2 a Prova - CONTROLE DINÂMICO - 2 /2017

Tamanho: px
Começar a partir da página:

Download "2 a Prova - CONTROLE DINÂMICO - 2 /2017"

Transcrição

1 ENE/FT/UnB Departamento de Engenharia Elétrica Prova individual, sem consulta. Faculdade de Tecnologia Só é permitido o uso de calculadora científica básica. Universidade de Brasília (Números complexos & funções trigonométricas) Prof. Adolfo Bauchspiess Sala AT-15, 16/1/217, a Prova - CONTROLE DINÂMICO - 2 /217 Prova Tipo Especificações M p 1% 1% 1% 16% 16% 16% 25% 25% 25% Questão 2: e ss,15,2,25,15,2,25,15,2,25 Parâmetros p Questão 3: p MF 1 ζ; D s = K '()* ()- = K, +'()* (). Z = N + P N Env. Horários 1 α = p z = 1 + senφ 8 1 senφ 8 fator de avanço max D jω = D jω 8 = φ 8 Mp(%) Sobrepasso Percentual Processo 2a ordem sem zeros t r(1-9%) 1,8/ω n σ = ζω n t s(2%) = 4/σ ω 8 = pz = * +' ; D(jω 8) = p/z z - Fator de Amortecimento 1 a Questão (2,) O diagrama de Bode de um sistema, que possui um polo no semi-plano direito, em malha aberta, é mostrado na folha de respostas. Para operação em malha fechada: a) (,6) Quais a Margem de Fase e a Margem de Ganho? b) (1,4) Via critério de Nyquist, para quais valores de K este sistema é estável. 2 a Questão (3,5) Projete um compensador em avanço, D(s), no domínio-ω, para que o sistema mostrado na folha de respostas (sem polos de malha aberta no SPD) apresente: M p e e ss (cf tabela). Referência r e u K Gain zeros(s) poles(s) Modelo: Resp. Freq - Bode y Saída a) (,5) Verifique, inicialmente, para quais valores de K, o sistema é estável. b) (,6) Ajuste o valor de K para atender e ss. Qual a Margem de Fase obtida? ω c (KG=dB)? c) (,4) Calcule o avanço de fase necessário = φ MN(NOPMQ φ PRSPT + φ RQT. Como a queda de fase é acentuada em torno da região de interesse, adote φ RQT = 4. d) (,5) Obtenha ω m, a frequência central de D(s) tal que D(jω 8 ) MY = KG(jω 8 ) MY. e) (1,) Complete o projeto D s = [ ()- ().. f) (,5) Qual a margem de fase obtida, de fato, por este projeto?

2 2ª Prova- 2 Sem CONTROLE DINÂMICO ENE/UnB 2 3 a Questão (4,5) Considere o projeto de um controlador para um processo industrial com as seguintes especificações: - Sobrepasso percentual, M p 1%. - Tempo de acomodação, t s(2%) 1 s. - Erro nulo em regime para um degrau de perturbação. Terminologia Controlador Industrial: SV - SetPoint Value = sinal referência, r PV Process Variable = variável controlada, y MV- Manipulated Variable = sinal de controle, u DV Disturbance Variable = perturbação, w Adaptado de DV w r SV K(s+z)(s+z) s Controlador, D(s) MV +sat/-sat us 1 (s+p1) Processo, G(s) y Osc. Controlador Automático PV p2 (s+p2) Sensor, H(s) a) (,5) Qual a posição do pólo dominante s, que atende às especificações de projeto? b) (,5) Dentre os controladores (P, I, D, PI, PD, PID, Avanço, Atraso, Avanço-Atraso, Avanço-Avanço), quais poderiam ser utilizados? Justifique. c) (2,) Projete um controlador D s = K(s + z) ] /s que atenda todas as especificações. d) (1,) Degraus de referência r, de que amplitude, não sofreriam saturação, se sat=1 V? e) (,5) D(s) em c) não é realizável (função de transferência não própria). Acrecentando-se um polo rápido em s = -1, D s = [(()-)_, qual o polo dominante correspondente, s ` ( abb )* c,?

3 2ª Prova- 2 Sem CONTROLE DINÂMICO ENE/UnB 3 1 a Questão Gabarito a) (,6) MG = -1,9 db (26.6 db em 46 rad/s também apresenta -18 ); MF = 34,2 b) (1,4) P=1; Z= N=-1; Estável entre 1/1^(1,9/2) e 1/1^(-26,6/2):,285 K 21,38. >> g1=zpk([-3],[ ],1);figure(1);nyqlog(g1);figure(2);margin(g1) 1 Gm = -1.9 db (at 1.89 rad/s), Pm = 34.2 deg (at 4.62 rad/s) N=1 N=-1 N=1 N= System: g3 : 46.1 : System: g3 : 46 : db a Questão (3,5) a) (,5) Verifique, inicialmente, para quais valores de K, o sistema é estável. Estável para K 3, 55 (29,7 db), (1/1^(-29,7/2)=3,55 >>g2=zpk([-1],[ ],2); db +6

