Tirapegui, J.; Borsato, D.; Bona, E. Simultaneous optimization of response variables in protein mixture formulation: constrained simplex method approach. International Journal of Food Science and Technology, v.38, p , 2003). Componentes da mistura: (HG) gelatina hidrolisada; (WG) proteína de trigo; (SPI) isolado protéico de soja. Respostas: (SENS) avaliação sensorial; (PDCAAS) avaliação nutricional; (NPR) avaliação nutricional; (CUSTO) custo proporcional da mistura.
28 Estudo de Caso 1
29 Funções de Desejabilidade É uma técnica de otimização simultânea desenvolvida por Derringer & Suich (1980). O primeiro passo é converter cada resposta yi em uma função de desejabilidade individual di. Os componentes da mistura (ou fatores de outros tipo de planejamento) são ajustados para maximizar a desejabilidade global.
30 Desejabilidades Individuais Para maximizar uma propriedade (unilateral).
31 Desejabilidades Individuais Para minimizar uma propriedade (unilateral).
32 Desejabilidades Individuais Para atingir um valor alvo usa-se uma função bilateral.
33 Misturas com Restrições Existem casos em que certas limitações são impostas nas proporções dos componentes. Quando se tem limites uma nova região do planejamento de misturas deve ser utilizada. No caso de limites inferiores os planejamentos do tipo simplex ainda podem ser utilizados. Para o caso de limites e superiores a região experimental é uma forma irregular e outros tipos de planejamento diferente do simplex devem ser utilizados.
34 Pseudocomponentes A utilização de pseudocomponentes permite a utilização dos planejamentos do tipo simplex quando existe uma restrição inferior para os componentes da mistura. Para o caso geral de p componentes: Codificação (Pseudocomponente) Descodificação (Componente Original)
35 Pseudocomponentes Exemplo Imagine que para uma determinada mistura ternária existam as seguintes restrições: Monte um planejamento simplex-lattice {3,2}. X 1 X 2 X ½ ½ 0 ½ 0 ½ 0 ½ ½ Pseudocomponentes Descodificação X 1 X 2 X 3 0,65 0,20 0,15 0,35 0,50 0,15 0,35 0,20 0,45 0,50 0,35 0,15 0,50 0,20 0,30 0,35 0,35 0,30
36 Pseudocomponentes Exemplo Região experimental (componentes originais):
37 Estudo de Caso 2 Aplicação de pseudocomponentes para avaliar o comportamento reológico de misturas ternárias de polpas de frutas (BRANCO, I. G. & GASPARETTO, C. A. Aplicação da metodologia de superfície de resposta para o estudo do efeito da temperatura sobre o comportamento reológico de misturas ternárias de polpa de manga e sucos de laranja e cenoura. Ciência e Tecnologia de Alimentos, v.23, suplemento, p , 2003). Componentes da mistura: X 1 = polpa de manga ; X 2 = suco de laranja; X 3 = suco de cenoura. Restrições para os componentes: X 1 60%; X 2 10%; X 3 10%.
38 Planejamento
Bibliografia Recomendada. Cornell, J. A. A Primer on Experiments with Mixtures.
Bibliografia Recomendada Cornell, J. A. A Primer on Experiments with Mixtures. Bibliografia Recomendada Barros Neto, B.; Scarminio, I. S.; Bruns, R. E. Como Fazer Experimentos. Bibliografia Recomendada
Planejamento de Misturas
Na maioria dos planejamentos os níveis dos fatores são independentes. As propriedades de uma mistura são determinadas pelas proporções de seus ingredientes, e não por valores absolutos. Planejamento de
Sobrepor as superfícies. Desirability = Desejabilidade. Solução. Métodos de Programação Linear. ou não Linear
Respostas múltiplas A otimização simultânea de várias respostas (propriedades, funções, etc.) é um objetivo inerente à concepção e à melhoria dos processos e dos produtos! O que fazer??? Solução Sobrepor
Prof. Dr. Marcone Augusto Leal de Oliveira UFJF CURSO INTRODUTÓRIO DE 12 HORAS OFERECIDO PARA A PÓS-GRADUAÇÃO DA UFABC EM NOVEMBRO DE 2017
Prof. Dr. Marcone Augusto Leal de Oliveira UFJF CURSO INTRODUTÓRIO DE 2 HORAS OFERECIDO PARA A PÓS-GRADUAÇÃO DA UFABC EM NOVEMBRO DE 207 SUMÁRIO - BREVE DESCRIÇÃO, FUNDAMENTOS, CONCEITOS, CARACTERÍSTICAS,
Bibliografia Recomendada.
