Disciplina: Camada Limite Fluidodinâmica
|
|
|
- Nelson de Caminha Cesário
- 8 Há anos
- Visualizações:
Transcrição
1 Disciplina: Camada Limite Fluidodinâmica Escoamento em Canais 2ª Parte Prof. Fernando Porto
2 Condições Críticas e de Estagnação de Referência para Escoamento Isentrópico Já que o escoamento em estudo é considerado como isentrópico, podemos utilizar as equações relativas às condições de referência (críticas e de estagnação) para analisar as propriedades do fluxo. Para tanto, são necessários dois estados de referência, porque o estado de referência de estagnação não fornece informação de área (matematicamente a área de estagnação é infinita).
3 Relembrando: estas são as equações para determinação das propriedades locais de estagnação isentrópica. P 0, T 0, r 0 são propriedades de estagnação Estas equações são adequadas para o escoamento supersônico ou subsônico (M 1).
4 Para um fluxo transônico (M = 1), usamos as equações relativas às condições críticas para escoamentos isentrópicos. Os asteriscos denotam condições em que M = 1
5 Relacionam as condições críticas (asterisco) com as propriedades de estagnação (índice 0) Relacionam as propriedades locais com as propriedades de estagnação (índice 0) por meio do número de Mach Entretanto, este conjunto de equações não leva em consideração a área do escoamento. Para tanto, usa-se a equação da continuidade:. V. A =.. = constante
6 Esta equação agora relaciona a área do escoamento em condição crítica (asterisco) com a área do escoamento em que V = M.
7 Tabela E.1: Funções de Escoamento Isentrópico (escoamento unidimensional, gás ideal, k = 1,4)
8 Exemplo Ar escoa isentropicamente em um canal. Na seção 1, o número Mach é 0,3, a área é de 0,001m 2 e a pressão absoluta e a temperatura são respectivamente 650kPa e 62 o C. Na seção 2, o número Mach é de 0,8. (a) Esboce a forma do canal, (b) trace um diagrama Ts para o processo e (c) determine as propriedades na seção 2. (d) Verifique se os resultados concordam com as equações básicas 13.1 (reapresentadas no próximo slide). Dados: Seção 1: M 1 = 0,3; T 1 = 62 o C; p 1 = 650kPa; A 1 = 0,001m 2 Seção 2: M 2 = 0,8
9 constante = 0 SC s 2 s 1 = 0 Obs.: somente para gás ideal. =
10 (a) Sabe-se que o fluxo é subsônico e acelerado (M 1 = 0,3 e M 2 = 0,8). Observando o quadro a seguir, a opção correspondente a um fluxo subsônico, em conjunto com dv > 0, é a de um bocal subsônico convergente:
11 (b) Sabe-se que o gráfico Ts deve ser montado considerando s = constante (fluxo isentrópico), e que as condições de estagnação permanecem fixas para este tipo de escoamento. Será usado este conjunto de equações, pois estas relacionam as propriedades locais com as propriedades de estagnação (índice 0) por meio do número de Mach T 0 T 0 Temperatura de estagnação
12 (b) Com a temperatura de estagnação, encontra-se a temperatura na seção 2. T 0 Temperatura na seção 2.
13 (b) Com as temperaturas obtidas já seria possível desenhar o gráfico Ts, uma vez que, embora o autor do livro texto tenha apresentado no gráfico as curvas de pressão, estas não são estritamente imprescindíveis para a montagem do gráfico solicitado. 341 K 302 K
14 (c) Determinar as propriedades na seção 2 significa estimar a temperatura (já calculada), pressão, massa específica, fluxo de massa e área relativas à seção mencionada. Seguindo a mesma metodologia empregada nos itens a e b, estimase agora a pressão de estagnação e depois, a pressão na seção 2: p 0 p 0 p 0 p 2 = 454 kpa
15 (c) A massa específica na seção 2 pode ser calculada do mesmo modo, ou empregando a equação de estado do gás ideal, uma opção mais simples: A área da seção 2, por sua vez, é estimada através da equação 13.7d: Com A* é constante,
16 Observe que A 2 é menor que A 1 tal como esperado inicialmente (bocal subsônico convergente). Para finalizar, estima-se o fluxo de massa... =.. = constante
17 (d) Verifique se os resultados concordam com as equações básicas c 13.1f Uma equação envolvendo somente temperatura e velocidade, sem entalpia. Usando-se os valores calculados nos itens a, b e c, verifica-se que estes atendem às equações básicas 13.1 c e 13.1f.
18 (d) Verifique se os resultados concordam com as equações básicas g Usando-se novamente os valores calculados nos itens a, b e c, verifica-se que estes atendem à equação 13.1g.
