Análise de Regressão
|
|
|
- Teresa Gama Neves
- 7 Há anos
- Visualizações:
Transcrição
1 Análise de Regressão Tópicos em Avaliação de Desempenho de Sistemas Aline Oliveira Camila Araujo Iure Fé Janailda
2 Agenda Parte I: Contextualização Modelo de Regressão Regressão Linear Linear Simples Métodos mínimos quadrados Linear Múltipla Inferência Parte II: Exercícios práticos em sala 2
3 Agenda Objetivos Use regressão linear simples para a construção de modelos empíricos para engenharia e dados científicos Entenda como o método dos mínimos quadrados é usado para estimar os parâmetros de uma forma linear modelo de regressão Use o modelo de regressão para fazer uma previsão de uma observação futuro e Representar graficamente a relação entre as variáveis de um estudo e a reta de regressão a partir da equação de regressão obtida. Testar a significância do coeficiente de correlação obtido em um estudo de regressão linear. Metodologia: Minitab Excel Mathematica Lista de exercício n. 04, com entrega para dia 12/10/2015 3
4 Referências Regression Analysis, F. Graybill, H. K. Iyer, Duxbury Press, Applied Statistics and Probability for Engineers, Third Edition, Douglas C. Montgomery,George C. Runger, John Wiley & Sons, Inc. 4
5 Contextualização História: Este modelo teve origem nos trabalhos de astronomia elaborados por Gauss no período de 1809 a O termo regressão foi utilizado pela primeira vez por Galton, por volta de 1885, quando investigava relações entre características antropométricas de sucessivas gerações. Ele observou, dentre outros fatos, que os filhos apresentavam as mesmas características dos seus pais, porém em uma intensidade menor. Por exemplo: pais com estatura baixa têm filhos de estatura baixa, mas, em média, a estatura destes é maior. O mesmo ocorre, mas em direção contrária, para pais com estatura alta. Este fenômeno, da altura dos filhos moverem-se em direção a altura média de todos os homens, ele denominou de regressão. Atualmente, a análise de regressão é uma das mais importantes técnicas estatísticas, sendo utilizada em aplicações de diversas áreas como: Engenharia, Medicina, Economia, etc. 5
6 Contextualização Definição: (RAJ JAIN, 1991): O modelo de regressão é um dos métodos estatísticos mais usados para investigar a relação entre variáveis. (GRAYBILL & IYER, 1994, p. 1): Área da Estatística que lida com métodos para investigação da existência de associações entre várias quantidades observáveis e, se presente, a natureza das associações. 6
7 Contextualização Relação entre as variáveis Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas variáveis é do tipo f (X) = a + b X temos o modelo de regressão simples. A variável X é a variável independente da equação enquanto Y = f (X) é a variável dependente das variações de X. O modelo de regressão é chamado de simples quando envolve uma relação causal entre duas variáveis. O modelo de regressão é multiplo quando envolve uma relação causal com mais de duas variáveis. Isto é, quando o comportamento de Y é explicado por mais de uma variável independe X1, X2,...Xn. 7
8 Contextualização Relação entre as variáveis Para que serve determinar a relação entre duas variáveis? 1 - Para realizar previsões sobre o comportamento futuro de algum fenômeno da realidade. Neste caso extrapola-se para o futuro as relações de causa-efeito já observadas no passado entre as variáveis. Pode-se, por exemplo, prever a população futura de uma cidade simulando a tendência de crescimento da população no passado. 2 - Pesquisadores interessados em simular os efeitos sobre uma variável Y em decorrência de alterações introduzidas nos valores de uma variável X também usam este modelo. Por exemplo: de que modo a produtividade (Y) de uma área agrícola é alterada quando se aplica certa quantidade (X) de fertilizante sobre a terra. 8
9 Contextualização Diagrama de dispersão A maneira mais simples de se estudar a relação entre duas variáveis é fazendo um gráfico denominado Diagrama de Dispersão. Coletar pares de dados das variáveis x e y que se pretende estudar; Traçar um sistema de eixos cartesianos e represente uma variável em cada eixo; Estabeleça as escalas de maneira a dar ao diagrama o aspecto de um quadrado; Escreva os nomes das variáveis nos respectivos eixos e depois faça as graduações; Fazer um ponto para representar cada par de valores x e y; Escreva o título e complemente com uma legenda. 9
