Alexandre N. Carvalho

Tamanho: px
Começar a partir da página:

Download "Alexandre N. Carvalho"

Transcrição

1 Cálculo - Introdução lexandre N. Carvalo Marc 1, 2013

2 2

3 Capter 1 Introdução 1.1 Porque Estudar Cálculo No que seue apresentamos aluns exemplos que pretendem demosntrar que a matemática desenvolvida até o final do ensino médio é insuficiente para atacar aluns problemas importantes com os quais nos deparamos. Começamos recordando um problema elementar de física do ensino médio. Exemplo (Lançamento Oblíquo de um Projétil). Imaine que, em uma batala, saibamos que os projéteis lançados pelos nossos canões tenam velocidade V 0 ao sair do canão e que o inimio situa-se a uma distância d de nossos canões. Qual é ânulo de disparo para que o alvo seja atinido? Qual é o alcance máximo de nossos canões? Qual é a altura máxima que o projétil alcançará? V 0 θ y x Solução: Em primeiro luar, para resolver este problema, é preciso encontrar um modelo matemático para o lançamento oblíquo de um projétil. Para encontrar este modelo fazemos alumas suposições: Suponamos que 3

4 4 CHPTER 1. INTRODUÇÃO a resistência do ar é desprezível, a aceleração da ravidade é constante, o ânulo de lançamento é θ (0, π 2 ), a altura do canão relativemente ao solo é desprezível e que a altitude seja constante no campo de batala. Seja m a massa do projétil. velocidade inicial V 0 do projétil pode ser decomposta em velocidade vertical e velocidade orizontal iniciais, isto é V v V 0 θ V Vv 0 V 0 = V 0 senθ, = V 0cosθ. Se denota a aceleração da ravidade a velocidade vertical depende do tempo através da relação V v (t) = V 0 senθ t (1.1.1) enquanto que a velocidade orizontal é constante ao lono do tempo. O projétil atinirá a altura máxima no instante t M tal que V v (T M ) = 0, ou seja t M = V 0 senθ. (1.1.2) Como obter a altura do projétil como função do tempo? Note que o ráfico da velocidade vertical como função do tempo é

5 1.1. PORQUE ESTUDR CÁLCULO 5 V V 0 sen θ t t i = t i t i 1 t i 1 t i t i t V 0 t sen θ = t M Se t > 0 e t 0 < t 1 < < t n = t é uma subdivisão do intervalo [0, t] e t i = t i t i 1. Como em cada intervalo [t i 1, t i ] a velocidade é aproximadamente iual a V v (t i 1 ) temos que neste intervalo o deslocamento vertical é aproximadamente iual a y i = y(t i ) y(t i 1 ) V v (t i 1 ) t i e o deslocamento vertical correspondente ao intervalo de tempo [0, t] é aproximadamente iual a n n y = y i V v (t i 1 ) t i i=1 i=1 onde por queremos espressar o fato que a medida que o comprimento dos intervalos [t i, t i 1 ] se aproxima de zero y se aproxima mais e mais da área sob o ráfico da velocidade no intervalo [0, t]. Como seue que = V 0 senθt 1 2 t2, y(t) = V 0 senθt 1 2 t2 (1.1.3) é o deslocamente vertical do projétil (altura do projétil depois de decorridos t unidades de tempo). O deslocamenteo orizontal ocorre com velocidade constante V = V 0 cos θ. Loo x(t) = V 0 cos θ t (1.1.4) De posse do modelo matemático para os deslocamentos orizontal e vertical estamos preparados para resolver o problema proposto: O projétil alcançará altura máxima em t = t M = V 0 senθ. Loo y M = y(t M ) = V 0 senθ t M 1 2 (t M) 2 = V 0 senθ V 0 senθ 1 V 0 2 sen 2 θ = V 2 0 sen2 θ

