Conjuntos numéricos. Prof.ª: Aline Figueirêdo Nascimento

Tamanho: px
Começar a partir da página:

Download "Conjuntos numéricos. Prof.ª: Aline Figueirêdo Nascimento"

Transcrição

1 Conjuntos numéricos Prof.ª: Aline Figueirêdo Nascimento

2 Introdução É indiscutível que os números exercem influência marcante no dia a dia dos seres humanos. Na economia global, por exemplo, os indicadores de índices e porcentagens nos permitem fazer a leitura e a análise dos resultados alcançados e, consequentemente, prever possíveis mudanças econômicas e sociais em nosso planeta.

3 Retomando os conjuntos dos números naturais, inteiros e racionais(pág. 4)

4 Os conjuntos numéricos já estudados são...

5

6 Relações aplicadas aos conjuntos numéricos Relação de pertinência Relação de inclusão

7 Conjuntos numéricos

8

9

10 Fração geratriz de uma dízima periódica São chamados de dízimas periódicas os números decimais não exatos que apresentam, na parte decimal, algarismos que se repetem periodicamente e infinitamente. Por exemplo:

11 Fração geratriz de uma dízima periódica Denomina-se fração geratriz a fração que gera ou dá origem a uma dízima periódica. Exemplos:

12 Exemplo:

13 Nem sempre a parte decimal apresenta apenas os algarismos do período. Então, o que deve ser feito quando a dízima apresentar outros algarismos que não os do período na parte decimal? É fácil! Basta estabelecer uma equação e resolvê-la, conforme os exemplos:

14 Exemplos: a) 0, Algarismo do período: 5 Algarismo não periódico: 1 Fração geratriz procurada: x x= 0, Procedimentos:

15 Exemplos: b) 3, Algarismo do período:1 Algarismo não periódico: 2 Fração geratriz procurada: x x= 3, Procedimentos:

16 Exemplos: c) 0, Algarismo do período:3 Algarismo não periódico: 1 e 2 Fração geratriz procurada: x x= 0, Procedimentos:

17 O número de ouro: curiosidade ou coincidência?

18 Durante anos o homem procurou a beleza perfeita, a proporção ideal. Os gregos criaram então o retângulo de ouro. Era um retângulo, com proporções: o lado maior dividido pelo lado menor e a partir dessa proporção tudo era construído. Assim eles fizeram o Parthenon. A proporção do retângulo que forma a face central e lateral, a profundidade dividida pelo comprimento ou altura, tudo seguia uma proporção ideal de 1,618.

19 Os Egípcios fizeram o mesmo com as pirâmides: cada pedra era 1,618 menor do que a pedra de baixo, a de baixo era 1,618 maior que a de cima, que era 1,618 maior que a da 3.ª fileira e assim por diante. Durante milénios, a arquitetura clássica grega prevaleceu. O retângulo de ouro era padrão, mas depois de muito tempo - veio a construção gótica com formas arredondadas, que não utilizavam o retângulo de ouro grego.

20 Mas no ano 1200, Leonardo Fibonacci um matemático que estudava o crescimento das populações de coelhos, criou aquela que é provavelmente a mais famosa sequência matemática, a série Fibonacci. A partir de 2 coelhos, Fibonacci foi contando como eles aumentavam a partir da reprodução de várias gerações e chegou a uma sequência, onde um número é igual à soma dos dois números anteriores: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

21 Aí entra a 1.ª "coincidência": a proporção de crescimento média da série é 1,618. Os números variam, um pouco acima às vezes, em outras um pouco abaixo, mas a média é 1,618 - exatamente a proporção das pirâmides do Egito e do retângulo de ouro dos gregos. Então, essa descoberta de Fibonacci abriu uma nova ideia de tal proporção, a ponto de os cientistas começaram a estudar a natureza em termos matemáticos e começaram a descobrir coisas fantásticas.

22 Por exemplo: - A proporção de abelhas fêmeas em comparação com abelhas machos numa colmeia é de 1, A proporção que aumenta o tamanho das espirais de um caracol é de 1, A proporção em que aumenta o diâmetro das espirais sementes de um girassol é de 1, A proporção em que se diminuem as folhas de uma árvore a medida que subimos de altura é de 1,618.

23 E não só na Terra se encontra tal proporção. Nas galáxias, as estrelas se distribuem em torno de um astro principal numa espiral obedecendo à proporção de 1,618. Por isso, o número phi ficou conhecido como a divina proporção.