10 Contextualização 10
11 Contextualização 11
12 Contextualização 12
13 Contextualização Modelos de Regressão são construídos com os objetivos: i) Predição - Uma vez que esperamos que grande parte da variação da variável de saída seja explicada pelas variáveis de entrada, podemos utilizar o modelo para obter valores de Y correspondentes a valores de X que não estavam entre os dados. Esse procedimento é chamado de predição e, em geral, usamos valores de X que estão dentro do intervalo de variação estudado. A utilização de valores fora desse intervalo recebe o nome de extrapolação e deve ser usada com muito cuidado, pois, o modelo adotado pode não ser correto fora do intervalo estudado. Acredita-se que a predição seja a aplicação comum dos modelos de regressão; 13
14 Contextualização Modelos de Regressão são construídos com os objetivos: ii) Seleção de variáveis - Frequentemente, não se tem idéia de quais são as variáveis que afetam significativamente a variação de Y. Para responder a esse tipo de questão, estudos são realizados com um grande número de variáveis. A análise de regressão pode auxiliar no processo de seleção de variáveis eliminando aquelas cuja contribuição não seja importante; iii) Estimação de parâmetros - Dado um modelo e um conjunto de dados referente às variáveis resposta e preditoras, estimar parâmetros ou ajustar um modelo aos dados significa obter valores ou estimativas para os parâmetros, por algum processo, tendo por base o modelo e os dados observados; iv) Inferência - O ajuste de um modelo de regressão em geral tem por objetivos básicos, além de estimar os parâmetros, realizar inferências sobre eles, tais como, testes de hipóteses e intervalos de confiança. 14
15 Modelos de Regressão 15
16 Regressão Linear Simples A análise de regressão linear simples consiste em achar uma reta que relacione duas variáveis quantitativas; Relação entre a variável de resposta Y e uma variável preditora X; Exemplos: - Relação entre nível de escolaridade e renda? Renda (Y) e Escolaridade (X) - Relação entre anos de estudos e salário? Salário (Y) e Anos de Estudos (X) - Associação entre tempo de estudo e nota na prova? Nota (Y) e Tempo de Estudo (X) - Prever a satisfação de um aluno dado o seu desempenho acadêmico? Satisfação (Y) e Desempenho (X) Duas variáveis estão relacionadas, se a mudança de uma provoca a mudança na outra. Investigaremos a presença ou ausência de relação linear sob dois pontos de vista: A CORRELAÇÃO mede a força, ou grau, de relacionamento entre duas variáveis; a REGRESSÃO dá uma equação que descreve o relacionamento em termos matemáticos. 16
17 Regressão Linear Simples Exemplo 1: Relação entre tempo de estudo e nota na prova? - Y: nota na Prova (Variável Resposta) - X: horas de Estudo (Variável Preditora) 17
18 Regressão Linear Simples Exemplo 2: O rendimento do produto está relacionado com a temperatura do processo? Por exemplo, em um processo químico, suponha que o rendimento do produto está relacionada com a temperatura do processo operacional. A análise de regressão pode ser utilizado para construir um modelo para predizer o rendimento num dado nível de temperatura. Este modelo também pode ser utilizado para otimização de processos, encontrando o nível de temperatura que maximiza o rendimento, ou para fins de controlo do processo. É possível prever rendimento para uma dada temperatura? Esse modelo pode ser usado na otimização do processo? 18
19 Regressão Linear Simples Exemplo 2: O rendimento do produto está relacionado com a temperatura do processo? - Y: pureza do oxigênio produzido em processo químico de destilação - X: porcentagem de hidrocarbonetos presentes no condensador 19
20 Regressão Linear Simples COEFICIENTE DE CORRELAÇÃO Mede a intensidade e a direção da relação linear entre duas variáveis quantitativas. Chamado também de Coeficiente de Correlação de Pearson (Karl Pearson, ). r - mede o grau de relacionamento linear entre valores emparelhados x e y em uma amostra. Quanto mais próximo de 1: correlação negativa (X Y ) Quanto mais próximo de 1: maior correlação positiva (X Y ) Quanto mais próximo de 0: menor a correlação linear 20