6 6 CHPTER 1. INTRODUÇÃO e y M = 1 2 V 2 0 sen2 θ. (1.1.5) O projétil atine o seu alvo quando y(t a ) = 0. Loo t a = 2 V 0 senθ o que implica e x a = x(t a ) = 2 V 0 2 senθ cos θ x a = V 0 2 sen2θ. (1.1.6) O alcance do projétil é máximo quando θ = π/4. O que voce observa sobre a matemática contida neste exemplo? 1. O procedimento para obtenção do deslocamento vertical é bastante convincente mas requer uma melor justificativa. O processo de fazer t i pequeno (tender a zero) exie uma melor formulação que é dada pela noção de limite. 2. Se a velocidade depende do tempo de uma forma mais complicada podemos não ser capazes de encontrar a área sob o ráfico de forma tão simples. Por exemplo, o projétil pode ser impulsionado durante o precurso (como ocorre no lançamento de fouetes). Deparamos então com o problema de calcular a área sob o ráfico de uma função V V (s) = deslocamento s t cuja resposta requer a introdução do conceito de interal. 3. Quando a massa do projétil depende do tempo a seunda lei de Newton precisa de uma outra formulação para sermos capazes de equacionar o movimento e mesmo a velocidade instantânea para ser obtida como função do deslocamento precisa da introdução do conceito de derivada.

7 1.1. PORQUE ESTUDR CÁLCULO 7 Exemplo Conecido o deslocamento como função do tempo determinar a velocidade instantânea para cada instante de tempo. x(t + ) x(t) deslocamento x(t + ) x(t) V Média = [t, t+] = inclinação do semento [(t, x(t)), (t +, x(t + ))] t t + tempo velocidade média V m no intervalo [t, t+] é dada por V m = x(t+) x(t) do semento [(t, x(t)), (t +, x(t + ))] e é a inclinação deslocamento x(s) (t, x(t)) V Instantânea = inclinação da reta tanente ao ráfico de x( ) em t = s s tempo x(t+) x(t) velocidade instantânea V i no instante t é dada por V i = lim 0 inclinação da reta tanente ao ráfico de x no instante t. e é a qui precisamos da noção de limite para definir a velocidade instantânea. O limite que define a velocidade instantânea é camado derivada de x no instante t. Vamos considerar os casos de Movimento Uniforme e Movimento Uniformemente Variado. Movimento Uniforme Se um corpo se move ao lono de uma reta deslocando-se seundo a equação x(t) = x 0 + v 0 t

8 8 CHPTER 1. INTRODUÇÃO então, a velocidade em cada instante t é obtida fazendo x(t + ) x(t) = v 0, > 0 pequeno e desta forma a velocidade em cada instante é v 0. Movimento Uniformemente Variado Se um corpo se move ao lono de uma reta deslocando-se seundo a equação x(t) = x 0 + v 0 t at2 então, a velocidade em cada instante t é obtida fazendo x(t + ) x(t) = v 0 + at + a, > 0 pequeno 2 loo, no instante t a velocidade v(t) é v(t) = v 0 + at. x(t + ) x(t) θ(t) t(θ(t))=v(t) t t + aceleração é obtida da velocidade da seuinte forma v(t + ) v(t) = a, > 0 pequeno então a aceleração em cada instante t é a. Observação: Quando o movimento tem expressões mais complicadas como determinar a velocidade e a aceleração? Novamente vamos precisar das noções de limite e derivada. Exemplo Cálculo do comprimento de uma curva dada como ráfico de uma função.

9 1.1. PORQUE ESTUDR CÁLCULO 9 x x = f(t) t Vamos considerar aluns casos particulares a b L { (t, f(t)) : t 1 t t 2 } L = (t 2 t 1 ) 2 + b 2 (t 2 t 1 ) 2 = 1 + b 2 (t 2 t 1 ) = 1 + b 2 t t 1 t 2 t Se, por outro lado, f tem uma polional por ráfico a 2 +b 2 t a 4 +b 4 t b i = f(t i) f(t i 1 ) t i t i 1 a 1 +b 1 t a 3 +b 3 t t 0 t 1 t 2 t 3 t4 t No caso eral L = n i=1 1 + b 2 i (t i t i 1 ).