4 2ª Prova- 2 Sem CONTROLE DINÂMICO ENE/UnB 4 b) (,6) Ajuste o valor de K para atender e ss. Qual a Margem de Fase obtida? ω c (KG=dB)? c) (,4) Calcule o avanço de fase necessário = φ MN(NOPMQ φ PRSPT + φ RQT. Como a queda de fase é acentuada em torno da região de interesse, adote φ RQT = 4. d) (,5) Obtenha ω m, a frequência central de D(s) tal que D(jω 8 ) MY = KG(jω 8 ) MY. e) (1,) Complete o projeto D s = [ ()- ().. f) (,5) Qual a margem de fase obtida, de fato, por este projeto? I) Projeto D(s) = K(s+z)/(s+p) Prova M p 1% 1% 1% 16% 16% 16% 25% 25% 25% e ss,15,2,25,15,2,25,15,2,25 MF 1ζ K (ess) 26,78 2,9 16,7 26,78 2,9 16,7 26,78 2,9 16,7 b) MF atual 4,32 15,1 24,58 4,32 15,1 24,58 4,32 15,1 24,58 ω c 33,87 33,87 33,87 33,87 33,87 33,87 33,87 33,87 33,87 c) φ Pq 95,68* 84,9 75,41 85,68 74,9 65,41 75,68 64,9 55,41 1/α 46,49 53,58 61,67 72,62 56,9 21,6 63,36 2,17 1,32 d) 1/α 26,9 27,2 17,86 28,47 17,55 13,24 18,2 13,5 1,14 ω m 1, 95, 59,8 11, 64, 48,8 72,3 52, 45, z 4,95 4,23 7,65 4,14 8,48 1,63 9,8 11,57 14, e) p 216,2 2131,9 467,3 2915,8 482,8 224, 575,5 233,6 144,5 K f) MF f 27,36 3,23 39,89 25,82 35,93 4,93 31,4 35,53 41,6 *Avanço máximo possível com uma rede em avanço = 9 o. φ Pq 75 o, ainda podem ser realizados de forma prática. II) Projeto D(s) = K(s+z) 2 /(s+p) 2 Prova c) φ Pq /2 47,83 42,44 37,7 42,83 37,44 32,7 37,83 32,44 27,7 1/α 6,73 5,15 4,14 5,24 4,1 3,35 4,17 3,31 2,73 d) 1/α}dB 16,56 14,24 12, ,26 1,5 12,41 1,41 8,74 ω m 68,3 55,6 47, 63, 51, 43, 57,5 47, 4, z 1,14 1,79 11,32 12, 12,43 12,83 13,77 14,17 14,6 e) p 459,65 286,47 195,3 33,68 29,23 144,1 24, 155,82 19,52 K 45,29 26,54 17,22 27,55 16,83 11,23 17,42 1,99 7,49 f) MF f 24,9 25,55 27,52 26,13 27,1 29,1 26,55 28,52 31,75 III) Projeto D(s) = K(s+z) 2 /(s+p) 2 com heurística ω m = 2ω m (fase de G(s) bem definida), Prova d), ω 8 136,6 111,2 94, 126, 12, 86, 115, 94, 8, z 2, , , ,47 24, , , , ,2179 e) p 919,31 572,95 39,7 661,36 418,47 288,2 48, 311,64 219,4 K 45, , ,226 27, , ,233 17,4222 1,9917 7,4969 f) MF f 82, , , , , , , , ,2782 Note que, neste caso, em que a queda da fase é acentuada na região de interesse a estratégia de projeto de se alocar ω 8 segundo D(jω 8 ) MY = KG(jω 8 ) MY não é suficiente. Para efeitos de correção todas as estratégias (I, II e III) aqui apresentadas, foram consideradas. Considerações adicionais: - O aumento do erro aceitável em regime permanente perimitiria atender à margem de fase. - O projeto do compensador de avanço em regiões de acentuada queda de fase é muito sensível. Fase e ganho devem ser considerados em conjunto na escolha de ω 8.

5 2ª Prova- 2 Sem CONTROLE DINÂMICO ENE/UnB 5 Gm = 2.3 db (at 331 rad/s), Pm = 27.4 deg (at 11 rad/s) Gm = 22 db (at 41 rad/s), Pm = 25.8 deg (at 111 rad/s) Gm = 22 db (at 343 rad/s), Pm = 3.2 deg (at 94.3 rad/s) Gm = 15.1 db (at 158 rad/s), Pm = 35.9 deg (at 64.2 rad/s) Gm = 16.1 db (at 157 rad/s), Pm = 39.9 deg (at 59.8 rad/s) Gm = 12.9 db (at 17 rad/s), Pm = 4.9 deg (at 48.9 rad/s) Gm = 14.5 db (at 171 rad/s), Pm = 31 deg (at 72.7 rad/s) Gm = 11.8 db (at 18 rad/s), Pm = 35.5 deg (at 53.3 rad/s) Questão 2 Estratétiga de projeto I Provas tipo 1 a 9. Gm = 11.6 db (at 83.8 rad/s), Pm = 41.6 deg (at 41.2 rad/s) Gm = 23.4 db (at 938 rad/s), Pm = 82.7 deg (at 126 rad/s) Gm = 23.3 db (at 672 rad/s), Pm = 81.4 deg (at 9.9 rad/s) Gm = 22.9 db (at 589 rad/s), Pm = 84.4 deg (at 82.9 rad/s) Gm = 22.6 db (at 428 rad/s), Pm = 81.5 deg (at 63.6 rad/s) Gm = 22.5 db (at 44 rad/s), Pm = 85.6 deg (at 59.7 rad/s) Gm = 21.9 db (at 296 rad/s), Pm = 81.5 deg (at 48 rad/s) Gm = 22.8 db (at 484 rad/s), Pm = 77.2 deg (at 7.9 rad/s) Gm = 22 db (at 314 rad/s), Pm = 76.2 deg (at 51.4 rad/s) Questão 2 Estratétiga de projeto III Provas tipo 1 a 9. Gm = 21.3 db (at 22 rad/s), Pm = 75.3 deg (at 4 rad/s)