21 Regressão Linear Simples COEFICIENTE DE CORRELAÇÃO Exemplo 3: nota da prova e tempo de estudo X : tempo de estudo (em horas) Y : nota da prova Pares de observações (X i, Y i ) para cada estudante Tempo(X) Nota(Y) 3 4,5 7 6,5 2 3,7 1,5 4,0 12 9,3 21
22 Tempo X Regressão Linear Simples Nota Y (X-médiaX) (Y-médiaY) (X-médiaX)*(Y-médiaY) (X-média X)^2 (Y-média Y)^2 3 4,5-2,1-1,1 2,31 4,41 1,21 7 6,5 1,9 0,9 1,71 3,61 0,81 2 3,7-3,1-1,9 5,89 9,61 3,61 1,5 4-3,6-1,6 5,76 12,96 2, ,3 6,9 3,7 25,53 47,61 13,69 25, ,2 78,2 21,8 Média X = 5,1 Média Y = 5,6 22
23 Regressão Linear Simples Menor Correlação Linear: R=0,0123 Correlação negativa (X Y ): R= -0,2902 Correlação positiva (X Y ): R=0,
24 Regressão Linear Simples 24
25 Regressão Linear Simples 25
26 Métodos dos Mínimos Quadrados Para observações (X i,y i ) i=1,..,n, temos o modelo Minimizar 26
27 Métodos dos Mínimos Quadrados Derivando-se em relação a B0 e B1, igualando-se a 0 para encontrar os valores que minimizam Q. 27
28 Métodos dos Mínimos Quadrados 28
29 Métodos dos Mínimos Quadrados Considerando os valores da variável da variável preditora X a memória RAM e Y a quantidade de programas suportados. 29
30 Métodos dos Mínimos Quadrados 30
31 Métodos dos Mínimos Quadrados 31
32 Regressão Linear Simples Residuos: a diferença entre o valor observado e o estimado pela função 32
33 Regressão NÃO Linear Simples 33
34 Regressão NÃO Linear Simples 34
35 Regressão NÃO Linear Simples 35
36 Regressão Linear múltipla Porque usar a Linear Multipla: Para reduzir os resíduos. Reduzindo-se a variância residual (erro padrão da estimativa) aumenta a força dos testes de significância; Para eliminar a tendenciosidade que poderia resultar simplesmente ignorássemos uma variável que afeta Y substancialmente.
37 Regressão Linear Múltipla 37
38 Regressão Linear Múltipla Em uma representação tabular para o modelo expresso na equação: anterior...
39 Regressão Linear Múltipla Para efetuar a descoberta do valor para os parâmetros (coeficientes de regressão), é necessário aplicar o método dos quadrados mínimos (assim como na regressão linear simples).
40 Regressão Linear múltipla Relembrando:
41 Regressão Linear múltipla A diferença entre Linear e Multipla é: A regressão múltipla envolve três ou mais variáveis - 1 dependente (Apartamento) - 3 ou mais dependentes (Idade,tamanho,Localização) 41
42 Regressão Não Linear Múltipla Os parâmetros entram na equação de forma não linear:
43 Coeficiente de Determinação onde, recebe o nome de coeficiente de determinação que é usado para julgar a adequação do modelo de regressão. 43
44 Intervalo de confiança 44
Modelos de Regressão Linear Simples - parte I
Modelos de Regressão Linear Simples - parte I Erica Castilho Rodrigues 19 de Agosto de 2014 Introdução 3 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir
Modelos de Regressão Linear Simples parte I
Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos
Análise de Regressão - parte I
16 de Outubro de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos para dados coletados. Entender como método de mínimos é usado
Correlação e Regressão
Correlação e Regressão Exemplos: Correlação linear Estudar a relação entre duas variáveis quantitativas Ou seja, a força da relação entre elas, ou grau de associação linear. Idade e altura das crianças
9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla
9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual
Estatística. Correlação e Regressão
Estatística Correlação e Regressão Noções sobre correlação Existem relações entre variáveis. Responder às questões: Existe relação entre as variáveis X e Y? Que tipo de relação existe entre elas? Qual
Regressão linear simples
Regressão linear simples Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Introdução Foi visto na aula anterior que o coeficiente de correlação de Pearson é utilizado para mensurar o grau de associação
Correlação e Regressão
Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.