10 10 CHPTER 1. INTRODUÇÃO f(t 2 ) f(t 1 ) f(t 0 ) t 0 =a t 1 t 2 t 3 t 4 n L = i=1 ( ) 2 (f(ti ) f(t i 1 ) 1 + (t i t i 1) t i t i 1 fornece uma aproximação para o comprimento da curva se (t i t i 1 ) é pequeno 1 i n. Para obter o valor exato vamos precisar introduzir as noções de limite, derivada e interal, L = b Exemplo área de uma circunferência. a 1 + f (t) 2 dt O quociente entre o comprimento de uma circunferência e o diâmetro é um número real denotado por π. L d r L = π d = 2π r Vamos determinar a área da circunferência de raio r. idéia de rcimedes ( a.c.) foi dividir a circunferência em setores de iual área e rearupá-los da seuinte forma 8 Setores

11 1.1. PORQUE ESTUDR CÁLCULO Setores πr r quanto maior o número de setores, na divisão acima, mais a área se aproxima de πr.r = πr 2. demonstração deste resultado envolve o conceito de limite. Se dividimos a circunferência em n setores iuais temos r π/n Se n é rande cos π/n 1 e senπ/n π/n 2n.rsen π n.r cos π n.1 2 πr2. senπ/n. cos π/n. π/n 1 (primeiro limite fundamental) e teremos = πr 2 é, portanto, fundamental entendermos o processo de passaem ao limite para encontrarmos soluções para problemas simples como o cálculo da área de um círculo. Exemplo Cuidado! Recorde a fórmula da soma de uma Proressão Geométrica de razão menor que um 1 + r + r r n = 1 rn+1, r < 1. 1 r Quanto maior o valor de n menor é o valor de r n+1 e mostraremos que r n+1 tende a zero quando n tende a infinito. Desta forma a soma 1 + r + r r n + = 1, r < 1. (1.1.7) 1 r

12 12 CHPTER 1. INTRODUÇÃO Isto sinifica que quando tomamos S n = 1 + r + r r n para n rande nos aproximamos do valor S = 1. Uma tentativa de estender a iualdade 1 r (1.1.7) para r = 1 parece conduzir a = 1 2 e de fato, matemáticos de peso como Euler, Leibniz e Bernoulli cearam a propor 1 2 como soma desta série (antes de existir o conceito de série converente). Bernoulli usava a seuinte justificativa S = S 1 = = S 2S = 1 e S = 1 2. No entanto as somas S n assumem os valores 0 e 1 alternadamente e não se aproximam de qualquer número real. Loo, as manipulações alébricas acima não fazem sentido. interpretação correta de (1.1.7) é dada pela noção de limite (noção de série converente) que expressa o fato que S n se aproxima de S. e tal limite não existe se r 1. lim n S n = S, para r < 1 Exemplo O volume da esfera e o Princípio de Cavalieri Idéia V = volumes das seções cilíndricas = = Se cada uma das seções tem mesma área, os volumes devem coincidir qui precisamos do processo de passaem ao limite para mostrar que o volume do sólido pode ser aproximado pela soma dos volumes das seçoes. Este resultado é axiomatizado no seuite princípio.

13 1.1. PORQUE ESTUDR CÁLCULO 13 Teorem (Princípio de Cavalieri). São dados dois sólidos e um plano. Se todo plano paralelo ao plano dado secciona os dois sólidos seundo fiuras de mesma área, então estes sólidos tem o mesmo volume. plicações: Volume de um prisma trianular V = Volume de uma pirâmide trianular Observe primeiramente que do Princípio de Cavalieri podemos mover livremente o vértice de uma pirâmide em um plano paralelo ao plano da base sem alterar o seu volume. S 1 = S 2 H S 1 S Lembrando que o volume de um prisma com área da base e altura é V =. e aplicando o resultado acima à fiura abaixo temos o volume de uma pirâmide trianular.