Bibliografia Recomendada http://paginapessoal.utfpr.edu.br/ebona Bibliografia Recomendada Montgomery, D. C. Design and Analysis of Experiments. Bibliografia Recomendada Barros Neto, B.; Scarminio, I. S.;
NOÇÕES SOBRE EXPERIMENTOS FATORIAIS
3 NOÇÕES SOBRE EXPERIMENTOS FATORIAIS Planejamento de Experimentos Design of Experiments - DOE Em primeiro lugar devemos definir o que é um experimento: Um experimento é um procedimento no qual alterações
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
Pesquisador. Planejamento de Experimentos Design of Experiments - DOE NOÇÕES SOBRE EXPERIMENTOS FATORIAIS. 1 - Fixar T e variar P até > Pureza
3 NOÇÕES SOBRE EXPERIMENTOS FATORIAIS Planeamento de Experimentos Design of Experiments - DOE Em primeiro lugar devemos definir o que é um experimento: Um experimento é um procedimento no qual alterações
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Regressão Polinomial e Análise da Variância Piracicaba Setembro 2014 Estatística Experimental 18 de Setembro de 2014 1 / 20 Vimos
Utilização de planejamento experimental no estudo de absorção de água de cerâmica incorporada com lama vermelha
Utilização de planejamento experimental no estudo de absorção de água de cerâmica incorporada com lama vermelha Introdução Lama vermelha Denominação e produção A lama vermelha é a denominação genérica
POLINÔMIOS ORTOGONAIS
POLINÔMIOS ORTOGONAIS Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 13 de julho de 2016 Introdução A variável analisada na análise de
Estatística Experimental
Estatística Experimental Prof. Dr. Evandro Bona [email protected] paginapessoal.utfpr.edu.br/ebona Bibliografia Recomendada Barros Neto, B.; Scarminio, I. S.; Bruns, R. E. Como Fazer Experimentos. 4ª
Delineamento e Análise Experimental Aula 4
Aula 4 Castro Soares de Oliveira ANOVA Significativa Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais.
Planejamento e Otimização de Experimentos
Planejamento e Otimização de Experimentos Metodologia de Superfície de Resposta e Simplex Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Visão geral técnicas matemáticas
Planejamento e Otimização de Experimentos Métodos de Superfície de Resposta
Planejamento e Otimização de Experimentos Métodos de Superfície de Resposta Prof. Dr. Anselmo E de Oliveira www.quimica.ufg.br/docentes/anselmo [email protected] Visão geral técnicas matemáticas estatísticas
Correlação e Regressão
Correlação e Regressão Exemplos: Correlação linear Estudar a relação entre duas variáveis quantitativas Ou seja, a força da relação entre elas, ou grau de associação linear. Idade e altura das crianças
Análise da Regressão. Prof. Dr. Alberto Franke (48)
Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas
LISTA DE QUADROS E TABELAS. Delineamento experimental tipo simplex centroide para a otimização do uso de proteínas lácteas em iogurtes probióticos.
iii LISTA DE QUADROS E TABELAS página Quadro 1. Definição dos probióticos com o passar dos anos. 10 Quadro 2. Modificações físico-químicas causadas pela homogeneização do leite utilizado na produção de
UTILIZAÇÃO DE UM DELINEAMENTO COMPOSTO CENTRAL ROTACIONAL PARA AVALIAÇÃO MICROBIOLÓGICA DE POLPAS DE AÇAÍ PASTEURIZADAS
UTILIZAÇÃO DE UM DELINEAMENTO COMPOSTO CENTRAL ROTACIONAL PARA AVALIAÇÃO MICROBIOLÓGICA DE POLPAS DE AÇAÍ PASTEURIZADAS R. A. MATTIETTO 1, V. M. MATTA 2 1 Embrapa Amazônia Oriental 2 Embrapa Agroindústria
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] Introdução o Os ensaios em quadrados latinos levam em conta o controle local, aplicado em dois destinos:
USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA
USO DE PLANEJAMENTO COMPOSTO CENTRAL NA AVALIAÇÃO DAS VARIÁVEIS TEMPERAURA E CONCENTRAÇÃO DE SOLVENTES NO ESTUDO DA SOLUBILIDADE DA UREIA F. M. A. S. COSTA 1, A. P. SILVA 1, M. R. FRANCO JÚNIOR 1 e R.