19 Escoamento Isentrópico em um Bocal Convergente partindo do repouso O escoamento isentrópico partindo do repouso é uma condição típica em túneis de vento supersônicos intermitentes. Para iniciar um escoamento partindo do repouso, é necessário um diferencial de pressão, o que pode ser realizado através de um conjunto composto por um reservatório de gás comprimido (ar, neste caso), um bocal e uma válvula. Como esta análise é relacionada ao bocal convergente, será este o bocal empregado. Fluxo Para bomba de vácuo válvula
20 Através do estudo da equação 13.6 (abaixo) para escoamento subsônico (parte-se do repouso), sabe-se que para da < 0 (bocal estreitando-se, ou convergente), a velocidade é crescente, pois dv > 0. Entretanto, a própria equação indica que M = 1 não será alcançado nesta situação: = O valor de M = 1 somente poderá ser alcançado quando da = 0, ou seja, quando o duto for contínuo! Desta forma, pode ser afirmado que, partindo do repouso, a velocidade máxima a ser alcançada em um bocal convergente é M = 1.
21 Se existe uma velocidade máxima, existe também uma pressão máxima: bloqueio Esta pressão é chamada de pressão de bloqueio. Observa-se que, para se obter um fluxo em M = 1, sônico, a relação p*/p 0 é de 0,528, considerando k = 1,4. Isto significa que, no caso de uma pressão final igual à atmosférica, a contrapressão necessária para um escoamento sônico é de somente 53,4 kpa. Embora isto não seja difícil de ser obtido, o consumo de energia para manter este diferencial de pressão pode ser elevado.
22 Para a vazão máxima ou de bloqueio, temos: bloqueio Usando a equação de estado de gás ideal ( p = r.r.t ), e as equações 12.21a e 12.21b, relativas às razões entre pressões e temperaturas de estagnação e críticas, e sabendo que M = 1 e Ae = A*, temos bloqueio bloqueio
23 Atenção: É importante o entendimento de que, na condição de velocidade inicial zero e bocal convergente, a velocidade máxima a ser obtida é de Mach = 1. Isto significa que o fluxo é insensível a diferenciais de pressão superiores ao necessário para obter um fluxo em Mach = 1.
24 Exemplo Um bocal convergente, com área de garganta de 0,001 m2, é operado com ar a uma contrapressão de 591kPa (abs). O bocal é alimentado a partir de uma câmara pressurizada onde a pressão absoluta de estagnação e a temperatura são respectivamente 1,0MPa e 60 o C. (a) O número de Mach na saída e (b) a vazão mássica devem ser determinados. Dados: p b = p e
25 Item (a) Verificar se foi atingida ou ultrapassada a pressão de bloqueio. Menor que 0,528, não está bloqueado! Como p 0 é constante (pressão de estagnação), pode-se usar a equação 12.21a para calcular o número Mach (M e ) na saída:
26 Assim, 1,0 10 5,91 10 = 1 + 1,4-1. 2,, -, 1,0 10 5, = = 0,90
27 Item (b) Sabe-se que Então é necessário estimar a velocidade (temos o número de Mach) e a massa específica. (12.13) (12.18) Entretanto, verifica-se que para isto primeiro deve-se determinar a temperatura na saída. (12.1)
28 Item (b) A temperatura na saída pode ser determinada através da temperatura de estagnação (equação 12.21b):
29 Exemplo Ar escoa isentropicamente através de um bocal convergente. Em uma seção em que a área do bocal é 0,0012m 2, a pressão, a temperatura e o número de Mach locais são 413,4kPa (abs), 4,5 o C e 0,52, respectivamente. A contrapressão é de 206,7kPa (abs). Determinar (a) o número de Mach na garganta, (b) a vazão mássica e (c) a área da garganta. Dados: M 1 = 0,52 T 1 = 4,5 o C p 1 = 413,4kPa A 1 = 0,0012m 2 p b = 206,7kPa
30 Item (a) Verificar quanto à condição de bloqueio. Encontrar pressão de estagnação Verifica-se a razão entre a pressão de estagnação e a de saída. Caso seja menor que 0,528, o fluxo estará bloqueado. Neste caso, a velocidade máxima estará em Mach = 1.