14 14 CHPTER 1. INTRODUÇÃO V Pirâmide = 1 3 V Prisma = 1 3 Volume de uma pirâmide qualquer O volume de uma pirâmide qualquer é obtido observando que uma pirâmide qualquer é a união de pirâmides trianulares. ssim V = = Volume de um cone e de um cilindro Para encontrar o volume de um cilíndro e o volume de um cone basta observar as fiuras abaixo V =

15 1.1. PORQUE ESTUDR CÁLCULO 15 V c = 1 3 = 1 3 π r2 r Volume da Esfera Para calcular o volume da esfera de raio R construimos um cilindro reto de raio da base R e altura 2R e retiramos dos mesmo os dois cones centrais formados pela união do centro do cilindro à borda da base e do topo do cilindro (veja fiura abaixo). Se apiamos a esfera no plano da base do cilindro e seccionamos ambos os sólidos por um plano paralelo ao plano da base do cilindro (conforme fiura) obtemos um anel (ao sectionar o cilindro sem o cone central) de área e uma circunferência de área. H=2R R R r R R Note que r 2 = R 2 2 e portanto = π(r 2 2 ) = πr 2 = Seue do Princípio de Cavalieri que o volume V E da esfera é iual ao volume do cilindro menos os cones centrais. ssim V E = πr 2.H πr2 H 2 = 2πR3 2 3 πr3 = 4 3 πr3 e portanto V E = 4 3 πr3.

16 16 CHPTER 1. INTRODUÇÃO Exemplo Quanta borraca é necessária para fazer uma câmara de ar com raio menor 10cm, raio maior 50cm e espessura 0, 1cm. Para resolver este problema introduzimos a noção de centro de massa de uma polional plana (c denota a densidade linear). Inicialmente definimos o ponto médio de um semento como o seu centro de massa. ssim o centro de massa de uma polional é dado por: y l 1 (x 1,y 1 ) (x 0,y 0 ) (x n,y n) l n x x c = c l 1 x c l n x n c l c l n = l 1 x l n x n l l n y c = c l 1 y c l n y n c l c l n = l 1 y l n y n l l n área lateral de um tronco de cone é obtida da seuinte forma r m T =? R m + = r m = R r x x = R+r 2 R m 2πr 2πR 2π(m + ) π(m 2 + ) 2 2πR E E = πr(m + ) I = πrm

17 1.1. PORQUE ESTUDR CÁLCULO 17 ssim a área lateral T do tronco de cone é dada por T = πr(m + ) πrm = πr + π(r r)m = π(r + r)m = 2π R + r 2 e desta forma T = 2πx onde x é a coordenada do centro de ravidade do semento ou a distância do centro de ravidade do semento ao eixo de rotação. Note ainda que 2πx é a distância que o centro de ravidade percorre ao irarmos o semento em torno do eixo de rotação para produzir o tronco de cone. Desta forma a área da superfície obtida ao irarmos um semento em torno de um eixo de rotação (tronco de cone) é o produto da distância percorrida pelo centro de massa do semento pelo comprimento do semento. Isto se eneraliza facilmente para a superfície erada pela revolução de uma polional plana em torno de um eixo de rotação pois esta superfície é formada pela justaposição de diversos troncos de cone x 1 l 1 x 2 l 2 x n l n = 2π x 1 l π x n l n = 2π (x 1l 1 + x 2 l x n l n ) l l n (l l n ) = 2π x c L, L = l l n Um processo de passaem (tomando mais e mais pontos sobre a curva) ao limite resulta no seuinte resultado Teorem (Teorema de Pappus). Se uma lina plana ira em torno de um eixo de seu plano a área da superfície erada é iual ao comprimento dessa lina multiplicado pelo comprimento da circunferência descrita por seu centro de massa. De volta ao problema da câmara de ar

18 18 CHPTER 1. INTRODUÇÃO R r c = 2πr 2πR = 4π 2 Rr O volume de borraca necessário para construir tal câmara é, aproximadamente, V = 4π 2.50cm Como prender Cálculo Não á uma receita de como aprender cálculo mas alumas dicas podem auxiliar o estudante: Não é possível ler e entender cálculo como se lê e entende um romance ou um jornal. Leia o texto atentamente e pacientemente procurando entender profundamente os conceitos e resultados apresentados. velocidade de leitura não é importante aqui. compane os exemplos passo a passo procurando desvendar o porque de cada passaem e tentando enxerar porque o autor adotou esta solução. Tente soluções alternativas Pratique os conceitos aprendidos fazendo as tarefas (listas de exercícios). aprende cálculo contemplativamente. É importante fazer muitos exercícios. Não se Também não se aprende cálculo apenas assistindo às aulas ou somente fazendo exercícios. É preciso assistir às aulas, estudar e refletir sobre os conceitos e fazer muitos exercícios. Procure discutir os conceitos desenvolvidos em sala de aula com os coleas. É muito importante frequentar as monitorias ainda que seja somente para inteirar-se das dúvidas dos coleas. Não desista de um exercício se a sua solução não é óbvia, insista e descubra o prazer de desvendar os pequenos mistérios do cálculo.