Introdução. São duas técnicas estreitamente relacionadas, que visa estimar uma relação que possa existir entre duas variáveis na população.
UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução São duas técnicas estreitamente relacionadas, que visa estimar uma relação
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO. PROJETO DE EXTENSÃO Software R: de dados utilizando um software livre.
UNIVERSIDADE FEDERAL DA FRONTEIRA SUL Campus CERRO LARGO PROJETO DE EXTENSÃO Software R: Capacitação em análise estatística de dados utilizando um software livre. Fonte: https://www.r-project.org/ Módulo
Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável
Correlação Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável Exemplos Perímetro de um quadrado e o tamanho
Análise da Regressão. Prof. Dr. Alberto Franke (48)
Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas
CORRELAÇÃO E REGRESSÃO. Modelos Probabilísticos para a Computação Professora: Andréa Rocha. UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011
CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Modelos Probabilísticos para a Computação Professora: Andréa Rocha UNIVERSIDADE FEDERAL DA PARAÍBA Dezembro, 2011 CORRELAÇÃO Introdução Quando consideramos
REGRESSÃO E CORRELAÇÃO
Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem
AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012
1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à
REGRESSÃO LINEAR SIMPLES E MÚLTIPLA
REGRESSÃO LINEAR SIMPLES E MÚLTIPLA Curso: Agronomia Matéria: Metodologia e Estatística Experimental Docente: José Cláudio Faria Discente: Michelle Alcântara e João Nascimento UNIVERSIDADE ESTADUAL DE
Estudar a relação entre duas variáveis quantitativas.
Estudar a relação entre duas variáveis quantitativas. Exemplos: Idade e altura das crianças Tempo de prática de esportes e ritmo cardíaco Tempo de estudo e nota na prova Taxa de desemprego e taxa de criminalidade
Seção 2.6 Duas Variáveis Quantitativas: Regressão Linear
Seção 2.6 Duas Variáveis Quantitativas: Regressão Linear A Reta de Regressão Predições Resíduos Sumário Interpretando a Inclinação e o Intercepto Cuidados com a Regressão Grilos e Temperatura Você pode
Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada
Aula 2 Regressão Linear Simples Análise de Regressão Prof. MSc. Danilo Scorzoni Ré FMU Estatística Aplicada Conceitos Gerais A análise de regressão é utilizada para explicar ou modelar a relação entre
Análise de regressão linear simples. Diagrama de dispersão
Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente
AULA 07 Regressão. Ernesto F. L. Amaral. 05 de outubro de 2013
1 AULA 07 Regressão Ernesto F. L. Amaral 05 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas
Esse material foi extraído de Barbetta (2007 cap 13)
Esse material foi extraído de Barbetta (2007 cap 13) - Predizer valores de uma variável dependente (Y) em função de uma variável independente (X). - Conhecer o quanto variações de X podem afetar Y. Exemplos
Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento
Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada
Correlação e Regressão Linear
Correlação e Regressão Linear Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais CORRELAÇÃO LINEAR Coeficiente de correlação linear r Mede o grau de relacionamento linear entre valores
REGRESSÃO LINEAR Parte I. Flávia F. Feitosa
REGRESSÃO LINEAR Parte I Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015 Onde Estamos Para onde vamos Inferência Esta5s6ca se resumindo a uma equação
Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br
Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES
Capacitação em R e RStudio PROJETO DE EXTENSÃO. Software R: capacitação em análise estatística de dados utilizando um software livre.