6 2ª Prova- 2 Sem CONTROLE DINÂMICO ENE/UnB 6 3a Questão a) (,5) s = -4 +5,33i b) (,5) Apenas PID. Justificativa: e ss = canali. Avanço necessário zero duplo. c) (2,) D s = K(s + z) ] /s d) (1,) r max = 1/K (com uso do teorema do valor inicial) e) (,5) 1/(s /1+1) = 1, i = 1,4 3,18. O polo adicional que torna o sistema realizável é adicionado de tal forma a alterar pouco o sistem já compensado. Considerando, de forma aproximada, a contribuição em módulo e fase em s c, s *(1,385-,577i) = i Solução extata (só com uso recursos computacionais): [ ()- Projeto inicial: _. _ =-1 K ( (). a (). c, z c (para K c, z c a eq. característica terá polos em s ). _ (b Raízes da eq. característica modificada: [ b ()- b _. _ ( *cc)* ( (). a (). _ =-1; roots(k c s + z c ] p ] + s s s + p * s + p ] ) Solução Exata s c, = 4,9 + 5,61i (erro p/ s, em módulo 4%, erro em fase,63%) Obs: De ambas as formas verifica-se que o polo adicional altera o projeto da ordem de 4%. Erro da ordem de grandeza típica, como a da utilização de valores comerciais em projetos reais. % ts=1 seg -> sigma=-4 s = i; % Mp=1% -> asind(.6)=36.87 (aproximação gráfica). s = i; % Mp=1% -> asind(.58)=35.45 (solução exata ) Zeta=, φ Pq z K r max Zeta=, φ Pq z K r max

CAPÍTULO Compensação via Compensador de Avanço de Fase

CAPÍTULO Compensação via Compensador de Avanço de Fase CAPÍTULO 8 Projeto no Domínio da Freqüência 8.1 Introdução Este capítulo aborda o projeto de controladores usando o domínio da freqüência. As caracteristicas de resposta em freqüência dos diversos controladores,

Leia mais

Método de Margem de Ganho

Método de Margem de Ganho Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Método de Margem de Ganho Outros Processos e de de Fase Separação Prof a Ninoska Bojorge Resposta de

Leia mais

EES-49/2012 Resolução da Prova 3. 1 Dada a seguinte função de transferência em malha aberta: ( s 10)

EES-49/2012 Resolução da Prova 3. 1 Dada a seguinte função de transferência em malha aberta: ( s 10) EES-49/2012 Resolução da Prova 3 1 Dada a seguinte função de transferência em malha aberta: ( s 10) Gs () ss ( 10) a) Esboce o diagrama de Nyquist e analise a estabilidade do sistema em malha fechada com

Leia mais

SC1 Sistemas de Controle 1. Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor

SC1 Sistemas de Controle 1. Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor SC1 Sistemas de Controle 1 Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor Sumário 1. Introdução 2. Definições 3. Alguns detalhes construtivos sobre LR 4. Condições para um

Leia mais

Controle de Processos Aula: Estabilidade e Critério de Routh

Controle de Processos Aula: Estabilidade e Critério de Routh 107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)

Leia mais

CONTROLO. 3º ano 1º semestre Transparências de apoio às aulas teóricas. Capítulo Projecto Nyquist/Bode

CONTROLO. 3º ano 1º semestre Transparências de apoio às aulas teóricas. Capítulo Projecto Nyquist/Bode CONROLO 3º ano º semestre 202-203 ransparências de apoio às aulas teóricas Capítulo Projecto Nyquist/Bode Maria Isabel Ribeiro António Pascoal odos os direitos reservados Estas notas não podem ser usadas

Leia mais

Projeto de Compensadores no Domínio da Frequência

Projeto de Compensadores no Domínio da Frequência Projeto de Compensadores no Domínio da Frequência Maio de 214 Loop Shaping I No projeto de compensadores no domínio da frequência, parte-se do pressuposto de que o sistema a ser controlado pode ser representado

Leia mais

Compensadores: projeto no domínio da

Compensadores: projeto no domínio da Compensadores: projeto no domínio da frequência Relembrando o conteúdo das aulas anteriores: o Compensador (também conhecido como Controlador) tem o objetivo de compensar características ruins do sistema