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 32. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Superfícies de Revolução e Outras Aplicações Aula 32 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 29 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

LANÇAMENTO OBLÍQUO - INTERMEDIÁRIO EXERCÍCIOS RESOLVIDOS

LANÇAMENTO OBLÍQUO - INTERMEDIÁRIO EXERCÍCIOS RESOLVIDOS LANÇAMENTO OBLÍQUO - INTERMEDIÁRIO EXERCÍCIOS RESOLVIDOS A Equipe SEI, pensando em você, preparou este artio com exercícios resolvidos sobre lançamento oblíquo. Bons estudos!. (AFA 9) Uma bola de basquete

Leia mais

ESPELHOS ESFÉRICOS - INTERMEDIÁRIO

ESPELHOS ESFÉRICOS - INTERMEDIÁRIO ESPELHOS ESFÉRICOS - INTERMEDIÁRIO A Equipe SEI selecionou exercícios de concursos sobre espelhos esféricos, para que você possa aprimorar seus conhecimentos. Os exercícios selecionados são de nível intermediário.

Leia mais

MOVIMENTO EM UMA LINHA RETA

MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA Objetivos de aprendizagem: Descrever o movimento em uma linha reta em termos de velocidade média, velocidade instantânea, aceleração média e aceleração

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Volume e Área de Superfície, Parte II

Volume e Área de Superfície, Parte II AULA 15 15.1 Introdução Nesta última aula, que é uma sequência obteremos o volume da esfera utilizando o Princípio de Cavalieri, e trataremos de idéias de área de superfície. Finalmente abordaremos o contéudo

Leia mais

CÁLCULO I. 1 Área de Superfície de Revolução

CÁLCULO I. 1 Área de Superfície de Revolução CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Usando o estudo de ites apresentaremos o conceito de derivada de uma função real

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 15: Taxa de Variação. Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o 15: Taxa de Variação. Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação no cálculo de

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais

Integrais - Aplicações I. Daniel 26 de novembro de 2016

Integrais - Aplicações I. Daniel 26 de novembro de 2016 Integrais - Aplicações I Daniel 26 de novembro de 2016 1 Sumário Aplicações da Integral Construção de Fórmulas Integrais Aplicação da Estratégia de Integrais Definidas Áreas entre duas Curvas Volume por

Leia mais

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k 1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

CÁLCULO I Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas

CÁLCULO I Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas de CÁLCULO I Aula n o 10: de, Velocidade, e Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará de 1 de 2 3 4 de de Suponha que y seja uma quantidade que depende de outra quantidade

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

x carr1 (t) = v 1 t at2 x cam (t) = d + v 1 t x carr2 (t) = D v 2 t x carr1 (t c ) = x cam (t c )

x carr1 (t) = v 1 t at2 x cam (t) = d + v 1 t x carr2 (t) = D v 2 t x carr1 (t c ) = x cam (t c ) Questão 1: Um carro viaja atrás de um caminhão lento, ambos com velocidade constante v 1, em uma estrada de mão dupla. A distância do carro até a dianteira do caminhão é d. Em um dado instante, o carro

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

O problema da velocidade instantânea

O problema da velocidade instantânea Universidade de Brasília Departamento de Matemática Cálculo O problema da velocidade instantânea Supona que um carro move-se com velocidade constante e igual a 60 km/. Se no instante t = 0 ele estava no

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

Prova Vestibular ITA 1995

Prova Vestibular ITA 1995 Prova Vestibular ITA 1995 Versão 1.0 ITA - 1995 01) (ITA-95) Seja A = n ( 1) n!. π + sen ; n ℵ n! 6 a) (- 1) n n. b) n. c) (- 1) n n. d) (- 1) n+1 n. e) (- 1) n+1 n. Qual conjunto abaixo é tal que sua