Planejamento da pesquisa científica: incerteza e estatística. Edilson Batista de Oliveira Embrapa Florestas
Planejamento da pesquisa científica: incerteza e estatística Edilson Batista de Oliveira Embrapa Florestas Pesquisa em laboratórios na Embrapa Anos 70 Anos 80 Anos 90 Século 21 Precisão em Laboratórios:
1. INTRODUÇÃO AO PLANEJAMENTO DE EXPERIMENTOS
1. INTRODUÇÃO AO PLANEJAMENTO DE EXPERIMENTOS A metodologia conhecida como projeto de experimentos foi introduzida por Fischer em 1935 e inicialmente aplicada a experimentos de agricultura. Posteriormente,
EM MICROBIOLOGIA. Lavras, maio de 2012
PLANEJAMENTO EXPERIMENTAL EM MICROBIOLOGIA Prof. Dr. Whasley Ferreira Duarte Lavras, maio de 2012 1 8 4 < 0,5 8 4 SUMÁRIO Planejamento experimental Definição de bioestatística O que são as técnicas de
ANÁLISE DE REGRESSÃO
ANÁLISE DE REGRESSÃO Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de janeiro de 2017 Introdução A análise de regressão consiste na obtenção de uma equação
Modelagem em Experimentos Mistura-Processo para Otimização de Processos Industriais
Luiz Henrique Abreu Dal Bello Modelagem em Experimentos Mistura-Processo para Otimização de Processos Industriais Tese de Doutorado Tese apresentada como requisito parcial para obtenção do título de Doutor
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL
PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL Dr Sivaldo Leite Correia CONCEITOS E DEFINIÇÕES FUNDAMENTAIS Muitos experimentos são realizados visando
Planejamento e Otimização de Experimentos Ajuste de Modelos de Regressão e Outros Planejamentos
Planejamento e Otimização de Experimentos Ajuste de Modelos de Regressão e Outros Planejamentos Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Ajuste de modelos
CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011
CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Modelos Probabilísticos para a Computação Professora: Andréa Rocha UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO Introdução Quando consideramos
Configuração. Modo de Cálculo do Programa
Configuração Modo de Cálculo do Programa Define como as reduções dos cálculos de poligonal e irradiações serão efetuadas, de acordo com as opções: Topográfico: Indica que o cálculo será feito sobre um
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.
MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli
MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos
Súmario APRESENTAÇÃO DA COLEÇÃO...13
Súmario APRESENTAÇÃO DA COLEÇÃO...13 CAPÍTULO I LÓGICA PROPOSICIONAL...15 1. Lógica Proposicional...15 2. Proposição...15 2.1. Negação da Proposição...18 2.2. Dupla Negação...19 2.3. Proposição Simples
DOSAGEM DE CONCRETO EQUAÇÕES DAS LEI FUNDAMENTAIS DOS CONCRETOS. Professora: Mayara Custódio
DOSAGEM DE CONCRETO EQUAÇÕES DAS LEI FUNDAMENTAIS DOS CONCRETOS Professora: Mayara Custódio REGRESSÃO AOS MÍNIMOS QUADRADOS Dado um conjunto de pontos conhecidos de coordenadas (x,y) que descrevem uma
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE V DELINEAMENTO EM BLOCOS CASUALIZADOS (DBC) Profª Railene Hérica Carlos Rocha 1. Introdução
Transformação de dados como alternativa a análise variância. univariada
Transformação de dados como alternativa a análise variância 1 Introdução univariada 1 Katia Alves Campos 1 Crysttian Arantes Paixão 2 Augusto Ramalho Morais 3 Normalmente nos experimentos, realizados em