Leia mais

RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA

RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA CCL Profa. Mariana Cavalca Retirado de OGATA, Katsuhiko. Engenharia de controle moderno. 1. ed. Rio de Janeiro: Prentice Hall,

Leia mais

Controle por Computador Parte II. 22 de novembro de 2011

Controle por Computador Parte II. 22 de novembro de 2011 Controle por Computador Parte II 22 de novembro de 2011 Outline 1 Exemplo de Projeto 2 Controladores PID 3 Projeto de Controle em Tempo Discreto Exemplo de Projeto Exemplo de Projeto: Controle de azimute

Leia mais

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta

Leia mais

Métodos de Resposta em Freqüência

Métodos de Resposta em Freqüência Métodos de Resposta em Freqüência 1. Sistemas de fase mínima 2. Exemplo de traçado do diagrama de Bode 3. Medidas da resposta em freqüência 4. Especificações de desempenho no domínio da freqüência pag.1

Leia mais

Métodos de Resposta em Freqüência

Métodos de Resposta em Freqüência Métodos de Resposta em Freqüência. Exemplo de projeto: sistema de controle de uma máquina de inscultura 2. MATLAB 3. Exemplo de Projeto Seqüencial: sistema de leitura de um drive 4. Diagramas de Bode de

Leia mais

Resposta dos Exercícios da Apostila

Resposta dos Exercícios da Apostila Resposta dos Exercícios da Apostila Carlos Eduardo de Brito Novaes carlos.novaes@aedu.com 5 de setembro de 0 Circuitos Elétricos. Passivos a) b) V o (s) V i (s) 64s + 400 s + 96s + 400, v o ( ) v i ( )

Leia mais

Estabilidade de Sistemas Lineares Realimentados

Estabilidade de Sistemas Lineares Realimentados Estabilidade de Sistemas Lineares Realimentados 1. Conceito de estabilidade 2. Critério de estabilidade de Routh-Hurwitz p.1 Engenharia de Controle Aula 6 Estabilidade de Sistemas Lineares Realimentados

Leia mais

R + b) Determine a função de transferência de malha fechada, Y (s)

R + b) Determine a função de transferência de malha fechada, Y (s) FUP IC Teoria do Controlo xercícios Análise de Sistemas ealimentados Teoria do Controlo xercícios Análise de Sistemas ealimentados AS Considere o sistema da figura ao lado: a) Determine a função de transferência

Leia mais

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14 Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação

Leia mais

PID e Lugar das Raízes

PID e Lugar das Raízes PID e Lugar das Raízes 1. Controlador PID 2. Minorsky (1922), Directional stability of automatically steered bodies, Journal of the American Society of Naval Engineers, Vol. 34, pp. 284 Pilotagem de navios

Leia mais

CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes

CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes 7.1 Introdução Os objetivos do projeto de sistemas de controle foram discutidos no Capítulo 5. No Capítulo 6 foram apresentados métodos rápidos de

Leia mais

CAPÍTULO 6 Métodos expeditos de projeto

CAPÍTULO 6 Métodos expeditos de projeto 0 CAPÍTULO 6 Métodos expeditos de projeto 6. Introdução Neste capítulo serão introduzidos métodos diretos que permitem o projeto de controladores sem a necessidade de métodos mais sofisticados, a serem

Leia mais

Teoria do Controlo. Síntese de controladores. Controladores PID MIEEC

Teoria do Controlo. Síntese de controladores. Controladores PID MIEEC Teoria do Controlo Síntese de controladores Controladores PID MIEEC! Esquema de controlo r - G c (s) G p (s) y TCON 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Controlador com pura ação proporcional

Leia mais

Melhoramos a resposta temporal associando um compensador de avanço de fase que contribui com

Melhoramos a resposta temporal associando um compensador de avanço de fase que contribui com Compensador por Avanço / Atraso de fase A compensação de avanço / atraso de fase, é a composição das duas técnicas vistas anteriormente em um único compensador. Melhoramos a resposta temporal associando

Leia mais

5 a LISTA DE EXERCÍCIOS

5 a LISTA DE EXERCÍCIOS 5 a LITA DE EXERCÍCIO ) A ação de controle proporcionalderivativo só apresenta influência durante o regime permanente não tendo nenhum efeito durante os transitórios do sistema. Responda se a afirmação

Leia mais

Descrição de Incertezas e Estabilidade Robusta

Descrição de Incertezas e Estabilidade Robusta Descrição de Incertezas e Estabilidade Robusta 1. Estabilidade robusta? 1.1. Função de transferência nominal e critério de estabilidade robusta 2. Caracterizando modelos de incertezas não-estruturadas

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Estabilidade no Domínio da Freqüência 1. Estabilidade relativa e o critério de Nyquist: margens de ganho e fase 2. Critérios de desempenho especificados no domínio da freqüência Resposta em freqüência