24 Por que é que os historiadores religiosos descrevem que foi a beleza perfeita que Deus teria escolhido para fazer o mundo? Por volta de 1500, com o retorno do Renascentismo, a cultura clássica voltou à moda.

25 Michelangelo e, principalmente Leonardo da Vinci, grandes amantes da cultura pagã, colocaram esta proporção natural em suas obras. Mas Da Vinci foi ainda mais longe: ele, como cientista, usava cadáveres para medir a proporção do seu corpo e descobriu que nenhuma outra coisa obedece tanto a divina proporção do que o corpo humano, obra prima de Deus.

26 Por exemplo: - Meça a sua altura e depois divida pela altura do seu umbigo até o chão: o resultado é 1, Meça seu braço inteiro e depois divida pelo tamanho do seu cotovelo até o dedo: o resultado é 1, Meça seus dedos, ele inteiro dividido pela dobra central até a ponta ou da dobra central até a ponta dividido pela segunda dobra: o resultado é 1, Meça sua perna inteira e divida pelo tamanho do seu joelho até o chão. O resultado é 1, A altura do seu crânio dividido pelo tamanho da sua mandíbula até o alto da cabeça dá 1, Da sua cintura até a cabeça e depois divida só pelo altura do tórax: o resultado é 1,618. Considere sempre erros de medida da régua ou fita métrica, que não são objetos acurados de medição.

27 Tudo, cada osso do corpo humano é regido pela divina proporção. Coelhos, abelhas, caramujos, constelações, girassóis, árvores, arte e o homem, coisas teoricamente diferentes, são todas ligadas numa proporção em comum. Encontramos ainda o número phi em famosas sinfonias como a 9.ª de Beethoven, e em outras diversas obras. Então, tudo isto, seria uma mera coincidência?"

28 O número de ouro: curiosidade ou coincidência?

29 O número de ouro é representado pela letra fi (ϕ) e é um número irracional. Todo número cuja representação decimal é infinita e não periódica é chamada de número irracional.

30

31 O número de ouro: φ

32 O número de ouro: φ

33

34 Um número irracional especial

35

36

37 Um número é denominado de irracional e pertencerá ao conjunto dos números irracionais, quando não for possível representálo como quociente entre dois números inteiros a e b, com b 0. Exemplo: Todas as raízes quadradas de números naturais que não são quadrados perfeitos: 7; 3; 21; 32. Algumas raízes cúbicas, quartas, entre outras: ; 2; 7; 5; 4 7.

38

39 Qual é o animal com mais de 3 e menos de 4 olhos?

40 πolho

41 Chaves quanto você tirou em Matemática?

42 Um número irracional especial: π

43 Dentre os números irracionais, o mais famoso é o pi, representado pela letra grega π, que tem o seu valor expresso por 3,

44

45

46 Números reais A reunião entre os elementos do conjunto dos números racionais ( Q ) e os elementos do conjunto dos números irracionais (I) resulta em um novo conjunto: o conjunto dos números reais, representado por R.

47 Números reais Simbolicamente: R = Q I.

48 Revisando Conteúdo: Grandezas e medidas Professora: Aline Figueirêdo.

49 Ângulos complementares e suplementares COMPLEMENTARES: são ângulos na qual a soma de suas medidas é igual a 90º e neste caso, um ângulo é o complemento do outro. Ex.: 40 º e 50 o (40+50=90) ou 37 o e 53 o (37+53=90) ou 20 o e 70 o (20+70=90)...

50 Ângulos complementares e suplementares SUPLEMENTARES: são ângulos na qual a soma de suas medidas é igual a 180º e neste caso, um ângulo é o suplemento do outro. Ex.: 50 o e 130 o (50+130=180) ou 71 o e 109 º (71+109=180) ou 80 o e 100 o (80+100=180)...

51 Ângulos congruentes Ângulos que possuem a mesma medida são chamados de congruentes. O símbolo de congruência é.

52 O.P.V. Dois ângulos opostos pelo vértice são congruentes.

53 Bissetriz Bissetriz é a semirreta com origem no vértice de um ângulo e que o divide em dois ângulos de mesma medida (congruentes).

54 Exemplo 1: Calcule o valor de x na figura a seguir:

55 Exemplo 2: Calcule o valor de x na figura.

56 Exemplo 3: Calcule o valor dos ângulos a seguir:

57 Graus, minutos e segundos O minuto, cuja notação é ('), é a sexagésima parte do grau, ou seja: 1º = 60' E o segundo, cuja notação é ("), é a sexagésima parte do minuto, ou seja: 1' = 60"

58 Graus, minutos e segundos Exemplo 1: Transforme 260 em graus: Exemplo 2: Transforme 1800 em minutos. Exemplo 3: Transforme 7º 30 em minutos.