31 Item (b) Vazão mássica pode ser determinada a partir das condições na seção 1, usando É necessário primeiro encontrar-se a velocidade e a massa específica:
32 Item (c) Área da garganta: Neste caso, a A* é a área da garganta A t, pois M t = M* = 1.
33 Bibliografia Robert W. Fox, Alan T. McDonald Introdução à Mecânica dos Fluidos. Rio de Janeiro RJ, 4ª.Ed.; Editora Afijada. ISBN-10: ISBN-13:
Disciplina: Sistemas Fluidomecânicos. Características de Desempenho 1ª Parte
Disciplina: Sistemas Fluidomecânicos Características de Desempenho 1ª Parte Características de Desempenho Para especificar uma máquina de fluxo, o engenheiro deve ter em mãos alguns dados essenciais: altura
Escoamentos Compressíveis. Capítulo 05 Escoamentos quaseunidimensionais
Escoamentos Compressíveis Capítulo 05 Escoamentos quaseunidimensionais 5. Introdução No escoamento quase-unidimensional, a área da seção transversal do escoamento é uma função da posição somente: A=A(x).
Disciplina: Sistemas Fluidomecânicos. Cavitação e Altura de Carga de Sucção Positiva Disponível 3ª Parte
Disciplina: Sistemas Fluidomecânicos Cavitação e Altura de Carga de Sucção Positiva Disponível 3ª Parte Exercício 10.68 (8ª Edição) Uma bomba no sistema mostrado retira água de um poço e lança-a num tanque
Disciplina: Sistemas Fluidomecânicos. Cavitação e Altura de Carga de Sucção Positiva Disponível 1ª Parte
Disciplina: Sistemas Fluidomecânicos Cavitação e Altura de Carga de Sucção Positiva Disponível 1ª Parte Cavitação e Altura de Carga A cavitação ocorre quando a pressão estática de um líquido decair para
Mecânica dos Fluidos Formulário
Fluxo volúmétrico através da superfície Mecânica dos Fluidos Formulário Fluxo mássico através da superfície Teorema do transporte de Reynolds Seja uma dada propriedade intensiva (qtd de por unidade de
DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS
Nome: unesp DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS Turma: Conservação da Massa e Quantidade de Movimento 1 - OBJETIVO Os principais objetivos desta aula prática é aplicar as equações
LISTA DE EXERCÍCIOS - FENÔMENO DE TRANSPORTES II. Revisão Conservação de Energia e Massa
LISTA DE EXERCÍCIOS - FENÔMENO DE TRANSPORTES II Revisão Conservação de Energia e Massa 1) Determinar a velocidade do jato de líquido no orifício do tanque de grande dimensões da figura abaixo. Considerar
Componentes dos ciclos termodinâmicos
Componentes dos ciclos termodinâmicos Componentes dos ciclos termodinâmicos Quais podem ser os componentes de um ciclo termodinâmico? Turbinas, válvulas, compressores, bombas, trocadores de calor (evaporadores,
Cap. 4: Análise de Volume de Controle
Cap. 4: Análise de Volume de Controle AR Ar+Comb. www.mecanicavirtual.org/carburador2.htm Cap. 4: Análise de Volume de Controle Entrada, e Saída, s Conservação da Massa em um Sistema dm dt sist = 0 Conservação
Capítulo 4 Equação da energia para escoamento permanente
Capítulo 4 Equação da energia para escoamento permanente ME4310 e MN5310 23/09/2009 OBJETIVO DA AULA DE HOJE: RESOLVER O EXERCÍCIO A SEGUIR: Determine a carga mecânica total na seção x do escoamento representada
Lista de Exercícios Solução em Sala
Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão
Lista de problemas número 1. Exercícios de Refrigeração e Psicrometria A) REFRIGERAÇÃO
Lista de problemas número 1 Exercícios de Refrigeração e Psicrometria A) REFRIGERAÇÃO 1) Determinar as propriedades do R-134 nas seguintes condições: a) t = - 40 o C x = 1 b) p = 1 MPa t = 80 0 C c) p
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL CURSOS DE ENGENHARIA DE ENERGIA E MECÂNICA MEDIÇÕES TÉRMICAS Prof. Paulo Smith Schneider
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL CURSOS DE ENGENHARIA DE ENERGIA E MECÂNICA MEDIÇÕES TÉRMICAS Prof. Paulo Smith Schneider Exercícios sobre medição de vazão Considere um grande reservatório (figura
Mas Da figura, temos:
1. Na tubulação da figura 1, óleo cru escoa com velocidade de 2,4 m/s no ponto A; calcule até onde o nível de óleo chegará no tubo aberto C. (Fig.1). Calcule também a vazão mássica e volumétrica do óleo.
ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR
ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR M. H. MARTINS 1, A. KNESEBECK 1 1 Universidade Federal do Paraná, Departamento de Engenharia Química E-mail para contato: [email protected]
PME/EP/USP. Prof. Antonio Luiz Pacífico
Exercícios PME 3230 - Mecânica dos Fluidos I PME/EP/USP Prof. Antonio Luiz Pacífico 2 Semestre de 2016 PME 3230 - Mecânica dos Fluidos I (EP-PME) Exercícios 2 Semestre de 2016 1 / 20 Conteúdo da Aula 1
CINEMÁTICA DOS FLUIDOS
UNIVERSIDADE FEDERAL DE PELOTAS - UFPEL CENTRO DE ENGENHARIAS - CENG DISCIPLINA: MECÂNICA DOS FLUIDOS CINEMÁTICA DOS FLUIDOS Prof. Dr. Hugo Alexandre Soares Guedes E-mail: [email protected] wp.ufpel.edu.br/hugoguedes
Um ejetor a vapor de simples estágio é composto por três partes básicas: bico motriz, câmara de sucção e difusor. Na construção dos ejetores poderão
EJETORES 1 Um ejetor a vapor de simples estágio é composto por três partes básicas: bico motriz, câmara de sucção e difusor. Na construção dos ejetores poderão ser usadas peças fundidas, usinadas ou feitas
1ª Lei da Termodinâmica lei da conservação de energia
1ª Lei da Termodinâmica lei da conservação de energia É de bastante interesse em análises termodinâmicas conhecer o balanço energético dos sistemas, principalmente durante trocas de estado A 1ª Lei da
DEPARTAMENTO DE ENERGIA LABORATÓRIO DE MECÂNICA DOS FLUIDOS MEDIDAS DE VELOCIDADE E VAZÃO
Nome: unesp DEPARTAMENTO DE ENERGIA Turma: 1 - OBJETIVO LABORATÓRIO DE MECÂNICA DOS FLUIDOS MEDIDAS DE VELOCIDADE E VAZÃO Familiarização com as técnicas para a medidas de velocidades e vazões de fluidos.
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada 6) Primeira Lei da Termodinâmica para volume de controle 1 v. 2.4 Introdução Os princípios básicos que nos são importantes estão escritos para um sistema. Assim, temos as
onde v m é a velocidade média do escoamento. O 2
Exercício 24: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de 2 m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo
Introdução à Mecânica dos Fluidos
Introdução à Mecânica dos Fluidos Definição de Fluido A mecânica dos fluidos lida com o comportamento dos fluidos em repouso e em movimento. Um fluido é uma substância que se deforma continuamente sob
2 BIMESTRE. Pressão absoluta e pressão manométrica
2 BIMESTRE Pressão absoluta e pressão manométrica Para algumas grandezas em hidrostática, tais como em algumas grandezas em Mecânica, muitas vezes o que tem importância é a variação de uma grandeza, ou
Análise Diferencial dos Movimentos dos Fluidos
Análise Diferencial dos Movimentos dos Fluidos As equações na forma diferencial aplicam-se quando: 1. estamos interessados no comportamento detalhado de um campo de escoamento, ponto a ponto, e 2. desejamos
Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;
Tubo de Pitot Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada; Desvantagem: Diversas tecnologias, o que dificulta a calibração do equipamento (de
Escoamento em uma curva:
Escoamento em uma curva: A vazão de ar nas condições padrões, num duto plano, deve ser determinada pela instalação de tomadas de pressão numa curva. O duto tem 0,3 m de profundidade por 0,1 m de largura.
ESCOAMENTOS UNIFORMES EM CANAIS
ESCOAMENTOS UNIFORMES EM CANAIS Nome: nº turma INTRODUÇÃO Um escoamento em canal aberto é caracterizado pela existência de uma superfície livre. Esta superfície é na realidade uma interface entre dois
FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1
FENÔMENOS DE TRANSPORTES AULA 1 FLUIDOS PARTE 1 PROF.: KAIO DUTRA Definição de Um Fluido Definição elementar: Fluido é uma substância que não tem uma forma própria, assume o formato do meio. Definição
Exercício 9 Água escoa do reservatório 1 para o 2 no sistema mostrado abaixo. Sendo:
1 a LIST DE EXERCÍCIOS DE SISTEMS FLUIDO MECÂNICOS 014 Referências: 1) Giles, Evett & Liu - Mecânica dos Fluidos e Hidráulica Coleção Schaum, a edição, Makron ooks, 1997. ) Fox e McDonald Introdução à
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos
FUNDAMENTAÇÃO HIDROMECÂNICA Princípios Básicos Sistemas Hidráulicos podem ser descritos por leis que regem o comportamento de fluidos confinados em: regime permanente (repouso) invariante no tempo; regime
Fenômeno de Transportes A PROFª. PRISCILA ALVES
Fenômeno de Transportes A PROFª. PRISCILA ALVES [email protected] Proposta do Curso Critérios de Avaliação e Recuperação Outras atividades avaliativas Atividades experimentais: Será desenvolvida
TERMODINÂMICA. Propriedades Independentes de uma Substância Pura
UNIVERSIDADE FEDERAL RURAL DO SEMI - ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS TERMODINÂMICA Um motivo importante para a introdução do conceito de substância pura é que o estado de uma substância pura
EM34B Mecânica dos Fluidos 1
EM34B Mecânica dos Fluidos 1 Prof. Dr. André Damiani Rocha [email protected] Aula 01 Parte I: Apresentação do PE 2 Aula 01 Apresentação do Plano de Ensino Sumário Objetivos Ementa Conteúdo Programático
Problema 1 Problema 2
1 Problema 1 7ª Edição Exercício: 2.42 / 8ª Edição Exercício: 1.44 A área da seção transversal da válvula do cilindro mostrado na figura abaixo é igual a 11cm 2. Determine a força necessária para abrir
Tubo de Pitot. É um tubo aberto dirigido contra a corrente do fluido, tendo na outra extremidade, um manômetro que indica diretamente a pressão total.