Leia mais

Aula 6 - Desempenho e Estabilidade MIMO, Ganho Pequeno

Aula 6 - Desempenho e Estabilidade MIMO, Ganho Pequeno Aula 6 - Desempenho e Estabilidade MIMO, Teorema do Ganho Pequeno Universidade de São Paulo Sistemas Multivariáveis Espaço de Estados ẋ =Ax + Bu y =Cx + Du Exemplo [ 1 4 A = 2 3 [ 1 2 C = 0 1 ] [ 1 0,

Leia mais

VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES

VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES Prof. Davi Antônio dos Santos (davists@ita.br) Departamento

Leia mais

PMR3404 Controle I Aula 3

PMR3404 Controle I Aula 3 PMR3404 Controle I Aula 3 Resposta estática Ações de controle PID Newton Maruyama 23 de março de 2017 PMR-EPUSP Classificação de sistemas de acordo com o seu desempenho em regime estático Seja o seguinte

Leia mais

I Controle Contínuo 1

I Controle Contínuo 1 Sumário I Controle Contínuo 1 1 Introdução 3 1.1 Sistemas de Controle em Malha Aberta e em Malha Fechada................ 5 1.2 Componentes de um sistema de controle............................ 5 1.3 Comparação

Leia mais

6.1 Controladores Digitais baseados em Controladores Analógicos

6.1 Controladores Digitais baseados em Controladores Analógicos UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE SISTEMAS DE CONTROLE II 6 CONTROLADORES DIGITAIS 6.1 Controladores Digitais baseados

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA ENGENHARIA DE CONTROLE E AUTOMAÇÃO MECATRÔNICA ENG3502 SISTEMAS DE CONTROLE II

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA ENGENHARIA DE CONTROLE E AUTOMAÇÃO MECATRÔNICA ENG3502 SISTEMAS DE CONTROLE II PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA ENGENHARIA DE CONTROLE E AUTOMAÇÃO MECATRÔNICA ENG3502 SISTEMAS DE CONTROLE II PROF. MARCOS LAJOVIC CARNEIRO - 2017/1 Turma A01/1 PLANO

Leia mais

Controle em Cascata. TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica

Controle em Cascata. TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica Controle em Cascata TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica (Exemplo) CONTROLE DE UM REATOR Realimentação Simples O Processo Reação

Leia mais

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil Estabilidade Estabilidade é um comportamento desejado em qualquer sistema físico. Sistemas instáveis tem comportamento, na maioria das vezes, imprevisível; por isso é desejável sempre garantirmos a estabilidade

Leia mais

Controle de Velocidade

Controle de Velocidade 1 Capítulo 1 Controle de Velocidade 1.1 Objetivos O objetivo neste experimento é projetar um controlador que regule a velocidade do eixo do motor. O procedimento será baseado na análise da resposta em

Leia mais

Sistemas de Controle 2

Sistemas de Controle 2 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic Carneiro Planejamento da disciplina

Leia mais

Análise de Sistemas no Domínio da Freqüência. Diagrama de Bode

Análise de Sistemas no Domínio da Freqüência. Diagrama de Bode Análise de Sistemas no Domínio da Freqüência Diagrama de Bode Análise na Freqüência A análise da resposta em freqüência compreende o estudo do comportamento de um sistema dinâmico em regime permanente,

Leia mais

Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID)

Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID) Sistemas Realimentados Regulação e Tipo de sistema: Entrada de referência Entrada de distúrbio Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID) Fernando

Leia mais

Conteúdo. Definições básicas;

Conteúdo. Definições básicas; Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições

Leia mais

RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE

RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE RESPOSTA EM FREQUÊNCIA: DIAGRAMA DE BODE CCL Profa. Mariana Cavalca Baseado em: MAYA, Paulo Álvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Pearson, 2011. OGATA, Katsuhiko. Engenharia de controle

Leia mais

Desempenho de Sistemas de Controle Realimentados. 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem

Desempenho de Sistemas de Controle Realimentados. 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste 2. Desempenho de sistemas de segunda ordem 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem 4. Estimação

Leia mais

Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1

Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro 2012. 1 / 48 Resumo 1 Introdução 2 Diagramas de Bode 3

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica. Sistemas de Controle Realimentados

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica. Sistemas de Controle Realimentados Margens de Estabilidade Introdução Margens de Fase e de Ganho Exemplos Problemas Propostos 1 Margens de Estabilidade Definições: Diz-se que um sistema LTI é absolutamente estável se todas as raízes da

Leia mais

PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho

PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=

Leia mais

CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID)

CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID) CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID) AÇÕES DE CONTROLE O controlador PID é um controlador composto por três ações de controle Ação proporcional: u t = k e t Ação integral: u t = k 0 t

Leia mais

O método do lugar das raízes

O método do lugar das raízes Capítulo 4 O método do lugar das raízes 4.1 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização dos pólos de um sistema em malha fechada

Leia mais

Laboratório de Projeto por Intermédio do Root Locus

Laboratório de Projeto por Intermédio do Root Locus Laboratório de Projeto por Intermédio do Root Locus Revisão Revisão Entrada Expressão do erro estacionário Degrau, Rampa, Parábola, Dado o sistema: Método do Lugar das Raízes Exercício 1 - Controlador

