REGRESSÃO LINEAR SIMPLES E MÚLTIPLA
|
|
|
- Lucas Ferrão Alvarenga
- 8 Há anos
- Visualizações:
Transcrição
1 REGRESSÃO LINEAR SIMPLES E MÚLTIPLA Curso: Agronomia Matéria: Metodologia e Estatística Experimental Docente: José Cláudio Faria Discente: Michelle Alcântara e João Nascimento UNIVERSIDADE ESTADUAL DE SANTA CRUZ DEPARTAMENTO DE CIÊNCIAS AGRÁRIAS E AMBIENTAIS
2 REGRESSÃO É a relação entre duas ou mais variáveis quantitativas: uma variável dependente, cujo valor deverá ser previsto e uma variável (ou variáveis) independente(s) ou explicativa(s), sobre a(s) qual(is) existe conhecimento teórico disponível. Estimar uma equação é geometricamente equivalente a ajustar uma curva aos dados dispersos = REGRESSÃO.
3 CORRELAÇÃO Quando duas variáveis (X e Y) estão ligadas por uma relação estatística, dizemos que existe correlação entre elas. Essa técnica é empregada, especificamente, para se avaliar o grau de covariação entre duas variáveis aleatórias. DIAGRAMA DE DISPERSÃO Linear Positiva (reta ascendente) Linear Negativa (reta descendente) Não linear (curva) Não há correlação
4 Coeficiente de correlação de Pearson É um valor que informa a intensidade e a forma da correlação linear entre duas variáveis. A partir da análise do resultado podemos determinar se é adequado ou não a utilização do modelo linear para modelagem do fenômeno. MODELO MATEMÁTICO: Onde n é o número de termos
5 Os valores limites de r são -1 e +1: Se correlação é perfeita positiva r=+1 Se correlação é perfeita negativa r=-1. Isto é, se uma aumenta, a outra diminui linearmente. Se não há correlação então r=0. Significa que as duas variáveis não estão linearmente associadas. Temos também: Se 0,6 lrl 1 boa correlação; Se 0,3 lrl 0,6 correlação fraca; Se lrl< 0,3 praticamente não existe correlação.
6 REGRESSÃO LINEAR A análise de regressão linear tem como resultado uma regressão matemática que descreve o relacionamento entre duas variáveis. Utiliza-se a Regressão Linear para estimar o valor de uma variável com base em valores conhecidos de outro. Pressupõe-se alguma relação de causa e efeito, de explanação do comportamento entre as variáveis. Ex. a idade e o peso de cada bezerro; a alíquota de imposto e a arrecadação; preço e quantidade.
7 Regressão Linear Simples: Relação casual entre duas variáveis, e pode ser descrita por uma reta; Uma variável chamada dependente, e uma outra chamada independente. Também tem por objetivo determinar a equação da reta ajustada(modelo matemático linear). Regressão Linear múltipla: Relação casual com mais de duas variáveis. Isto é, quando o comportamento de Y é explicado por mais de uma variável independente X1, X2,...Xn. É a técnica adequada para se utilizar quando se quer investigar simultaneamente os efeitos, sobre Y, de 2 ou mais variáveis preditoras.
8 AJUSTAMENTO DE RETA Figura1. Relação observada entre a safra e a aplicação de nitrogênio. Figura 2. Dados e reta ajustada a olho aos dados apresentados.
9 Critérios para o ajustamento da reta O que é um bom ajustamento? Um ajustamento que causa pequeno erro total. O erro ou a falta de ajustamento é definido como a distância vertical entre o valor observado gg e o valor ajustado na reta, isto é, Figura 3. Erro típico no ajustamento de uma reta.
10 Método dos Mínimos Quadrados O método mais utilizado para ajustar uma reta aos pontos dispersos é o que minimiza a soma de quadrados dos erros: O quadrado elimina o problema do sinal, pois torna positivos todos os erros; A álgebra dos mínimos quadrados é de manejo relativamente fácil; O método dos mínimos quadrados permite encontrar as estimativas de α e β; Minimizando a soma do quadrado de erros, encontraremos α e β, que trarão a menor diferença entre a previsão de e e o...
11 REGRESSÃO = Criar um modelo de equação de reta para fazer previsões/estimativas de valores futuros através dos pontos. Equação de Reta = Equação de 1ºGrau OBJETIVO = Ajustar uma reta Onde: X- variável explicativa ou independente; Y- variável explicada ou dependente (aleatória); - coeficiente linear ou constante da regressão, representa o interceptor da reta com o eixo do Y; β- coeficiente de regressão ou coeficiente angular da reta. Representa a variação de Y em função da unitária variável x; α e β são parâmetros.