Tubo de Pitot É um tubo aberto dirigido contra a corrente do fluido, tendo na outra extremidade, um manômetro que indica diretamente a pressão total. Tubo de Pitot Imagem extraída do sítio: http://es.wikipedia.org/wiki/tubo_de_pitot
Aula 02 : EM-524. Capítulo 2 : Definições e Conceitos Termodinâmicos
Aula 02 : EM-524 Capítulo 2 : Definições e Conceitos Termodinâmicos 1. Termodinâmica Clássica; 2. Sistema Termodinâmico; 3. Propriedades Termodinâmicas; 4. As propriedades termodinâmicas pressão, volume
1.Introdução. hidráulica (grego hydoraulos) hydor = água; aulos = tubo ou condução.
1.Introdução hidráulica (grego hydoraulos) hydor = água; aulos = tubo ou condução. Conceito : hidráulica é o ramo da engenharia que estuda a condução da água, seja através de tubulações fechadas, seja
Nota: Campus JK. TMFA Termodinâmica Aplicada
TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização
AVALIAÇÃO DO ESCOAMENTO DOS GASES EM UM MOTOR DE FOGUETE HÍBRIDO POR MEIO DE SIMULAÇÕES NUMÉRICAS.
AVALIAÇÃO DO ESCOAMENTO DOS GASES EM UM MOTOR DE FOGUETE HÍBRIDO POR MEIO DE SIMULAÇÕES NUMÉRICAS. Luan Henrique dos Santos Oliveira Fábio Alfaia da Cunha [email protected] [email protected] Faculdade
A viscosidade 35 Grandeza física transporta e sentido da transferência 35 Experiência 03: o modelo do baralho 35 Modelo de escoamento em regime
SUMÁRIO I. Introdução Portfolio de Fenômenos de Transporte I 1 Algumas palavras introdutórias 2 Problema 1: senso comum ciência 4 Uma pequena história sobre o nascimento da ciência 5 Das Verdades científicas
UTFPR Termodinâmica 1 Avaliando Propriedades Termodinâmicas
UTFPR Termodinâmica 1 Avaliando Propriedades Termodinâmicas Princípios de Termodinâmica para Engenharia Capítulo 3 Parte 2 Tabelas de Saturação As Tabelas A-2 e A-3 listam os valores de propriedades para
Efeito da geometria do bocal divergente sobre o empuxo de motor-foguete operando no vácuo
Trabalho apresentado no III CMAC - SE, Vitória-ES, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Efeito da geometria do bocal divergente sobre o empuxo de motor-foguete
Eficiência em Processos. Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: W resultante Q
Eficiência em Processos Vimos que para um ciclo, no caso um motor térmico, a eficiência é dada por: η térmica W resultante Q H Entretanto, para um processo a definição de eficiência envolve uma comparação
Dinâmica de gases. Capítulo 04 Choques oblíquos e ondas de expansão
Dinâmica de gases Capítulo 04 Choques oblíquos e ondas de expansão 4. Introdução Choques normais são um caso especial de uma família de ondas oblíquas que ocorrem em escoamentos supersônicos. Choques oblíquos
LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE
LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE A - Viscosidade 1. (Exercício 1.1, pág. 11, Brunetti) A viscosidade cinemática ν de um óleo é de 0,028 m 2 /s e o seu peso específico relativo r é de 0,85.