59 Referências GIOVANNI. CASTRUCI. GIOVANNI JR. A Conquista da Matemática, 7ª Série. São Paulo; ed. FTD, IEZZI, Gelson. DOLCE, Osvaldo. MACHADO, Antonio. Matemática e Realidade, 7ª série. São Paulo; ed. Atual, IMENES. LELLIS. Matemática, 7ª Série. Editora Ática, dam/geometria/geo-ang.htm#m112b15

Conjuntos numéricos. Prof.ª: Aline Figueirêdo Nascimento

Conjuntos numéricos. Prof.ª: Aline Figueirêdo Nascimento Conjuntos numéricos Prof.ª: Aline Figueirêdo Nascimento Introdução É indiscutível que os números exercem influência marcante no dia a dia dos seres humanos. Na economia global, por exemplo, os indicadores

Leia mais

O Número de Ouro e a Divina Proporção

O Número de Ouro e a Divina Proporção O Número de Ouro e a Divina Proporção Patricia Camara Martins 1 1 Colegiado do Curso de Matemática Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná Caixa Postal 711

Leia mais

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides. Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

PROFESSOR: ALEXSANDRO DE SOUSA

PROFESSOR: ALEXSANDRO DE SOUSA E.E. Dona Antônia Valadares MATEMÁTICA 1º ANO Conjuntos Numéricos PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net MATEMÁTICA, 9º Ano Pontos no plano cartesiano/pares ordenados

Leia mais

Aplicações da Matemática 3º ano da Licenciatura em Educação Básica. Fibonacci. Caderno de Atividades

Aplicações da Matemática 3º ano da Licenciatura em Educação Básica. Fibonacci. Caderno de Atividades Aplicações da Matemática 3º ano da Licenciatura em Educação Básica Fibonacci Caderno de Atividades Universidade dos Açores Docente: Professor Doutor Ricardo Cunha Teixeira Discentes: Andreia Fernandes,

Leia mais

Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.

Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas. MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa

Leia mais

1 Conjunto dos números naturais N

1 Conjunto dos números naturais N Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de

Leia mais

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15

Leia mais

Conforto Ambiental I: Ergonomia e Antropometria

Conforto Ambiental I: Ergonomia e Antropometria Conforto Ambiental I: Ergonomia e Antropometria Profª Claudete Gebara J. Callegaro Mestranda em Arquitetura e Urbanismo [email protected] 1º semestre de 2013 Universidade Ibirapuera Arquitetura e

Leia mais

1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z)

1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z) CAPÍTULO 1 Capítulo 1 1.1 Conjuntos Numéricos Conjunto dos Números Naturais (N) Os números naturais são em geral associados à ideia de contagem, e o conjunto que os representa é indicado por N. N = {0,

Leia mais

Atividade de Matemática para o oitavo ano .

Atividade de Matemática para o oitavo ano . Escola Municipal: Professora: Matemática 8 o Ano Alun0(a): 1 Atividades de Avaliação 1.1 Questão Dado a expressão algebrica E = 4 a + 3 b 5 c determine o valor numerico quando as variavies assumem os seguintes

Leia mais

CONTEÚDOS PARA A PROVA DE ADMISSÃO

CONTEÚDOS PARA A PROVA DE ADMISSÃO 6º ANO Ensino Fundamental 1. Gêneros textuais e conceitos (leitura, análise e produção de textos narrativos) 1.1. Procedimentos de leitura: Inferir uma informação implícita em um texto. Identificar elementos

Leia mais

e sua relação como número áureo é bem estreito. Temos a aparição desses números em espirais, sejam elas a concha de um molusco, em ondas, em uma

e sua relação como número áureo é bem estreito. Temos a aparição desses números em espirais, sejam elas a concha de um molusco, em ondas, em uma A RAZÃO ÁUREA E A SEQÜÊNCIA DE FIBONACCI Thiago Yukio Tanaka Universidade Federal de Pernambuco [email protected] Lucimarcos José da Silva Universidade Federal de Pernambuco [email protected]

Leia mais

Quadro de conteúdos MATEMÁTICA

Quadro de conteúdos MATEMÁTICA Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de

Leia mais

Tomar nota das medidas abaixo utilizando régua ou a fita métrica:

Tomar nota das medidas abaixo utilizando régua ou a fita métrica: O NÚMERO DE OURO Introdução Certas formas capturam nosso olhar e mexem com nossos sentidos bem mais do que outras e, mesmo que não saibamos a princípio o que as diferenciam, temos uma sensação de harmonia,

Leia mais

MATRÍCULAS2018 MATEMÁTICA. 6.º ANO Ensino Fundamental. 7.º ANO Ensino Fundamental

MATRÍCULAS2018 MATEMÁTICA. 6.º ANO Ensino Fundamental. 7.º ANO Ensino Fundamental MATEMÁTICA 6.º ANO Ensino Fundamental - Sistema de numeração decimal: representação e leitura de números naturais; ordens e classes. - Números naturais: adição, subtração, multiplicação, divisão (incluindo

Leia mais

FIBONACCI & GEOMETRIA FRACTAL

FIBONACCI & GEOMETRIA FRACTAL FIBONACCI & GEOMETRIA FRACTAL A Sequência de Fibonacci descreve como as coisas podem crescer através da geometria fractal. Exemplos de como essa disposição numérica ocorre podem ser vistos em diversos

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

NÚMERO DE OURO E SECÇÃO ÁUREA

NÚMERO DE OURO E SECÇÃO ÁUREA NÚMERO DE OURO E SECÇÃO ÁUREA Andressa Arnemann Caneppele 1, Fabiana Raquel Mühl 2, Neuri Antônio Feldmann 3 Palavras-chave: Matemática, Divina Proporção, Beleza. INTRODUÇÃO Através do Número de Ouro e

Leia mais

A Razão Áurea. A História de FI, um número surpreendente

A Razão Áurea. A História de FI, um número surpreendente A Razão Áurea A História de FI, um número surpreendente O Livro Autor: Mário Livio Editora: Record Idioma: Português Nº de Páginas: 333 Edição: 2006 Preço: 48 reais (www.livifusp.com.br) Estrutura 9 capítulos

Leia mais

GUIA DE AULAS - MATEMÁTICA - SITE: EDUCADORES.GEEKIELAB.COM.BR

GUIA DE AULAS - MATEMÁTICA - SITE: EDUCADORES.GEEKIELAB.COM.BR GUIA DE AULAS - MATEMÁTICA - SITE: EDUCADORES.GEEKIELAB.COM.BR Olá, Professor! Assim como você, a Geekie também quer ajudar os alunos a atingir todo seu potencial e a realizar seus sonhos. Por isso, oferecemos

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração Unidade 1 Números inteiros adição e subtração 1. Números positivos e números negativos Reconhecer o uso de números negativos e positivos no dia a dia. 2. Conjunto dos números inteiros 3. Módulo ou valor

Leia mais

Fibonacci e a Seção Áurea

Fibonacci e a Seção Áurea Na matemática, os Números de Fibonacci são uma seqüência (sucessão, em Portugal) definida como recursiva pela fórmula abaixo: Na prática: você começa com 0 e 1, e então produz o próximo número de Fibonacci

Leia mais

Programação Anual. 6 ọ ano (Regime 9 anos) 5 ạ série (Regime 8 anos) VOLUME VOLUME

Programação Anual. 6 ọ ano (Regime 9 anos) 5 ạ série (Regime 8 anos) VOLUME VOLUME Programação Anual 6 ọ ano (Regime 9 anos) 5 ạ série (Regime 8 anos) 1 ọ 2 ọ 1. Sistemas de numeração Características de um sistema de numeração (símbolos e regras) Alguns sistemas de numeração (egípcio,

Leia mais

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade

1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 1ª Ana e Eduardo 8º Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 1 Foco: Leitura Compreender e utilizar textos, selecionando dados, tirando conclusões, estabelecendo relações,

Leia mais

Números Irracionais. Dinâmica 7. Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS. 3ª Série 3º Bimestre ATIVIDADE LOCALIZANDO NÚMEROS RACIONAIS

Números Irracionais. Dinâmica 7. Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS. 3ª Série 3º Bimestre ATIVIDADE LOCALIZANDO NÚMEROS RACIONAIS Reforço escolar M ate mática Númer os irracionais Dinâmica 7 3ª Série 3º Bimestre Matemática 3 Série do Ensino Médio Numérico Aritmético Números Irracionais Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS ATIVIDADE

Leia mais

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: Colégio Estadual Amanda Velasco PROFESSOR: Aline Barros Ribeiro MATRÍCULA: 09291956 SÉRIE: 9 ano do Ensino Médio