UFFS Universidade Federal da Fronteira Sul Campus Cerro Largo PROJETO DE EXTENSÃO Software R: capacitação em análise estatística de dados utilizando um software livre Fonte: https://www.r-project.org/
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica. Regressão. David Menotti.
Universidade Federal do Paraná (UFPR) Bacharelado em Informática Biomédica Regressão David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Regressão Linear ( e Múltipla ) Não-Linear ( Exponencial / Logística
Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei
Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser
Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.
Regressão Múltipla Na aula do dia 24 de outubro analisamos duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. 1. definimos uma medida de associação
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Modelo de Regressão Múltipla
Modelo de Regressão Múltipla Modelo de Regressão Linear Simples Última aula: Y = α + βx + i i ε i Y é a variável resposta; X é a variável independente; ε representa o erro. 2 Modelo Clássico de Regressão
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO
RESUMO DO CAPÍTULO 3 DO LIVRO DE WOOLDRIDGE ANÁLISE DE REGRESSÃO MÚLTIPLA: ESTIMAÇÃO Regressão simples: desvantagem de apenas uma variável independente explicando y mantendo ceteris paribus as demais (ou
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência
MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente
PREVISÃO. Prever o que irá. acontecer. boas decisões com impacto no futuro. Informação disponível. -quantitativa: dados.
PREVISÃO O problema: usar a informação disponível para tomar boas decisões com impacto no futuro Informação disponível -qualitativa Prever o que irá acontecer -quantitativa: dados t DEI/FCTUC/PGP/00 1
aula ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES
ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES 18 aula META Fazer com que o aluno seja capaz de realizar os procedimentos existentes para a avaliação da qualidade dos ajustes aos modelos. OBJETIVOS Ao final
Regressão Linear Simples
Regressão Linear Simples Capítulo 16, Estatística Básica (Bussab&Morettin, 8a Edição) 10a AULA 18/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 10a aula (18/05/2015) MAE229 1 / 38 Introdução
Predição do preço médio anual do frango por intermédio de regressão linear
Predição do preço médio anual do frango por intermédio de regressão linear João Flávio A. Silva 1 Tatiane Gomes Araújo 2 Janser Moura Pereira 3 1 Introdução Visando atender de maneira simultânea e harmônica
Aula 2 Regressão e Correlação Linear
1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as
Hoje vamos analisar duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas.
Correlação e Regressão Hoje vamos analisar duas variáveis quantitativas conjuntamente com o objetivo de verificar se existe alguma relação entre elas. Vamos 1. definir uma medida de associação entre duas
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Científica Matemática Teóricas Curso Eng. Electrotécnica ECTS 5 Teóricopráticas Distribuição das horas de contacto Trabalho Práticas e de Seminário Estágio Laboratoriais campo Orientação tutória Outras
Estatística Aplicada ao Serviço Social
Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 18 e 23 de outubro de 2012 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
Análise de Regressão EST036
Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Regressão sem intercepto; Formas alternativas do modelo de regressão Regressão sem
Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16)
Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Resumo: Veremos nesta aula tabelas, cálculos de porcentagem e gráficos; amostras e tipo de amostragem; Medidas de tendência central e medidas
Noções sobre Regressão
Noções sobre Regressão Nos interessa estudar como uma variável varia em função de outra. Por exemplo, considere a questão de demanda e preço de bens. Quando se estuda a variação de uma variável Y em função
CORRELAÇÃO E REGRESSÃO