12 Ajustando uma reta : 3 estágios a. b. Figura 4. Translação de eixos. (a) Regressão utilizando os valores originais. (b) Regressão após transladar Y.
13 Figura 5. Calculo para encontrar os valores negativos.
14 1º Estágio Exprimir X em termos de desvios a contar de sua média, isto é, definir uma nova variável x (minúsculo), tal que: Isto equivale a uma relação geométrica de eixos: Observa-se que o eixo Y foi deslocado para a direita, de 0 a O novo valor x torna-se positivo, ou negativo, conforme X esteja a direita ou a esquerda de. Não há modificação nos valores de Y. O intercepto difere do intercepto original,,mas o coeficiente angular,,permanece o mesmo.
15 Medir X como desvio a contar de simplifica os cálculos porque a soma dos novos valores x é igual a zero, isto é: 2º Estágio Devemos ajustar a reta aos dados, escolhendo valores para e, que satisfaçam o critério dos mínimos quadrados. Ou seja, escolher valores de e que minimizem:
16 Cada valor ajustado de estará sobre a reta estimada: Assim, estamos diante da seguinte situação: devemos encontrar os valores e de modo a minimizar a soma de quadrados dos erros. Considerando a equação 1 e 2, isto pode ser expresso algebricamente como: Usamos a notação para enfatizar que esta expressão depende de e. Ao variarem e (quando se tem várias retas), variará também.
17 Pergunta-se então, para que valores de e haverá um mínimo de erros? A resposta a esta pergunta nos fornecerá a reta ótima (de mínimos quadrados dos erros). A técnica de minimização mais simples é fornecida pelo cálculo. A minimização de exige o anulamento simultâneo de suas derivadas parciais. Igualando a zero a derivada parcial em relação a :
18 Dividindo ambos os termos por (-2) e reagrupando: Verifica-se que isto assegura que a reta de regressão ajustada deve passar pelo ponto (x, ), que pode ser interpretado como o centro de gravidade da amostra de n pontos.
19 É preciso também anular a derivada parcial em relação a : Dividindo ambos os termos por (-2):
20 Reagrupando:
21 Podemos sintetizar da seguinte forma : Com os valores x medidos como desvios a contar de sua média, os valores aˆ e bˆ de mínimos quadrados dos erros são:
22 Dados do exemplo
23 Figura 6. Equação da reta translocada.
24 Estágio 3 - A regressão pode agora ser transformada para o sistema original de referência: O coeficiente angular da reta de regressão ajustada ( bˆ = 95X) permanece inalterado. A única diferença é o intercepto, aˆ, onde a reta tangencia o eixo Y. O intercepto original foi facilmente reobtido.
25 Figura7. Gráfico dos pontos dispersos com a reta ajustada.
26 Análise de Variância da Regressão
27
28 Para exemplo: Conclusão: rejeita-se H0 ao nível de 5% de probabilidade pelo teste F.
29 ANÁLISE DE RESÍDUOS É importante, após a análise de regressão, testar se os pressupostos do modelo linear se aplicam aos dados estudados; Resíduos representam a diferença entre o valor observado de y e o que foi predito pelo modelo de regressão; A primeira forma de se avaliar resíduos é plotar um gráfico no qual os resíduos (y- ) são colocados no eixo vertical (y) e os valores esperados de y (β y) no eixo horizontal (x).
30 Exemplo de Análise completa: Os dados abaixo são provenientes de um ensaio experimental em que foram utilizadas sete doses de nitrogênio aplicado em cobertura sobre a produtividade de milho. O Experimento foi montado no delineamento inteiramente casualizado, DIC, com cinco repetições. Os dados são fornecidos abaixo:
31 Conclusão: rejeita-se Ho ao nível de significância de 5% pelo teste F.
32 A visualização dos dados experimentais em um gráfico de dispersão auxilia na escolha do modelo a ser ajustado.
33 Ajustando uma Reta Valores necessários para o ajustamento do modelo linear. Recomenda-se trabalhar com o máximo possíveis de casas decimais.