Leia mais

Sintonia do compensador PID

Sintonia do compensador PID Sintonia do compensador PID 0.1 Introdução DAELN - UTFPR - Controle I Paulo Roberto Brero de Campos Neste capítulo será estudado um problema muito comum na indústria que consiste em fazer o ajuste dos

Leia mais

O Papel dos Pólos e Zeros

O Papel dos Pólos e Zeros Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

SISTEMAS REALIMENTADOS

SISTEMAS REALIMENTADOS SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Projeto de Sistemas de Controle pelo LDR Consiste em inserir pólos e zeros, na forma de um compensador,

Leia mais

Experiência 2. Controle de Motor de Corrente Contínua com Tacômetro usando Lugar Geométrico das Raízes

Experiência 2. Controle de Motor de Corrente Contínua com Tacômetro usando Lugar Geométrico das Raízes Experiência 2 Controle de Motor de Corrente Contínua com Tacômetro usando Lugar Geométrico das aízes Professores: Adolfo Bauchspiess e Geovany A. Borges O objetivo deste experimento é realizar o controle

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Especificações de Desempenho de Sistemas de Controle Discreto Introdução

Leia mais

Teoria de Controle. Helio Voltolini

Teoria de Controle. Helio Voltolini Teoria de Controle Helio Voltolini Conteúdo programático Introdução aos sistemas de controle; Modelagem matemática de sistemas dinâmicos; Resposta transitória de sistemas de controle; Estabilidade dos

Leia mais

Fig (continuação) b. Diagrama de Bode para o sistema do Exemplo 10.13

Fig (continuação) b. Diagrama de Bode para o sistema do Exemplo 10.13 Fig. 10.50 (continuação) b. Diagrama de Bode para o sistema do Exemplo 10.13 Fase (graus) 1 Fig. 10.51 Gráficos logarítmicos de magnitude de Bode típicos não normalizados e sem escala mostrando o valor

Leia mais

Fundamentos de Controlo

Fundamentos de Controlo Fundamentos de Controlo 5 a Série Análise no Domínio da Frequência: Diagrama de Bode e Critério de Nyquist. S5. Exercícios Resolvidos P5. Considere o SLIT causal cujo mapa polos/zeros se representa na

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Departamento de Engenharia Elétria Tópios Espeiais em Energia Elétria () Aula 3.3 Projeto de Sistemas de ontrole Linear Pro. João Amério Vilela Exemplo - Projeto do sistema de ontrole linear A metodologia

Leia mais

8 Compensação. 8.1 Introdução. 8.2 Pré-Compensadores. 8.3 Compensador por Avanço de Fase. V(s) G p (s) + G c (s) G (s) D(s) + 8 Compensação 109

8 Compensação. 8.1 Introdução. 8.2 Pré-Compensadores. 8.3 Compensador por Avanço de Fase. V(s) G p (s) + G c (s) G (s) D(s) + 8 Compensação 109 8 Compensação 09 8 Compensação 8. Introdução O objetivo deste capítulo é apresentar e discutir algumas técnicas de projeto de S.L.I.T.'s. Entende-se por compensação a definição e o ajuste de dispositivos

Leia mais

Introdução ao controle de conversores

Introdução ao controle de conversores Unidade VI Introdução ao controle de conversores 1. Controle por Histerese 2. Controle Linear 3. Utilização da ferramenta SmartCtrl (PSIM) Eletrônica de Potência 1 Introdução Conversores estáticos devem

Leia mais

2ª Avaliação - Controle Automático II (CTR 03) Prof. Accacio

2ª Avaliação - Controle Automático II (CTR 03) Prof. Accacio Data de Entrega do relatório e apresentação do trabalho: 06/05/2017 Pontuação da atividade: 30pts Objetivo - Projetar um Controlador para o sistema de estudo (sorteado) através dos Métodos do Lugar das

Leia mais

Projeto de Compensadores/Controladores pelo Diagrama de Lugar das Raízes

Projeto de Compensadores/Controladores pelo Diagrama de Lugar das Raízes Projeto de Compensadores/Controladores pelo Diagrama de Lugar das Raízes Carlos Eduardo de Brito Novaes carlos.novaes@aedu.com http://professorcarlosnovaes.wordpress.com 2 de novembro de 202 Introdução

Leia mais

Sintonia de Controladores PID. TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica

Sintonia de Controladores PID. TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica Sintonia de Controladores PID TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica Sintonia de Controladores Características Desejáveis do Controlador

Leia mais

CAP. 2 RESPOSTA EM FREQÜÊNCIA

CAP. 2 RESPOSTA EM FREQÜÊNCIA CAP. 2 RESPOSTA EM FREQÜÊNCIA 1 2.1 PÓLOS, ZEROS E CURVAS DE BODE Função de transferência no domínio s: T s V o s V i s T s a m sm a m 1 s m 1 a 0 b n s n b n 1 s n 1 b 0 Coeficientes a, b são reais m