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão

CÁLCULO I Aula 26: Área de Superfície de Revolução e Pressão CÁLCULO I Aula 26: Área de e Pressão Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 Área de 2 Uma superfície de revolução é um superfície gerada pela rotação de uma curva

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

Aula 30 Área de superfícies: parte I

Aula 30 Área de superfícies: parte I Aula 30 Área de superfícies: parte I Objetivos Determinar áreas de algumas superfícies curvas. Introdução Supona que um pintor utilize x litros de tinta para pintar uma parede quadrada de 1 m de lado e

Leia mais

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular

Física. Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Física Módulo 1 Velocidade Relativa, Movimento de Projéteis, Movimento Circular Velocidade Relativa Um Gedankenexperiment Imagine-se agora em um avião, a 350 km/h. O destino (a direção) é por conta de

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Cap.04 Cinemática em duas Dimensões

Cap.04 Cinemática em duas Dimensões Cap.04 Cinemática em duas Dimensões Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 4.1 Aceleração Entender a Eq. 4.1: o vetor

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Análise do movimento dos projéteis no vácuo

Análise do movimento dos projéteis no vácuo Capítulo 2 Análise do movimento dos projéteis no vácuo 2.1 Movimento unidimensional O estudo do movimento dos projéteis envolve seu deslocamento no espaço e a velocidade com que se deslocam em um intervalo

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

A integral definida Problema:

A integral definida Problema: A integral definida Seja y = f(x) uma função definida e limitada no intervalo [a, b], e tal que f(x) 0 p/ todo x [a, b]. Problema: Calcular (definir) a área, A,da região do plano limitada pela curva y

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Cones, cilindros, esferas e festividades, qual a ligação?

Cones, cilindros, esferas e festividades, qual a ligação? Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo hmelo@uac.pt Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1

BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova. 2 Na aula de hoje Geometria. 3 A geometria é inerentemente uma disciplina

Leia mais

MOVIMENTOS CIRCULARES EXERCÍCIOS AVANÇADOS RESOLVIDOS

MOVIMENTOS CIRCULARES EXERCÍCIOS AVANÇADOS RESOLVIDOS MOVIMENTOS CIRCULRES EXERCÍCIOS VNÇDOS RESOLVIDOS Equipe SEI, pensando em você, preparou este artio com exercícios resolvidos sobre movimentos circulares. ons estudos! 1. (F 009) Uma pessoa, brincando

Leia mais

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x,

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x, Elementos de Cálculo Dierencial Na aula anterior vimos a noção de derivada de uma unção. Supona que uma variável y seja dada como uma unção de uma outra variável, y ( ). Por eemplo, a variável y pode ser

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço.

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. 1 LIVRO Curvas Espaciais META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. PRÉ-REQUISITOS Funções vetoriais (Aula 08). Curvas Espaciais.1 Introdução Na aula

Leia mais

Volume de um sólido de Revolução

Volume de um sólido de Revolução Algumas aplicações da engenharia em estática, considerando um corpo extenso, e com distribuição continua de massa, uniforme ou não é necessário determinar-se e momento de inércia, centroide tanto de placas

Leia mais

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c. Volumes Paralelepípedo Retângulo Dado um retângulo ABCD num plano α, consideremos um outro plano β paralelo à α. À reunião de todos os segmentos P Q perpendiculares ao plano α, com P sobre ABCD e Q no

Leia mais

Física I. Aula 02: Movimento Retilíneo. Tópico 02: Velocidade; Movimento Retilíneo Uniforme

Física I. Aula 02: Movimento Retilíneo. Tópico 02: Velocidade; Movimento Retilíneo Uniforme Tópico 02: Velocidade; Movimento Retilíneo Uniforme Aula 02: Movimento Retilíneo Observe o movimento da tartaruga acima. Note que a cada segundo, ela anda 10cm e mantém sempre esse movimento. A velocidade

Leia mais

Trabalho. 1.Introdução 2.Resolução de Exemplos

Trabalho. 1.Introdução 2.Resolução de Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho Prof.: Rogério

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4

da dx = 2 x cm2 /cm A = (5 t + 2) 2 = 25 t t + 4 Capítulo 13 Regra da Cadeia 13.1 Motivação A área A de um quadrado cujo lado mede x cm de comprimento é dada por A = x 2. Podemos encontrar a taxa de variação da área em relação à variação do lado: = 2

Leia mais

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:

Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site: GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem

Leia mais

FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma:

FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma: FUNÇÃO DE º GRAU O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de º grua tem sempre a forma: y = ax + bx + c O gráfico da função é sempre uma parábola.