34 Equação da reta ajustada:
35 Análise de Variância da Regressão: ANOVAR Para se decidir quão bem o modelo ajustado é adequado à natureza dos dados experimentais, pode-se lançar mão da análise de variância da regressão (ANOVAR). Para o caso em estudo, a ANOVAR irá particionar a variação total (SQDtot) da variável dependente - ou fator resposta - em função das variações nos níveis da variável independente - ou regressor, em duas partes: Uma parte associada ao modelo ajustado (SQDDreg) Uma outra parte associada à falta de ajuste (SQDDerr)
36
37
38
39 Cálculos alternativos da soma de quadrados dos desvios
40 Ilustração da ANOVAR apenas para efeito de comparação com a ANOVA:
41 Coeficiente de determinação da Regressão: Observa-se que a soma de quadrados, e os respectivos graus de liberdade, associados a tratamentos foram desdobrados em duas partes: Uma parte associada ao modelo de regressão utilizado (Yˆ = 142, N ). Uma parte associada à falta de ajuste ou erro de ajustamento: Para a obtenção da soma de quadrados do devido à regressão e ao independente da regressão tem-se duas opções: Realizar todos os cálculos das somas de quadrados dos desvios considerando agora todas as repetições, o que embora possa ser feito, é um processo mais trabalhoso. Utilizar o teorema do limite central (que facilita bastante os cálculos):
42 Teorema do limite central: Conclusão: rejeita-se H0 ao nível de significância de 5% pelo teste F.
43
44 REGRESSÃO LINEAR MÚLTIPLA A análise de uma regressão múltipla segue, basicamente, os mesmos critérios da análise de uma regressão simples. A regressão múltipla envolve três ou mais variáveis, portanto, estimadores. Ou seja, ainda uma única variável dependente, porém duas ou mais variáveis independentes. A finalidade das variáveis independentes adicionais é melhorar a capacidade de predição em confronto com a regressão linear simples.
45 USOS DA REGRESSÃO MÚLTIPLA Ajustar dados estudando o efeito de uma variável X, levando em conta outras variáveis independentes. Obter uma equação para predizer valores de Y a partir dos valores de várias variáveis X1, X2,...,Xk. Explorar as relações entre múltiplas variáveis (X1, X2,...,Xk )para determinar que variáveis influenciam Y.
46 MODELO MATEMÁTICO Yc = a + b 1 x 1 + b 2 x b k x k Onde: Yc = variável dependente; a = intercepto do eixo y; b = coeficiente angular da i-ésima variável; k = número de variáveis independentes.
47 Enquanto uma regressão simples de duas variáveis resulta na equação de uma reta, um problema de três variáveis implica num plano, e um problema de k variáveis implica em um hiperplano; Também na regressão múltipla, as estimativas dos mínimos quadrados são obtidas pela escolha dos estimadores que minimizam a soma dos quadrados dos desvios entre os valores observados Yi e os valores ajustados Yc.
48 SOLUÇÃO DOS MÍNIMOS QUADRADOS A solução dos mínimos quadrados é a que minimiza a soma dos quadrados dos desvios entre os valores observados e a superfície de regressão ajustada. n i ki k i i i X X X Y Y Y n I i i 1 2 ^ 2 ^ 2 ^ 1 1 ^ 0 ) ( )... ( ( 1 2 ^
49 COEFICIENTE DE DETERMINAÇÃO O coeficiente de determinação múltipla é uma medida de quão bem a equação e regressão múltipla se ajusta aos dados amostrais: o Ajuste perfeito: r²= 1. o Ajuste bom: r²= prox. de 1. o Ajuste pobre: r²= prox. 0. Defeito: Na medida em que mais variáveis são incluídas, r² cresce ( pela simples inclusão de todas as variáveis disponíveis); Por causa dessa falha, a comparação de diferentes equações é feita mais adequadamente com o ajuste do coeficiente de determinação para o número de variáveis e o tamanho amostral.
50 REGRESSÃO NÃO LINEAR Os dados são modelados por uma função que é uma combinação não-linear de parâmetros do modelo e depende de uma ou mais variáveis independentes. Pode a partir de suposições importantes sobre o problema trabalhar no sentido de obter uma relação teórica entre as variáveis observáveis de interesse. Diferentemente do caso linear, é que os parâmetros entram na equação de forma não linear, assim, nós não podemos simplesmente aplicar fórmulas para estimar os parâmetros do modelo.