Experimentos Fatoriais
Experimentos Fatoriais Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 14 de março de 2019 Londrina Nos experimentos mais simples comparamos níveis (tratamentos) de apenas um fator; Nos experimentos
CIRCULAR TÉCNICA N o 176 JANEIRO UM ENSAIO FATORIAL DE ESPÉCIES E ADUBAÇÕES DE Eucalyptus
ISSN -45 CIRCULAR TÉCNICA N o 76 JANEIRO 99 UM ENSAIO FATORIAL DE ESPÉCIES E ADUBAÇÕES DE Eucalyptus Introdução Frederico Pimentel Gomes * Carlos Henrique Garcia ** Os ensaios fatoriais apresentam, em
REGRESSÃO LINEAR SIMPLES E MÚLTIPLA
REGRESSÃO LINEAR SIMPLES E MÚLTIPLA Curso: Agronomia Matéria: Metodologia e Estatística Experimental Docente: José Cláudio Faria Discente: Michelle Alcântara e João Nascimento UNIVERSIDADE ESTADUAL DE
DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM
Morgana Pizzolato, Dr a. Aula 20 Introdução à otimização experimental e experimentos de um fator DPS1037 SISTEMAS DA QUALIDADE II ENGENHARIA DE PRODUÇÃO CT/UFSM TÓPICOS DESTA AULA Projetos de Experimentos
Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei
Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico
Efeito Matriz Comparando-se Inclinação das Curvas
Título do Eixo Avaliação da Seletividade do Método Abs_Concentração Abs_Concentração Matriz Água Concentração Calculada Concentração Teórica Concentração Recuperado Concentração Teórica Concentração Recuperado
Formulação de rações Programação Linear X Estocástica
Universidade Federal do Paraná Programa de Pós-Graduação em Ciências Veterinárias AZ 753 Tópicos em Produção Animal Formulação de rações Programação Linear X Estocástica Prof. Vladimir de Oliveira DZDR/CCA
UTILIZAÇÃO DE PROGRAMAÇÃO LINEAR EM UMA MICROEMPRESA DE USINAGEM
UTILIZAÇÃO DE PROGRAMAÇÃO LINEAR EM UMA MICROEMPRESA DE USINAGEM Tiago Bruno Ribeiro 1, Paulo André de Oliveira 2 1 FATEC,Botucatu,São Paulo, Brasil. E-mail [email protected] 2 FATEC,Botucatu,São
Seleção de Variáveis e Construindo o Modelo
Seleção de Variáveis e Construindo o Modelo Seleção de modelos candidatos A idéia é selecionar um conjunto menor de variáveis explanatórias de acordo com algum(s) critério(s), e assim selecionar o modelo
4.1 Introdução. 4. Metodologia de superfícies de resposta. 4.2 Modelagem inicial (Exemplo) 17/08/2016
4. Metodologia de superfícies de resposta 4.1 Introdução 4.2 Modelagem inicial 4.3 Caminho de máxima inclinação 4.4 Exemplos 4.1 Introdução Segundo Barros Neto, Scarminio e Bruns (2010, cap. 6), a metodologia
AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012
1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à
ADENSAMENTO DE SEMEADURA EM TRIGO NO SUL DO BRASIL
ADENSAMENTO DE SEMEADURA EM TRIGO NO SUL DO BRASIL - 2011 Pedro Luiz Scheeren 1, Antônio Faganello 1, João Leonardo Fernandes Pires 1, Vanderlei da Rosa Caetano 2, Ricardo Lima de Castro 1, Eduardo Caierão
Nutrição e Formulação de Rações para Bovinos de Corte com Microcomputador
Gado de Corte Nutrição e Formulação de Rações para Bovinos de Corte com Microcomputador Aprenda os princípios e também os programas NutriMax e BeefMax Antonio Ferriani Branco C A P Í T U L O 5 Princípios
PREDIÇÃO DO TEMPO DE VIDA DE BATERIAS DE LITHIUM-ION POLYMER UTILIZANDO INTERPOLAÇÃO POLINOMIAL 1
PREDIÇÃO DO TEMPO DE VIDA DE BATERIAS DE LITHIUM-ION POLYMER UTILIZANDO INTERPOLAÇÃO POLINOMIAL 1 Rita Salete Kusiak 2, Douglas Joziel Bitencourt Freitas 3, Airam Tereza Zago Romcy Sausen 4, Paulo Sérgio