Leia mais

Nesta aula, continuaremos a estudar a parte da física que analisa o movimento, mas agora podem ser em duas ou três dimensões.

Nesta aula, continuaremos a estudar a parte da física que analisa o movimento, mas agora podem ser em duas ou três dimensões. Parte 1 Movimento em 2 ou 3 dimensões Nesta aula, continuaremos a estudar a parte da física que analisa o movimento, mas agora podem ser em duas ou três dimensões. 1 - Posição e Deslocamento A localização

Leia mais

13. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação.

13. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. 3. Taxa de variação Muitos conceitos e fenômenos físicos, econômicos, biológicos, etc. estão relacionados com taxa de variação. Definição : Taxa de variação média. Considere x variável independente e y

Leia mais

CÁLCULO I. Denir o trabalho realizado por uma força variável. Denir pressão e força exercidas por um uido.

CÁLCULO I. Denir o trabalho realizado por uma força variável. Denir pressão e força exercidas por um uido. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 3: Aplicações da Integral: Comprimento de Arco. Trabalho. Pressão e Força Hidrostática. Objetivos da Aula Denir comprimento

Leia mais

Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera

Resumo Geometria e medidas. Prismas e Cilindros Pirâmides e Cones Volume de uma pirâmide Volume da Esfera Projeto Teia do Saber: Fundamentando uma Prática de Ensino de Matemática Utilização do Computador no Desenvolvimento do Conteúdo Matemática do Ensino Médio Geometria 16 de outubro de 2004 Um entendimento

Leia mais

Lista 3. Funções de Uma Variável. Derivadas III

Lista 3. Funções de Uma Variável. Derivadas III Lista 3 Funções de Uma Variável Derivadas III Taxas Relacionadas 5 Uma esteira transportadora está descarregando cascalho a uma taxa de 30m 3 /min formando uma pilha na forma de cone com diâmetro da base

Leia mais

MOVIMENTO BIDIMENSIONAL

MOVIMENTO BIDIMENSIONAL Problemas esolvidos do Capítulo 3 MVIMENT BIDIMENSINAL Atenção Leia o assunto no livro-teto e nas notas de aula e reproduza os problemas resolvidos aqui. utros são deiados para v. treinar PBLEMA 1 Um projétil

Leia mais

Geometria Métrica Espacial

Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial

Leia mais

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos

SOLUÇÃO: sendo T 0 a temperatura inicial, 2P 0 a pressão inicial e AH/2 o volume inicial do ar no tubo. Manipulando estas equações obtemos OSG: 718-1 01. Uma pequena coluna de ar de altura h = 76 cm é tampada por uma coluna de mercúrio através de um tubo vertical de altura H =15 cm. A pressão atmosférica é de 10 5 Pa e a temperatura é de

Leia mais

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro

Leia mais

Prof. Neckel. Capítulo 5. Aceleração média 23/03/2016 ACELERAÇÃO. É a taxa média de variação de velocidade em determinado intervalo de tempo = =

Prof. Neckel. Capítulo 5. Aceleração média 23/03/2016 ACELERAÇÃO. É a taxa média de variação de velocidade em determinado intervalo de tempo = = Capítulo 5 ACELERAÇÃO Aceleração média É a taxa média de variação de velocidade em determinado intervalo de tempo = = Se > >0 <

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

A derivada de uma função

A derivada de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 A derivada de uma função Supona que a função f está definida em todo um intervalo aberto contendo o ponto a R. Dizemos que f é derivável no