51 Exemplo:
52 REFERÊNCIAS BIBLIOGRÁFICAS FARIA, J.C. Notas de aulas expandidas. Ilhéus, UESC, Wonnacott, Thomas H. Estatistica aplicada a economia e a administracao / Thomas H Wonnacott e Ronald J. Wonnacott, 1981
53
9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla
9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual
CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011
CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Modelos Probabilísticos para a Computação Professora: Andréa Rocha UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO Introdução Quando consideramos
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
Princípios em Planejamento e Análise de Dados Ecológicos. Regressão linear. Camila de Toledo Castanho
Princípios em Planejamento e Análise de Dados Ecológicos Regressão linear Camila de Toledo Castanho 217 Conteúdo da aula 1. Regressão linear simples: quando usar 2. A reta de regressão linear 3. Teste
Correlação e Regressão
Correlação e Regressão Exemplos: Correlação linear Estudar a relação entre duas variáveis quantitativas Ou seja, a força da relação entre elas, ou grau de associação linear. Idade e altura das crianças
Regressão linear simples
Regressão linear simples Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução Foi visto na aula anterior que o coeficiente de correlação de Pearson é utilizado para mensurar o grau de associação
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei
Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico
Modelos de Regressão Linear Simples parte I
Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos
Estatística CORRELAÇÃO E REGRESSÃO LINEAR. Prof. Walter Sousa
Estatística CORRELAÇÃO E REGRESSÃO LINEAR Prof. Walter Sousa CORRELAÇÃO LINEAR A CORRELAÇÃO mede a força, a intensidade ou grau de relacionamento entre duas ou mais variáveis. Exemplo: Os dados a seguir
Correlação e Regressão Linear
Correlação e Regressão Linear Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais CORRELAÇÃO LINEAR Coeficiente de correlação linear r Mede o grau de relacionamento linear entre valores
Análise de regressão linear simples. Diagrama de dispersão
Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica. Regressão. David Menotti.
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Regressão David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Regressão Linear ( e Múltipla ) Não-Linear ( Exponencial / Logística
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo
REGRESSÃO LINEAR Parte I. Flávia F. Feitosa
REGRESSÃO LINEAR Parte I Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015 Onde Estamos Para onde vamos Inferência Esta5s6ca se resumindo a uma equação
AULAS 21 E 22 Análise de Regressão Múltipla: Estimação
1 AULAS 21 E 22 Análise de Regressão Múltipla: Estimação Ernesto F. L. Amaral 28 de outubro e 04 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Cohen, Ernesto, e Rolando Franco. 2000. Avaliação
Introdução ao modelo de Regressão Linear
Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores (junto ao administrativo)
Modelos de Regressão Linear Simples - parte I
Modelos de Regressão Linear Simples - parte I Erica Castilho Rodrigues 19 de Agosto de 2014 Introdução 3 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.
Análise de Regressão
Análise de Regressão Tópicos em Avaliação de Desempenho de Sistemas Aline Oliveira Camila Araujo Iure Fé Janailda [email protected] [email protected] [email protected] [email protected] Agenda Parte I: Contextualização
AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012
1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à
AULA 8 - MQO em regressão múltipla:
AULA 8 - MQO em regressão múltipla: Definição, Estimação e Propriedades Algébricas Susan Schommer Econometria I - IE/UFRJ Regressão Múltipla: Definição e Derivação A partir de agora vamos alterar o nosso
Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento
Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada
Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável
Correlação Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável Exemplos Perímetro de um quadrado e o tamanho
Análise da Regressão. Prof. Dr. Alberto Franke (48)
Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas
Introdução. São duas técnicas estreitamente relacionadas, que visa estimar uma relação que possa existir entre duas variáveis na população.
UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução São duas técnicas estreitamente relacionadas, que visa estimar uma relação
Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada
Aula 2 Regressão Linear Simples Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada Conceitos Gerais A análise de regressão é utilizada para explicar ou modelar a relação entre
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO 1 1. CORRELAÇÃO 1.1. INTRODUÇÃO 1.. PADRÕES DE ASSOCIAÇÃO 1.3. INDICADORES DE ASSOCIAÇÃO 1.4. O COEFICIENTE DE CORRELAÇÃO 1.5. HIPÓTESES BÁSICAS 1.6. DEFINIÇÃO 1.7. TESTE DE HIPÓTESE.
Aula 2 Regressão e Correlação Linear
1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as
Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre.