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE TRANSPORTES MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA CORRELAÇÃO E REGRESSÃO Professora: Cira Souza Pitombo Disciplina: ENG C 18 Métodos
Econometria Lista 1 Regressão Linear Simples
Econometria Lista 1 Regressão Linear Simples Professores: Hedibert Lopes, Priscila Ribeiro e Sérgio Martins Monitores: Gustavo Amarante e João Marcos Nusdeo Exercício 1 (2.9 do Wooldridge 4ed - Modificado)
CORRELAÇÃO LINEAR, TIPOS DE CORRELAÇÃO. REGRESSÃO LINEAR PELO ESTUDO DA CORRELAÇÃO E UTILIZANDO OS MÍNIMOS QUADRADOS
CORRELAÇÃO LINEAR, TIPOS DE CORRELAÇÃO. REGRESSÃO LINEAR PELO ESTUDO DA CORRELAÇÃO E UTILIZANDO OS MÍNIMOS QUADRADOS META Avaliar o grau de relacionamento entre variáveis e a tendência das mesmas com base
Módulo 2 AVALIAÇÃO DA DEMANDA EM TRANSPORTES
Módulo 2 AVALIAÇÃO DA DEMANDA EM TRANSPORTES Conceitos Iniciais Prever é a arte e a ciência de predizer eventos futuros, utilizandose de dados históricos e sua projeção para o futuro, de fatores subjetivos
Princípios em Planejamento e Análise de Dados Ecológicos. Regressão linear. Camila de Toledo Castanho
Princípios em Planejamento e Análise de Dados Ecológicos Regressão linear Camila de Toledo Castanho 217 Conteúdo da aula 1. Regressão linear simples: quando usar 2. A reta de regressão linear 3. Teste
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA
MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli
MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos
Aula 03 Estatística, Correlação e Regressão
BIS0005-15 Bases Computacionais da Ciência Aula 03 Estatística, Correlação e Regressão http://bcc.compscinet.org Prof. Rodrigo de Alencar Hausen [email protected] 1 Medidas de tendência central: Média,
AULAS 14 E 15 Modelo de regressão simples
1 AULAS 14 E 15 Modelo de regressão simples Ernesto F. L. Amaral 30 de abril e 02 de maio de 2013 Avaliação de Políticas Públicas (DCP 046) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma abordagem
AULA 06 Correlação. Ernesto F. L. Amaral. 04 de outubro de 2013
1 AULA 06 Correlação Ernesto F. L. Amaral 04 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de
REGRESSÃO E CORRELAÇÃO
REGRESSÃO E CORRELAÇÃO A interpretação moderna da regressão A análise de regressão diz respeito ao estudo da dependência de uma variável, a variável dependente, em relação a uma ou mais variáveis explanatórias,
Estatística CORRELAÇÃO E REGRESSÃO LINEAR. Prof. Walter Sousa
Estatística CORRELAÇÃO E REGRESSÃO LINEAR Prof. Walter Sousa CORRELAÇÃO LINEAR A CORRELAÇÃO mede a força, a intensidade ou grau de relacionamento entre duas ou mais variáveis. Exemplo: Os dados a seguir
Modelos de Regressão Linear Simples - parte II
Modelos de Regressão Linear Simples - parte II Erica Castilho Rodrigues 14 de Outubro de 2013 Erros Comuns que Envolvem a Análise de Correlação 3 Erros Comuns que Envolvem a Análise de Correlação Propriedade
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 5
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Disciplina: Estatística II LISTA DE EXERCÍCIOS 5 1. Quando que as amostras são consideradas grandes o suficiente,
ANÁLISE DE REGRESSÃO
ANÁLISE DE REGRESSÃO Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de janeiro de 2017 Introdução A análise de regressão consiste na obtenção de uma equação
PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO
PROBABILIDADES E ESTATÍSTICA LEIC+LEE+LERCI (TagusPark) PROGRAMA/BIBLIOGRAFIA e NORMAS DE AVALIAÇÃO Secção de Estatística e Aplicações Departamento de Matemática Instituto Superior Técnico Fevereiro 2006
Análise de Regressão. Luiz Carlos Terra
Luiz Carlos Terra Em mercadologia é importante conhecer as ferramentas existentes para estimação dos valores de vendas, de preços de produtos ou de custos de produção. A análise de regressão representa
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
LISTA DE EXERCÍCIOS - TÉCNICAS DE REGRESSÃO SIMPLES E MÚLTIPLA
LISTA DE EXERCÍCIOS - TÉCNICAS DE REGRESSÃO SIMPLES E MÚLTIPLA 1 1) Em um estudo foi utilizada, erroneamente, uma amostra de apenas 3 observações para se estimarem os coeficientes de uma equação de regressão.