CAPÍTULO VI: HIDRODINÂMICA
CAPÍTULO VI: HIDRODINÂMICA Aula 01 Equação de Euler Hipóteses Simplificadoras para a dedução da Equação de Bernoulli Equação de Bernoulli Significado dos termos da Equação de Bernoulli Representação gráfica
Capítulo 3: Propriedades de uma Substância Pura
Capítulo 3: Propriedades de uma Substância Pura Substância pura Princípio de estado Equilíbrio de fases Diagramas de fases Equação de estado do gás ideal Outras equações de estado Outras propriedades termodinâmicas
3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:
1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total
Análise do Volume de Controle
ሶ ሶ Professor Dr. Evandro Rodrigo Dário Análise do Volume de Controle Conservação da Massa para um volume de Controle A taxa de massa contida no interior do volume de controle no instante t Taxa de escoamento
TM-182 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO. Prof. Dr. Rudmar Serafim Matos
Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica TM-82 REFRIGERAÇÃ ÇÃO O E CLIMATIZAÇÃ ÇÃO Prof. Dr. Rudmar Serafim Matos 2.5 EXEMPLOS ILUSTRATIVOS Procedimentos para
FENÔMENOS DE TRANSPORTES AULA 7 E 8 EQUAÇÕES DA ENERGIA PARA REGIME PERMANENTE
FENÔMENOS DE TRANSPORTES AULA 7 E 8 EQUAÇÕES DA ENERGIA PARA REGIME PERMANENTE PROF.: KAIO DUTRA Equação de Euler Uma simplificação das equações de Navier-Stokes, considerando-se escoamento sem atrito
EM-524 Fenômenos de Transporte
EM-524 Fenômenos de Transporte Livro : Introdução às Ciências Térmicas F.W. Schmidt, R.E. Henderson e C.H. Wolgemuth Editora Edgard Blücher Denilson Boschiero do Espirito Santo DE FEM sala : ID301 [email protected]
Experiência 6 - Perda de Carga Distribuída ao Longo de
Experiência 6 - Perda de Carga Distribuída ao Longo de Tubulações Prof. Vicente Luiz Scalon 1181 - Lab. Mecânica dos Fluidos Objetivo: Medida de perdas de carga linear ao longo de tubos lisos e rugosos.
Professor: José Junio Lopes
Aula 1 Propriedades de um Fluido: Massa Específica, Peso Específico, Massa Específica Relativa 1. Sabendo-se que 1500kg de massa de uma determinada substância ocupa um volume de 2 m³, determine a massa
Lista de Exercícios de Operações Unitárias I
Lista de Exercícios de Operações Unitárias I Bombas Prof. Dra. Lívia Chaguri Monitor Victor Ferreira da Motta L. Fonseca ¹Exercício 1) Considere a instalação mostrada na Figura 1. Azeite de Oliva a 20
Dinâmica de Gases. Capítulo 01 Introdução aos escoamentos compressíveis: conceitos fundamentais, histórico e relações termodinâmicas
Dinâmica de Gases Capítulo 01 Introdução aos escoamentos compressíveis: conceitos fundamentais, histórico e relações termodinâmicas 1 1.1 Conceitos fundamentais Fluido: consiste em uma substância que não
LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas
- 1 - LISTA DE EXERCÍCIOS Trabalho, Calor e Primeira Lei da Termodinâmica para Sistemas 1. Um aquecedor de ambientes a vapor, localizado em um quarto, é alimentado com vapor saturado de água a 115 kpa.