UFFS Universidade Federal da Fronteira Sul Campus Cerro Largo PROJETO DE EXTENSÃO Software R: capacitação em análise estatística de dados utilizando um software livre Fonte: https://www.r-project.org/
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser
AULA 07 Regressão. Ernesto F. L. Amaral. 05 de outubro de 2013
1 AULA 07 Regressão Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas
Estudar a relação entre duas variáveis quantitativas.
Estudar a relação entre duas variáveis quantitativas. Exemplos: Idade e altura das crianças Tempo de prática de esportes e ritmo cardíaco Tempo de estudo e nota na prova Taxa de desemprego e taxa de criminalidade
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
Aula 2 Uma breve revisão sobre modelos lineares
Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar
ANÁLISE DE REGRESSÃO
ANÁLISE DE REGRESSÃO Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de janeiro de 2017 Introdução A análise de regressão consiste na obtenção de uma equação
CORRELAÇÃO E REGRESSÃO
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE TRANSPORTES MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA CORRELAÇÃO E REGRESSÃO Professora: Cira Souza Pitombo Disciplina: ENG C 18 Métodos
AULA 06 Correlação. Ernesto F. L. Amaral. 04 de outubro de 2013
1 AULA 06 Correlação Ernesto F. L. Amaral 04 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de
Prof. Dr. Marcone Augusto Leal de Oliveira UFJF CURSO INTRODUTÓRIO DE 12 HORAS OFERECIDO PARA A PÓS-GRADUAÇÃO DA UFABC EM NOVEMBRO DE 2017
Prof. Dr. Marcone Augusto Leal de Oliveira UFJF CURSO INTRODUTÓRIO DE 2 HORAS OFERECIDO PARA A PÓS-GRADUAÇÃO DA UFABC EM NOVEMBRO DE 207 SUMÁRIO - BREVE DESCRIÇÃO, FUNDAMENTOS, CONCEITOS, CARACTERÍSTICAS,
Esse material foi extraído de Barbetta (2007 cap 13)
Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos
AULAS 17 E 18 Análise de regressão múltipla: estimação
1 AULAS 17 E 18 Análise de regressão múltipla: estimação Ernesto F. L. Amaral 22 e 24 de outubro de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Cohen, Ernesto, e Rolando Franco. 2000. Avaliação
Seleção de Variáveis e Construindo o Modelo
Seleção de Variáveis e Construindo o Modelo Seleção de modelos candidatos A idéia é selecionar um conjunto menor de variáveis explanatórias de acordo com algum(s) critério(s), e assim selecionar o modelo
REGRESSÃO E CORRELAÇÃO
REGRESSÃO E CORRELAÇÃO A interpretação moderna da regressão A análise de regressão diz respeito ao estudo da dependência de uma variável, a variável dependente, em relação a uma ou mais variáveis explanatórias,
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Delineamento e Análise Experimental Aula 4
Aula 4 Castro Soares de Oliveira ANOVA Significativa Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais.
aula ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES
ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES 18 aula META Fazer com que o aluno seja capaz de realizar os procedimentos existentes para a avaliação da qualidade dos ajustes aos modelos. OBJETIVOS Ao final
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
Regressão Linear Simples
Regressão Linear Simples Capítulo 16, Estatística Básica (Bussab&Morettin, 8a Edição) 10a AULA 18/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 10a aula (18/05/2015) MAE229 1 / 38 Introdução
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.
Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
Cap. 13 Correlação e Regressão
Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 2006 Cap. 13 Correlação e Regressão Correlação X e Y variáveis quantitativas X Y Correlação
Modelos de Regressão Linear Simples - parte II
Modelos de Regressão Linear Simples - parte II Erica Castilho Rodrigues 14 de Outubro de 2013 Erros Comuns que Envolvem a Análise de Correlação 3 Erros Comuns que Envolvem a Análise de Correlação Propriedade
étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
Análise de Regressão EST036
Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Regressão sem intercepto; Formas alternativas do modelo de regressão Regressão sem
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
PROVAS Ciência da Computação. 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta)
PROVAS Ciência da Computação 2 a Prova: 13/02/2014 (Quinta) Reavaliação: 20/02/2014 (Quinta) Ajuste de Curvas Objetivo Ajustar curvas pelo método dos mínimos quadrados 1 - INTRODUÇÃO Em geral, experimentos
Ralph S. Silva
ANÁLISE ESTATÍSTICA MULTIVARIADA Ralph S Silva http://wwwimufrjbr/ralph/multivariadahtml Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Revisão:
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
NOÇÕES SOBRE EXPERIMENTOS FATORIAIS
3 NOÇÕES SOBRE EXPERIMENTOS FATORIAIS Planejamento de Experimentos Design of Experiments - DOE Em primeiro lugar devemos definir o que é um experimento: Um experimento é um procedimento no qual alterações
Regressões: Simples e MúltiplaM. Prof. Dr. Luiz Paulo Fávero 1
Regressões: Simples e MúltiplaM Prof. Dr. Luiz Paulo FáveroF Prof. Dr. Luiz Paulo Fávero 1 1 Técnicas de Dependência Análise de Objetivos 1. Investigação de dependências entre variáveis. 2. Avaliação da
Estatística. Correlação e Regressão
Estatística Correlação e Regressão Noções sobre correlação Existem relações entre variáveis. Responder às questões: Existe relação entre as variáveis X e Y? Que tipo de relação existe entre elas? Qual
AULA 03 Análise de regressão múltipla: estimação
1 AULA 03 Análise de regressão múltipla: estimação Ernesto F. L. Amaral 17 de julho de 2013 Análise de Regressão Linear (MQ 2013) www.ernestoamaral.com/mq13reg.html Fonte: Cohen, Ernesto, e Rolando Franco.
Lucas Santana da Cunha de julho de 2018 Londrina
Análise de Correlação e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 26 de julho de 2018 Londrina 1 / 17 Há casos em que pode existir um relacionamento entre duas variáveis:
Seção 2.6 Duas Variáveis Quantitativas: Regressão Linear
Seção 2.6 Duas Variáveis Quantitativas: Regressão Linear A Reta de Regressão Predições Resíduos Sumário Interpretando a Inclinação e o Intercepto Cuidados com a Regressão Grilos e Temperatura Você pode
Exemplo 1. Conjunto de dados de uma amostra de 12 meninas da escola: y i x i
Exemplo 1 Y : peso (kg) de meninas de 7 a 11 anos de uma certa escola de dança X : altura (m) das meninas A partir de 3 valores prefixados de X, foram obtidas, para cada valor de X, 4 observações independentes
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva Medidas de grandezas físicas Valor numérico e sua incerteza, unidades apropriadas Exemplos: - Velocidade (10,02 0,04) m/s - Tempo (2,003 0,001) µs - Temperatura (273,3
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO Regressão simples: desvantagem de apenas uma variável independente explicando y mantendo ceteris paribus as demais (ou
AJUSTE DE CURVAS PELO MÉTODO DOS QUADRADOS MÍNIMOS
AJUSTE DE CURVAS PELO MÉTODO DOS QUADRADOS MÍNIMOS Bruna Larissa Cecco 1 Angelo Fernando Fiori 2 Grazielli Vassoler 3 Resumo: Em muitos ramos da ciência, dados experimentais são utilizados para deduzir
PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.
PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1
DELINEAMENTO INTEIRAMENTE CASUALIZADO. Profª. Sheila Regina Oro
DELINEAMENTO INTEIRAMENTE CASUALIZADO Profª. Sheila Regina Oro Delineamento experimental Para planejar um experimento é preciso definir os tratamentos em comparação e a maneira de designar os tratamentos
1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27
Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4
REGRESSÃO E CORRELAÇÃO
Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem
Métodos Quantitativos para Avaliação de Políticas Públicas
ACH3657 Métodos Quantitativos para Avaliação de Políticas Públicas Aula 11 Análise de Resíduos Alexandre Ribeiro Leichsenring [email protected] Alexandre Leichsenring ACH3657 Aula 11 1 / 26
Análise de Regressão. Luiz Carlos Terra
Luiz Carlos Terra Em mercadologia é importante conhecer as ferramentas existentes para estimação dos valores de vendas, de preços de produtos ou de custos de produção. A análise de regressão representa
MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli
MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos
Tratamento Estatístico de Dados em Física Experimental
Tratamento Estatístico de Dados em Física Experimental Prof. Zwinglio Guimarães o semestre de 06 Tópico 7 - Ajuste de parâmetros de funções (Máxima Verossimilhança e Mínimos Quadrados) Método da máxima
ECONOMETRIA. Prof. Danilo Monte-Mor
ECONOMETRIA Prof. Danilo Monte-Mor Econometria (Levine 2008, Cap. 13) ECONOMETRIA Aplicação da estatística matemática aos dados econômicos para dar suporte empírico aos modelos construídos pela economia
Disciplina de Modelos Lineares
Disciplina de Modelos Lineares 2012-2 Seleção de Variáveis Professora Ariane Ferreira Em modelos de regressão múltipla é necessário determinar um subconjunto de variáveis independentes que melhor explique
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 30 de abril e 02 de maio de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.