Leia mais

I Controle Contínuo 1

I Controle Contínuo 1 Sumário I Controle Contínuo 1 1 Introdução 3 11 Sistemas de Controle em Malha Aberta e em Malha Fechada 5 12 Componentes de um sistema de controle 5 13 Comparação de Sistemas de Controle em Malha Aberta

Leia mais

Novos métodos de Sintonia de Controladores PID

Novos métodos de Sintonia de Controladores PID Novos métodos de Sintonia de Controladores PID. Introdução Existem diversas questões que devem ser consideradas no projeto de controladores PID, como por exemplo: Resposta a distúrbios de carga; Resposta

Leia mais

SCS Sistemas de Controle / Servomecanismos. Aula 04 Diagrama do lugar geométrico das raízes

SCS Sistemas de Controle / Servomecanismos. Aula 04 Diagrama do lugar geométrico das raízes Aula 04 Diagrama do lugar geométrico das raízes Definição: O lugar das raízes de um sistema é um gráfico que representa a trajetória das raízes de sua equação característica pólos da função de transferência

Leia mais

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica Aula 11 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução - Lugar das Raízes

Leia mais

Capítulo 2 Dinâmica de Sistemas Lineares

Capítulo 2 Dinâmica de Sistemas Lineares Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES A função de transferência do circuito abaixo em malha fechada é: F(s) = C(s) = G(s)

Leia mais

Projeto a Tempo Discreto

Projeto a Tempo Discreto Projeto a Tempo Discreto 1. Lugar das Raízes no domínio-z 2. Exemplo de projeto Fly-by-Wire pag.1 Controle de Sistemas Lineares Aula 23 Projeto via Lugar das Raízes O projeto é realizado diretamente no

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;

Leia mais

Aula 9. Diagrama de Bode

Aula 9. Diagrama de Bode Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais

Leia mais

Controladores PID. ENGC42: Sistemas de Controle I. 27 de maio de Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA

Controladores PID. ENGC42: Sistemas de Controle I. 27 de maio de Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA Controladores PID ENGC42: Sistemas de Controle I Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 27 de maio de 205 Sumário Introdução 2 Estrutura de controladores PID 3 Efeitos

Leia mais

Critério de Estabilidade: Routh-Hurwitz

Critério de Estabilidade: Routh-Hurwitz Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha

Leia mais

Método da Resposta da Freqüência

Método da Resposta da Freqüência Método da Resposta da Freqüência Introdução; Gráfico de Resposta de Freqüência; Medidas de Resposta de Freqüência; Especificação de Desempenho no Domínio da Freqüência; Diagrama Logarítmicos e de Magnitude

Leia mais

Controle de Sistemas Dinâmicos. Informações básicas

Controle de Sistemas Dinâmicos. Informações básicas Controle de Sistemas Dinâmicos Informações básicas Endereço com material http://sites.google.com/site/disciplinasrgvm/ Ementa Modelagem de Sistemas de Controle; Sistemas em Malha Aberta e em Malha Fechada;

Leia mais

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa. Universidade de Brasília (UnB) Departamento de Engenharia Elétrica (ENE)

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa. Universidade de Brasília (UnB) Departamento de Engenharia Elétrica (ENE) Circuitos Elétricos 2 Circuitos Elétricos Aplicados Prof. Dr.-Ing. João Paulo C. Lustosa da Costa (UnB) Departamento de Engenharia Elétrica (ENE) Caixa Postal 4386 CEP 70.919-970, Brasília - DF Homepage:

Leia mais

ENG Problema #1 Data de devolução:

ENG Problema #1 Data de devolução: ENG1403 2012.1 Problema #1 Data de devolução: 05.03.2012 Um engenheiro eletricista fez o projeto de instalação elétrica para um chuveiro elétrico em duas residências, A e B. Ambos os chuveiros dissipam

Leia mais

Diagramas de Bode. Sandra Mara Torres Müller

Diagramas de Bode. Sandra Mara Torres Müller Diagramas de Bode Sandra Mara Torres Müller Introdução Os diagramas de Bode são construções gráficas que permitem esboçar a resposta de frequência de um circuito Geralmente são usados quando a distância

Leia mais

Questões para Revisão Controle

Questões para Revisão Controle Questões para Revisão Controle 1. (PROVÃO-1999)A Figura 1 apresenta o diagrama de blocos de um sistema de controle, e a Figura 2, o seu lugar das raízes para K > 0. Com base nas duas figuras, resolva os

Leia mais

CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID)

CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID) CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID) AÇÕES DE CONTROLE O controlador PID é um controlador composto por três ações de controle Ação proporcional: u t = k e t Ação integral: u t = k 0 t

Leia mais

3º ano 1º semestre 2007/2008

3º ano 1º semestre 2007/2008 Metrado Integrado em Engenharia Electrotécnica e de Computadore (LEEC) Departamento de Engenharia Electrotécnica e de Computadore (DEEC) CONROLO 3º ano º emetre 2007/2008 ranparência de apoio à aula teórica

Leia mais

INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA. MPS 43 Sistemas de Controle

INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA. MPS 43 Sistemas de Controle INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MPS 43 Sistemas de Controle LABORATÓRIO 03: Projeto de um Compensador um Método de Resposta em Frequência Data: Turma: Conceito: Nomes:

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ1- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge Informação Papel Bode 1 3 Papel

Leia mais

3º ano 1º semestre 2007/2008

3º ano 1º semestre 2007/2008 Mestrado Integrado em Engenharia Electrotécnica e de Computadores (LEEC) Departamento de Engenharia Electrotécnica e de Computadores (DEEC) CONTROLO 3º ano º semestre 7/8 Transparências de apoio às aulas

Leia mais

Erro em regime permanente em sistema de controle com

Erro em regime permanente em sistema de controle com Erro em regime permanente em sistema de controle com realimentação unitária 0.1 Introdução Controle 1 Prof. Paulo Roberto Brero de Campos Um dos objetivos de um sistema de controle é que a resposta na

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ ENGENHARIA ELÉTRICA

UNIVERSIDADE FEDERAL DE ITAJUBÁ ENGENHARIA ELÉTRICA UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Caio Fernandes de Paula Sintonia Analítica de Controladores PID por Resposta em Frequência para Sistemas de Fase Não-Monótona

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

LAC - POLI - USP. PTC3470 INTRODUÇÃO AO PROJETO DE SISTEMAS DE CONTROLE ROBUSTOS Notas de Aula

LAC - POLI - USP. PTC3470 INTRODUÇÃO AO PROJETO DE SISTEMAS DE CONTROLE ROBUSTOS Notas de Aula Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Telecomunicações e Controle Laboratório de Automação e Controle PTC3470 INTRODUÇÃO AO PROJETO DE SISTEMAS DE CONTROLE ROBUSTOS

Leia mais

Fundamentos de Controlo

Fundamentos de Controlo Fundamentos de Controlo 4 a Série Root-locus: traçado, análise e projecto. S4.1 Exercícios Resolvidos P4.1 Considere o sistema de controlo com retroacção unitária representado na Figura 1 em que G(s) =

Leia mais

CONTROLE. Área de Ciências Exatas e Tecnologia Sub área de Computação. Programa da disciplina 2 o Semestre de Prof.

CONTROLE. Área de Ciências Exatas e Tecnologia Sub área de Computação. Programa da disciplina 2 o Semestre de Prof. Objetivos: CONTROLE Área de Ciências Exatas e Tecnologia Sub área de Computação Engenharia da Computação T7013A Programa da disciplina 2 o Semestre de 2008 Prof. Valdemir Carrara Conteúdo da disciplina

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I

AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I AULA 3 CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz PROF. DR. ALFREDO DEL SOLE LORDELO TELA CHEIA Critério de estabilidade de Routh A questão

Leia mais

Pólos, Zeros e Estabilidade

Pólos, Zeros e Estabilidade Pólos, Zeros e Estabilidade Definindo Estabilidade A condição para estabilidade pode também ser expressa da seguinte maneira: se um sistema é estável quando sujeito a um impulso, a saída retoma a zero.

Leia mais

Resolução da Lista 5. Questão 1:

Resolução da Lista 5. Questão 1: Resolução da Lista 5 Questão 1: a) A- Ação do Controlador: Quando o nível aumenta (em relação ao set-point), a válvula deve abrir, para re restabelecê-lo ao set-point. Para a válvula abrir, como ela é

Leia mais

Control Design and Simulation

Control Design and Simulation Control Design and Simulation Controller Plant Setpoint + _ Error G(s) H(s) Output Rodrigo Schneiater Engenheiro de Vendas Osvaldo Santos Engenheiro de Sistemas LabVIEW Control Design and Simulation: LabVIEW

Leia mais

SINTONIA ÓTIMA DE CONTROLADOR PID EM SISTEMA TITO: APLICAÇÃO EM MODELO DE COMPRESSOR

SINTONIA ÓTIMA DE CONTROLADOR PID EM SISTEMA TITO: APLICAÇÃO EM MODELO DE COMPRESSOR SINTONIA ÓTIMA DE CONTROLADOR PID EM SISTEMA TITO: APLICAÇÃO EM MODELO DE COMPRESSOR Thiago Antonio Melo Euzébio, Péricles Rezende Barros Departamento de Engenharia Elétrica Universidade Federal de Campina

Leia mais

Capítulo 3. Função de transferência e dinâmicas dos sistemas (Parte D, continuação)

Capítulo 3. Função de transferência e dinâmicas dos sistemas (Parte D, continuação) DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas (Parte D, continuação) Juntando agora os três casos numa só figura, A resposta y(t) classifica-se

Leia mais

Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos

Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos Curso de Instrumentista de Sistemas Fundamentos de Controle Prof. Msc. Jean Carlos Fundamentos de Controle Aula_05 Na última aula... Método da tentativa sistemática ganho do controlador no valor mínimo

Leia mais

Controle por Computador - Parte I

Controle por Computador - Parte I Controle por Computador - Parte I 22 de novembro de 2011 Outline 1 Introdução 2 Amostragem 3 Segurador 4 Redução à Dinâmica de Tempo Discreto 5 Introdução Controle por Computador Computador Clock {y(t

Leia mais