Resumo de exercícios de bombas. Exercício 1
Resumo de exercícios de bombas Exercício 1 Considere uma bomba centrífuga cuja geometria e condições de escoamento são : Raio de entrada do rotor = 37,5 mm, raio de saída = 150 mm, largura do rotor = 12,7
HGP Prática 8 30/1/ HIDRÁULICA GERAL PRÁTICA N 8
HGP Prática 8 30//03 4 ) TEMA: Medidas de velocidades de fluidos. HIDRÁULICA GERAL PRÁTICA N 8 ) OBJETIOS: Avaliação das velocidades de fluidos gasosos e líquidos em escoamento, por meio de tubo de Pitot
Escola Politécnica da Universidade de São Paulo. Aula 12 Ciclo Otto e Ciclo Diesel
Escola Politécnica da Universidade de São Paulo Aula 12 Ciclo Otto e Ciclo Diesel Ciclo de Potência dos Motores Alternativos Deslocamento de todos cilindros: V desl =N ciclo (V max V min )=N ciclo A ciclo
Funções de várias variáveis
GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis
Universidade Estadual do Sudoeste da Bahia
Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais Mecânica dos Fluidos Física II Prof. Roberto Claudino Ferreira ÍNDICE ) - Introdução; ) - Densidade; 3) - Pressão;
I. Propriedades Termodinâmicas de Fluidos
I. Propriedades Termodinâmicas de Fluidos 1 OBJETIVOS Identificar o critério para o equilíbrio em sistemas sujeitos a diferentes restrições Determinar a estabilidade dos sistemas termodinâmicos. Aplicações:
Fluidos - Dinâmica. Estudo: Equação da Continuidade Equação de Bernoulli Aplicações
Fluidos - Dinâmica Estudo: Equação da Continuidade Equação de Bernoulli Aplicações Dinâmica em Fluido Ideal Nosso fluido ideal satisfaz a quatro requisitos: 1. Escoamento laminar: a velocidade do fluido
1 Transformada de Legendre
1 Transformada de Legendre No caso da parede porosa a pressão constante a quantidade se conserva. Além disso H = U + P V dh = du + P dv + V dp du = dq + dw = dq dh = dq + V dp P dv escrevendo H = H (P;
TERMODINÂMICA APLICADA
TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke / Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho [email protected] Juiz de Fora
Décima aula de FT. Segundo semestre de 2013
Décima aula de FT Segundo semestre de 2013 Vamos eliminar a hipótese do fluido ideal! Por que? Simplesmente porque não existem fluidos sem viscosidade e para mostrar que isto elimina uma situação impossível,
Escoamento completamente desenvolvido
Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo
diâmetro) e todas as outras perdas podem ser estimadas como: 0, 2
Exercício 59: (adaptado do exercício 4.60 de Fox) O bocal mostrado na figura ao lado descarrega à atmosfera uma lâmina d água a 20 oc por um arco de 180o. A velocidade da lâmina de água é 15 m/s e a espessura
ESZO Fenômenos de Transporte
Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre 1, sala 637 Propriedades Termodinâmicas Propriedades Termodinâmicas
ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE Capítulo 11 Trocadores de Calor
ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE 2015 Capítulo 11 Trocadores de Calor Tópicos Tipos de trocadores de calor; O coeficiente global de transferência de calor; Análise térmica de trocadores
a) pressão máxima do ciclo; b) rendimento térmico; c) pressão média
Lista 1 de Motores de Combustão Interna 1. Para alguns motores Diesel é adequada a representação do ciclo motor segundo um ciclo dual, no qual parte do processo de combustão ocorre a volume constante e
MEDIDAS DE PERDA DE CARGA DISTRIBUIDA
MEDIDAS DE PERDA DE CARGA DISTRIBUIDA - OBJETIVO Consolidar o conceito de perda de carga a partir do cálculo das perdas distribuídas e localizadas em uma tubulação. - INTRODUÇÃO TEÓRICA.. PERDA DE CARGA
HIDROMET RIA ORIFÍCIOS E BOCAIS
HIDROMET RIA ORIFÍCIOS E BOCAIS MEDIÇÃO DAS VAZÕES: MÉTODO DIRETO Vazão ( Q ) = Volume Tempo ( v ) ( T ) O volume v pode ser dado em litros ou metros cúbicos e o tempo T em minutos ou segundos, dependendo
ANÁLISE DE PERDAS EM ESCOAMENTOS DENTRO DE
Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade [email protected] ANÁLISE DE PERDAS EM ESCOAMENTOS DENTRO DE TUBULAÇÕES
Conservação de quantidade de movimento angular: aplicações em turbomáquinas
Conservação de quantidade de movimento angular: aplicações em turbomáquinas Paulo R. de Souza Mendes Grupo de Reologia Departamento de Engenharia Mecânica Pontifícia Universidade Católica - RJ agosto de
LISTA DE EXERCÍCIOS Máquinas Hidráulicas
LISTA DE EXERCÍCIOS Máquinas Hidráulicas 1- Água escoa em uma tubulação de 50 mm de diâmetro a uma vazão de 5 L/s. Determine o número de Reynolds nestas condições, informe se o escoamento é laminar ou
PROGRAD / COSEAC ENGENHARIA ELÉTRICA - GABARITO
Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Seja R a região interior ao círculo x y 4 e seja f definida f ( x, y) y 4 x. Calcule R f ( x, y) dx. dy. O gráfico de f é um hemisfério de raio
DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS DETERMINAÇÃO DA VELOCIDADE E VAZÃO DOS GASES. Método de ensaio
CETESB DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS DETERMINAÇÃO DA VELOCIDADE E VAZÃO DOS GASES Método de ensaio L9.222 MAI/92 SUMÁRIO Pág. 1 Objetivo...1 2 Normas complementares...1 3 Definições...1 4 Apare1hagem...2
AULA 02 - DESEMPENHO DAS BOMBAS CENTRÍFUGAS
AULA 02 - DESEMPENHO DAS BOMBAS CENTRÍFUGAS 1 Objetivos Determinar o ponto de trabalho de uma bomba centrífuga: vazão, altura manométrica, potência consumida e eficiência. 2 Características do sistema
Módulo I Ciclo Rankine Ideal
Módulo I Ciclo Rankine Ideal Sistema de Potência a Vapor As usinas de potência a vapor são responsáveis pela produção da maior parte da energia elétrica do mundo. Porém, para o estudo e desenvolvimento
PREFÁCIO À PRIMEIRA EDIÇÃO NOTA DOS AUTORES NOTA DOS AUTORES À TERCEIRA EDIÇÃO CAPÍTULO 1 - INTRODUÇÃO. CONCEITOS FUNDAMENTAIS
PREFÁCIO À PRIMEIRA EDIÇÃO NOTA DOS AUTORES NOTA DOS AUTORES À TERCEIRA EDIÇÃO CAPÍTULO 1 - INTRODUÇÃO. CONCEITOS FUNDAMENTAIS 1.1 - Noções preliminares. O conceito de fluido 1.2 - Da natureza discreta
TERMODINÂMICA APLICADA CAPÍTULO 2
TERMODINÂMICA APLICADA CAPÍTULO 2 PROPRIEDADES DAS SUBSTÂNCIAS PURAS SUMÁRIO Neste capítulo o conceito de substância pura é introduzido e as várias fases, bem como as propriedades físicas dos processos
Escola Politécnica da Universidade de São Paulo. Termodinâmica. Ciclos motores a vapor
Termodinâmica Ciclos motores a vapor 1 v. 1.1 Por que estudar ciclos? Pergunta: Quanto custa operar uma usina termelétrica de 1000 MW de potência elétrica, queimando combustível fóssil, operando segundo
Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 18 Exercícios Complementares Tópicos Abordados Nesta Aula. Exercícios Complementares. 1) A massa específica de uma determinada substância é igual a 900kg/m³, determine o volume ocupado por uma massa
Enquanto o sólido deforma limitadamente, os fluidos (líquidos e gases) se deformam continuamente.
MECÂNICA DO FLUIDOS CAPÍTULO 1 INTRODUÇÃO, DEFINIÇÃO E CONCEITOS. É a ciência que estuda o comportamento físico dos fluidos e as leis que regem este comportamento. Utilizado em diversos sistemas como:
Energética Industrial
Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,
Equação da Energia Mecânica para Fluidos
Professor: Andouglas Gonçalves da Silva Júnior Instituto Federal do Rio Grande do Norte Curso: Técnico em Mecânica Disciplina: Mecânica dos Fluidos 21 de Setembro de 2016 (Instituto Mecânica dos Fluidos
Grupos formados por três alunos da disciplina. Prof. Dr. Washington Orlando Irrazabal Bohorquez
MEC010 TRANSFERÊNCIA DE CALOR Projeto: Dimensionamento dos trocadores de calor de uma caldeira de recuperação Grupos formados por três alunos da disciplina Prof. Dr. Washington Orlando Irrazabal Bohorquez
Unidade Curricular: Física Aplicada
Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial n.º 3 (1.ª parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE
Mecânica dos Fluidos
Mecânica dos Fluidos Estática dos Fluidos Prof. Universidade Federal do Pampa BA000200 Campus Bagé 12 e 13 de março de 2017 Estática dos Fluidos 1 / 28 Introdução Estática dos Fluidos 2 / 28 Introdução
PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS
PME 2378 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS CALOR E TRABALHO ALBERTO HERNANDEZ NETO 1/60 Calor (Q) : energia em trânsito devido a diferença de temperatura não associada a transferência de massa 1 B C A 2
Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente.
Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente. Bocais e Difusores São normalmente utilizados em motores
VPT10-H TRANSMISSOR DE PRESSÃO HART. Transmissor a 2 Fios com Protocolo de Comunicação HART 7. LCD de 5 dígitos, rotativo, multifuncional com bargraph
VPT10-H TRANSMISSOR DE PRESSÃO HART Transmissor a 2 Fios com Protocolo de Comunicação HART 7 LCD de 5 dígitos, rotativo, multifuncional com bargraph 7 Faixas de Pressão: 765 mmh2o a 210 kgf/cm 2 2 Classes
Fluidodinâmica. Carlos Marlon Santos
Fluidodinâmica Carlos Marlon Santos Fluidodinâmica Os fluidos podem ser analisados utilizando-se o conceito de sistema ou de volume de controle O sistema é definido quando uma certa quantidade de matéria
Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Pressão, temperatura, volume, coeficiente de expansão térmica, coeficiente de compressibilidade,