Regressão Múltipla Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. 1. definimos uma medida de associação
Pesquisador. Planejamento de Experimentos Design of Experiments - DOE NOÇÕES SOBRE EXPERIMENTOS FATORIAIS. 1 - Fixar T e variar P até > Pureza
3 NOÇÕES SOBRE EXPERIMENTOS FATORIAIS Planeamento de Experimentos Design of Experiments - DOE Em primeiro lugar devemos definir o que é um experimento: Um experimento é um procedimento no qual alterações
Disciplina de Modelos Lineares Professora Ariane Ferreira
Disciplina de Modelos Lineares 2012-2 Regressão Logística Professora Ariane Ferreira O modelo de regressão logístico é semelhante ao modelo de regressão linear. No entanto, no modelo logístico a variável
Instituto Federal Goiano
Instituto Federal Goiano Conteúdo 1 2 A correlação mede apenas o grau de associação entre duas variáveis, mas não nos informa nada sobre a relação de causa e efeito de uma variável sobre outra Na correlação,
Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos
Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Modelos de regressão É usual estarmos interessados em estabelecer uma relação entre uma variável
Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito
Unidade IV - Regressão Regressões Lineares Modelo de Regressão Linear Simples Terminologia Variável dependente Variável independente Coeficiente de regressão Relação causa-efeito Regressão correlação Diferença
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT41006 FUNDAMENTOS DE ESTATÍSTICA 10ª AULA: ASSOCIAÇÃO, CORRELAÇÃO E
Capítulo 9 - Regressão Linear Simples (RLS): Notas breves
Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou
Estatística aplicada ao Melhoramento animal
Qual é a herdabilidade para uma característica? Qual é a variabilidade de desempenho para essa característica? Selecionando para a característica X, característica Y será afetada? Como predizer os valores
PARTE 1 ANÁLISE DE REGRESSÃO COM DADOS DE CORTE TRANSVERSAL CAPÍTULO 2 O MODELO DE REGRESSÃO SIMPLES
PARTE 1 ANÁLISE DE REGRESSÃO COM DADOS DE CORTE TRANSVERSAL CAPÍTULO 2 O MODELO DE REGRESSÃO SIMPLES 2.1 DEFINIÇÃO DO MODELO DE REGRESSÃO SIMPLES Duas variáveis: y e x Análise explicar y em termos de x
1 semestre de 2014 Gabarito Lista de exercícios 3 - Estatística Descritiva III C A S A
Exercício 1. (1,0 ponto). A tabela a seguir mostra o aproveitamento conjunto em Física e Matemática para os alunos do ensino médio de uma escola. Notas Notas Notas Física/Matemática Altas Regulares Baixas
Aula 14 - Correlação e Regressão Linear
Aula 14 - Correlação e Regressão Linear Objetivos da Aula Fixação dos conceitos para Correlação e Regressão Linear; Apresentar exemplo solucionado com a aplicação dos conceitos; Apresentar exercício que
Renda x Vulnerabilidade Ambiental
Renda x Vulnerabilidade Ambiental ANEXO D ANÁLISE EXPLORATÓRIA E PREPARAÇÃO DOS DADOS Identificamos tendência linear positiva. A correlação entre as variáveis é significativa, apresentando 99% de confiança.
Modelos de Regressão Múltipla - Parte VII
1 Modelos de Regressão Múltipla - Parte VII Erica Castilho Rodrigues 26 de Janeiro de 2016 2 3 Vimos como ajustar um modelo não linear fazendo transformações das variáveis, como, por exemplo Y = exp{β
CORRELAÇÃO LINEAR, TIPOS DE CORRELAÇÃO. REGRESSÃO LINEAR PELO ESTUDO DA CORRELAÇÃO E UTILIZANDO OS MÍNIMOS QUADRADOS
CORRELAÇÃO LINEAR, TIPOS DE CORRELAÇÃO. REGRESSÃO LINEAR PELO ESTUDO DA CORRELAÇÃO E UTILIZANDO OS MÍNIMOS QUADRADOS META Avaliar o grau de relacionamento entre variáveis e a tendência das mesmas com base