Estatística Descritiva (III) Associação entre Variáveis
Estatística Descritiva (III) Associação entre Variáveis 1 Associação entre variáveis qualitativas Tabelas de Contingência 2 Exemplo: Suponha que queiramos analisar o comportamento conjunto das variáveis
Programa Analítico de Disciplina EST106 Estatística I
Programa Analítico de Disciplina Departamento de Estatística - Centro de Ciências Exatas e Tecnológicas Número de créditos: 4 Teóricas Práticas Total Duração em semanas: 15 Carga horária semanal 4 0 4
Escola Secundária de Jácome Ratton
Escola Secundária de Jácome Ratton Ano Lectivo 21/211 Matemática Aplicada às Ciências Sociais Dados bidimensionais ou bivariados são dados obtidos de pares de variáveis. A amostra de dados bivariados pode
Aula 14 - Correlação e Regressão Linear
Aula 14 - Correlação e Regressão Linear Objetivos da Aula Fixação dos conceitos para Correlação e Regressão Linear; Apresentar exemplo solucionado com a aplicação dos conceitos; Apresentar exercício que
Análise de Regressão
Guia Mangá Análise de Regressão Shin Takahashi, Iroha Inoue e Trend-Pro Co., Ltd. Novatec The Manga Guide to Regression Analysis is a translation of the japanese original, Manga de wakaru tōkei-gaku kaiki
SÉRIE: Estatística Básica Texto: ANÁLISE BIDIMENSIONAL SUMÁRIO 3. EXERCÍCIOS APÊNDICE REFERÊNCIAS...21
SUMÁRIO 1. VARIÁVEIS BIDIMENSIONAIS QUALITATIVAS...3 1.1. INTRODUÇÃO...3 1.2. INDEPENDÊNCIA DE VARIÁVEIS...4 1.3. MEDIDA DO GRAU DE DEPENDÊNCIA ENTRE DUAS VARIÁVEIS NOMINAIS...6 2. VARIÁVEIS BIDIMENSIONAIS
Correlação e Regressão Lista de Exercícios
Correlação e Regressão Lista de Exercícios 1) Barbetta (001, p.7). Considerando os dados da Tabela 1: a) Construir um diagrama de dispersão para as variáveis taxa de alfabetização e taxa de mortalidade
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO 3 ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 4
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO 3 ENGENHARIA AMBIENTAL LISTA DE EXERCÍCIOS 4 Disciplina: Estatística I 1. Dado que z é uma variável aleatória normal padrão, calcule as
Introdução ao modelo de Regressão Linear
Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores (junto ao administrativo)
Modelos de Regressão Linear Simples - parte III
1 Modelos de Regressão Linear Simples - parte III Erica Castilho Rodrigues 20 de Setembro de 2016 2 3 4 A variável X é um bom preditor da resposta Y? Quanto da variação da variável resposta é explicada
Regressões: Simples e MúltiplaM. Prof. Dr. Luiz Paulo Fávero 1
Regressões: Simples e MúltiplaM Prof. Dr. Luiz Paulo FáveroF Prof. Dr. Luiz Paulo Fávero 1 1 Técnicas de Dependência Análise de Objetivos 1. Investigação de dependências entre variáveis. 2. Avaliação da
Teoria da Correlação. Luiz Carlos Terra
Luiz Carlos Terra Você poderá, através de cálculos matemáticos, verificar a forma como a variação de um dado observado pode estar associada às alterações de outra variável. (Luiz Carlos Terra) 1 Objetivo
P x. 2 i = P y. 2 i = Analise os dados e comente a possibilidade de existir uma relação linear entreasvariáveisemestudo.
8 Regressão Linear Exercício 8.1 Indique, justificando, qual dos valores abaixo indicados se aproxima mais do coeficiente de correlação dos dados descritos nas seguintes nuvens de pontos, X X X 1. r xy
Engenharia da Qualidade I Aula 5
Engenharia da Qualidade I Aula 5 Ferramentas para o Controle e Melhoria da Qualidade Prof. Geronimo Virginio Tagliaferro 4 Diagrama de causa e efeito (diagrama de Ishikawa) O diagrama de causa e efeito