Leia mais

6.3. Cálculo de Volumes por Cascas Cilíndricas

6.3. Cálculo de Volumes por Cascas Cilíndricas APLICAÇÕES DE INTEGRAÇÃO 6.3 Cálculo de Volumes por Cascas Cilíndricas Nesta seção aprenderemos como aplicar o método das cascas cilíndricas para encontrar o volume de um sólido. VOLUMES POR CASCAS CILÍNDRICAS

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

Soluções dos Problemas do Capítulo 4

Soluções dos Problemas do Capítulo 4 Soluções do apítulo 4 155 Soluções dos Problemas do apítulo 4 Problema 1 h 10 14 Figura 57 x Seja h a altura do Pão de çúcar em relação ao plano horizontal de medição e seja x a distância de ao pé da altura

Leia mais

Cálculo de Volumes por Cascas Cilíndricas

Cálculo de Volumes por Cascas Cilíndricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Cálculo de Volumes

Leia mais

25 Problemas de Óptica

25 Problemas de Óptica 25 Problemas de Óptica Escola Olímpica - Gabriel Lefundes 25 de julho de 2015 Problema 1. O ângulo de deflexão mínimo um certo prisma de vidro é igual ao seu ângulo de refração. Encontre-os. Dado: n vidro

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova REC - Gabarito 1. Considere um cilindro oco de massa, raio externo R e raio interno r. (a) (1,0) Calcule o momento de inércia desse cilindro com relação ao eixo

Leia mais

MOVIMENTO RETILÍNEO. Prof. Bruno Farias

MOVIMENTO RETILÍNEO. Prof. Bruno Farias CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I MOVIMENTO RETILÍNEO Prof. Bruno Farias Introdução Por que estudar mecânica? Porque o mundo,

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA *

SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA * SIMPLES DEMONSTRAÇÃO DO MOVIMENTO DE PROJÉTEIS EM SALA DE AULA * A. M. A. Taveira A. C. M. Barreiro V. S. Bagnato Instituto de Físico-Química USP São Carlos SP Resumo No Instituto de Física (USP), campus

Leia mais

GEOMETRIA ESPACIAL

GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.

Leia mais

Movimento em duas ou mais dimensões. Prof. Ettore Baldini-Neto

Movimento em duas ou mais dimensões. Prof. Ettore Baldini-Neto Movimento em duas ou mais dimensões Prof. Ettore Baldini-Neto A partir de agora, generalizamos a discussão que fizemos para o movimento retilíneo para mais dimensões. A grande diferença é que o cálculo

Leia mais

Superfícies (2) 1 Cilindro. Sadao Massago. 3 de novembro de Paramétrica. P curva. reta.

Superfícies (2) 1 Cilindro. Sadao Massago. 3 de novembro de Paramétrica. P curva. reta. Superfícies (2) Sadao Massago 3 de novembro de 2009 http://www.dm.ufscar.br/~sadao DM-UFSCar 1 Cilindro Dado uma e uma reta, podemos obter família de retas passando no ponto da e sendo paralela a reta

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh

d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh TURMA 202: Modelagem Matemática PRA3 Prof. José A. Dávalos Chuquipoma Questão LER 04 LISTA DE EXERCÍCIOS RESOLVIDOS 04 Data para submissão na Plataforma Moodle: 22/09/204 Um objeto de massa m = se encontra

Leia mais

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Mínimos Exercício 1 Determine os intervalos de crescimento e de decrescimento, calcule todos os limites necessários e esboce o gráfico de f, onde

Leia mais

Lei de Gauss Φ = A (1) E da = q int

Lei de Gauss Φ = A (1) E da = q int Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 1 Essa prova destina-se exclusivamente a alunos do 1 o e o anos e contém vinte (0) questões. Os alunos do 1 o ano devem escolher livremente oito (8) questões para

Leia mais

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS

CARACTERÍSTICAS GEOMETRICAS DE SUPERFICIES PLANAS CARACTERÍSTCAS GEOMETRCAS DE SUPERFCES PLANAS 1 CENTRÓDES E BARCENTROS 1.1 ntrodução Freqüentemente consideramos a força peso dos corpos como cargas concentradas atuando num único ponto, quando na realidade

Leia mais