não podem ser aplicados em experimentos que envolvem
1 - INTRODUÇÃO A adição de produtos químicos aos alimentos, para a sua conservação, não é um processo novo. O homem préhistórico, com a descoberta do fogo, criou o processo de defumação. Depois, aprendeu
Aula 14 Quadrado Latino 13/06/17
Aula 14 Quadrado Latino 13/06/17 Considere um experimento em quadrado latino com linhas e colunas e tratamentos, assim: Obtenção da Análise de Variância Soma de Quadrados: Constante: K = 1 ( x ( ) i,j,k=1
Seção 2.6 Duas Variáveis Quantitativas: Regressão Linear
Seção 2.6 Duas Variáveis Quantitativas: Regressão Linear A Reta de Regressão Predições Resíduos Sumário Interpretando a Inclinação e o Intercepto Cuidados com a Regressão Grilos e Temperatura Você pode
Cap. 13 Correlação e Regressão
Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 13 Correlação e Regressão Correlação X e Y variáveis quantitativas X Y Correlação
ESTUDO DA INFLUÊNCIA DE EMULSIFICANTES SOBRE OS PARÂMETROS DE TEXTURA DA MASSA CONGELADA DE PÃO FRANCÊS ATRAVÉS DE UM PROJETO DE MISTURA
ESTUDO DA INFLUÊNCIA DE EMULSIFICANTES SOBRE OS PARÂMETROS DE TEXTURA DA MASSA CONGELADA DE PÃO FRANCÊS ATRAVÉS DE UM PROJETO DE MISTURA MATUDA, T. G.*; ROMEU, C. C.; TAVARES, D. T.; TADINI, C. C. Universidade
5 Parte experimental Validação analítica
58 5 Parte experimental Validação analítica A validação analítica busca, por meio de evidências objetivas, demonstrar que um método produz resultados confiáveis e adequados ao uso pretendido 40. Para isso,
MODELAGEM DA INCORPORAÇÃO DE RESÍDUOS DA FABRICAÇÃO DE PÁS EÓLICAS PARA AEROGERADORES EM CIMENTO PORTLAND (CP II)
MODELAGEM DA INCORPORAÇÃO DE RESÍDUOS DA FABRICAÇÃO DE PÁS EÓLICAS PARA AEROGERADORES EM CIMENTO PORTLAND (CP II) MODELING OF THE MERGER OF WASTE FROM THE MANUFACTURE OF TURBINE WIND BLADES IN PORTLAND
Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos
-PPGEAB Dados que podem ser necessários na resolução de algumas questões: I. Dados da Tabela t de Student com ν graus de liberdade. P (t > t α ) = α ν 0,05 0,025 4 2,132 2,776 5 2,015 2,571 6 1,943 2,447
Planejamento de Experimentos
Planejamento de Experimentos 1 6.4 Os Modelos fatoriais 2 k : o caso geral. O modelo estatístico para um plano 2 k inclui k ( k 2 ( k ) ) efeitos principais efeitos de interação de ordem 2 efeitos de interação
Regressões: Simples e MúltiplaM. Prof. Dr. Luiz Paulo Fávero 1
Regressões: Simples e MúltiplaM Prof. Dr. Luiz Paulo FáveroF Prof. Dr. Luiz Paulo Fávero 1 1 Técnicas de Dependência Análise de Objetivos 1. Investigação de dependências entre variáveis. 2. Avaliação da
Observamos no gráfico acima que não passa uma reta por todos os pontos. Com base nisso, podemos fazer as seguintes perguntas:
Título : B1 AJUSTE DE CURVAS Conteúdo : Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente
étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
Experimentos em Parcelas Subdivididas
Experimentos em Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 08 de novembro de 2018 Londrina Tal como no caso de fatorial, o termo parcelas subdivididas não se refere a um tipo de delineamento
APLICAÇÃO DE PROJETO DE EXPERIMENTOS PARA A OTIMIZAÇÃO DE UM PROCESSO DE USINAGEM EM TORNO CNC
XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Maturidade e desafios da Engenharia de Produção: competitividade das empresas, condições de trabalho, meio ambiente. São Carlos, SP, Brasil, 1 a15 de outubro
APROXIMAÇÃO DE FUNÇÕES MÉTODO DOS MÍNIMOS QUADRADOS
MÉTODO DOS MÍNIMOS QUADRADOS INTRODUÇÃO Frequentemente é possível estabelecer uma relação linear entre duas grandezas medidas experimentalmente. O método dos mínimos quadrados é uma maneira de se obter
ÍNDICE Janelas Menus Barras de ferramentas Barra de estado Caixas de diálogo
XXXXXXXX ÍNDICE INTRODUÇÃO 15 1. VISÃO GERAL DO SPSS PARA WINDOWS 17 1.1. Janelas 17 1.2. Menus 20 1.3. Barras de ferramentas 21 1.4. Barra de estado 21 1.5. Caixas de diálogo 22 2. OPERAÇÕES BÁSICAS 23
PROGRAMA DE DISCIPLINA
PROGRAMA DE DISCIPLINA Disciplina: Experimentação Agrícola Código da Disciplina: AGR 283 Curso: Agronomia Semestre de oferta da disciplina: 4 P Faculdade responsável: Agronomia Programa em vigência a partir
Planejamento de Experimentos
Planejamento de Experimentos 6. Os Modelos fatoriais 2 k Trataremos agora de um caso especial de experimentos fatoriais no qual todos os fatores têm apenas dois níveis. Tais níveis podem ser quantitativos
CORRELAÇÃO E REGRESSÃO
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE TRANSPORTES MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA CORRELAÇÃO E REGRESSÃO Professora: Cira Souza Pitombo Disciplina: ENG C 18 Métodos
TÍTULO: FERMENTAÇÃO DE EXTRATO HIDROSSOLÚVEL DE SOJA VERDE POR BACTÉRIAS PROBIÓTICAS
TÍTULO: FERMENTAÇÃO DE EXTRATO HIDROSSOLÚVEL DE SOJA VERDE POR BACTÉRIAS PROBIÓTICAS CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: CENTRO UNIVERSITÁRIO DO INSTITUTO
Esquema Fatorial. Esquema Fatorial. Lucas Santana da Cunha 06 de outubro de 2018 Londrina
Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 06 de outubro de 2018 Londrina Nos experimentos mais simples comparamos níveis (tratamentos) de apenas um fator; Nos experimentos mais simples comparamos
Modelos de Regressão Linear Simples parte I
Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos
Planejamento e Otimização de Experimentos
Planejamento e Otimização de Experimentos Planejamentos Fatoriais Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Planejamento Fatorial Fatores ou Variáveis Temperatura
Estudar a relação entre duas variáveis quantitativas.
Estudar a relação entre duas variáveis quantitativas. Exemplos: Idade e altura das crianças Tempo de prática de esportes e ritmo cardíaco Tempo de estudo e nota na prova Taxa de desemprego e taxa de criminalidade
INFLUÊNCIA DA TEMPERATURA NO COMPORTAMENTO REOLÓGICO DE UM BLEND DE MARACUJÁ E GOIABA
INFLUÊNCIA DA TEMPERATURA NO COMPORTAMENTO REOLÓGICO DE UM BLEND DE MARACUJÁ E GOIABA Ruth Brito de Figueiredo Melo 1 ; Renata Duarte Almeida 2 ; Rafaela Duarte Almeida Araújo 3 ; Anástacia Maria Mikaella
REGRESSÃO E CORRELAÇÃO
REGRESSÃO E CORRELAÇÃO A interpretação moderna da regressão A análise de regressão diz respeito ao estudo da dependência de uma variável, a variável dependente, em relação a uma ou mais variáveis explanatórias,
INCERTEZAS DE CURVAS DE CALIBRAÇÃO AJUSTADAS SEGUNDO OS MODELOS LINEAR E QUADRÁTICO
ENQUALAB 8 - Congresso da Qualidade em Metrologia Rede Metrológica do Estado de São Paulo - REMESP 9 a de junho de 8, São Paulo, Brasil INCERTEZAS DE CURVAS DE CALIBRAÇÃO AJUSTADAS SEGUNDO OS MODELOS LINEAR