Leia mais

MATERIAL DE DIVULGAÇÃO DE EDIÇÕES SM

MATERIAL DE DIVULGAÇÃO DE EDIÇÕES SM Matemática PNLD2017 Ensino Fundamental II MATERIAL DE DIVULGAÇÃO DE EDIÇÕES SM O momento de escolha de uma coleção aprovada no PNLD pode se transformar em uma fonte de incertezas para o educador das escolas

Leia mais

exemplos O conjunto das letras do nosso alfabeto; L= {a, b, c, d,..., z}. O conjunto dos dias da semana: S= {segunda, terça,... domingo}.

exemplos O conjunto das letras do nosso alfabeto; L= {a, b, c, d,..., z}. O conjunto dos dias da semana: S= {segunda, terça,... domingo}. CONJUNTOS Conjunto: Representa uma coleção de objetos, geralmente representado por letras MAIÚSCULAS; não interessando a ordem e quantas vezes os elementos estão listados na coleção, e sempre são representados

Leia mais

Ana Paula Cardoso. Plano de Trabalho 1: Números Reais e Radiciação

Ana Paula Cardoso. Plano de Trabalho 1: Números Reais e Radiciação Ana Paula Cardoso MATRÍCULA: 09253030 [email protected] Plano de Trabalho 1: Números Reais e Radiciação FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇAO CECIERJ/SEEDUC COLÉGIO: SEEDUC

Leia mais

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma

Leia mais

AULA 02 CONJUNTOS NUMÉRICOS. Figura 1 Conjuntos numéricos

AULA 02 CONJUNTOS NUMÉRICOS. Figura 1 Conjuntos numéricos AULA 02 CONJUNTOS NUMÉRICOS Figura 1 Conjuntos numéricos AULA 01 CONJUNTOS NUMÉRICOS Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos")

Leia mais

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA

NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais

Datas de Avaliações 2016

Datas de Avaliações 2016 ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:

Leia mais

Relação de Conteúdos para Seleção Candidatos ao 6º ano do Ensino Fundamental

Relação de Conteúdos para Seleção Candidatos ao 6º ano do Ensino Fundamental Candidatos ao 6º ano do Ensino Fundamental Produção de Texto - Gênero Textual Conto As 4 operações Situações- problemas (Raciocínio lógico matemático) Gráficos e tabelas Fração (leitura, representação,

Leia mais

Provas Seletivas 2018

Provas Seletivas  2018 Provas Seletivas 2018 Fundamental I Fundamental I 1 ano Escrita de numerais e quantificação; Ideia aditiva e subtrativa; Sequência Numérica. Escrita de palavra e frases a partir da visualização de imagem;

Leia mais

Soma dos Ângulos Internos de um Triângulo. Operações com Medidas de Ângulos. Ângulos consecutivos e Ângulos adjacentes. Bissetriz de um Ângulo

Soma dos Ângulos Internos de um Triângulo. Operações com Medidas de Ângulos. Ângulos consecutivos e Ângulos adjacentes. Bissetriz de um Ângulo Geometria ENSINO FUNDAMENTAL II 4º Bimestre 2018 Matemática Profª Paula Neves Ciências: 6 ano Soma dos Ângulos Internos de um Triângulo Números racionais, Adição, subtração, multiplicação, divisão e potenciação

Leia mais

Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios

Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios Curso de Elétrica... Matemática Básica Curso de Elétrica... Matemática Básica Sumário 1_Números Inteiros Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e

Leia mais

Matemática. Sumários

Matemática. Sumários Matemática Sumários Sumário Vamos começar! 8 4 Números naturais: multiplicação e divisão 92 1 Números naturais e sistemas de numeração 14 1 Números para contar 15 2 Números para ordenar e transmitir informações

Leia mais

Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano?

Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano? B"H Fibonacci Tudo começou com um problema aparentemente banal: Quantos pares de coelhos podem ser gerados de um par de coelhos em um ano? O matemático italiano Leonardo Pisano (de Pisa), cujo apelido

Leia mais

Professor: Fábio Soares - Disciplina: Métodos Quantitativos ADMINISTRAÇÃO

Professor: Fábio Soares - Disciplina: Métodos Quantitativos ADMINISTRAÇÃO Unidade 1 - Números Reais: representações O principal motivo para que a maioria dos cursos comecem por um breve estudo dos números reais é o fato de no Cálculo e na Análise, estuda-se o comportamento de

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA

FORMAÇÃO CONTINUADA EM MATEMÁTICA FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 9º Ano 1º Bimestre/2013 Plano de Trabalho I Assunto: Números Reais e Radiciação Cursista: Derli Aleixo Carvalho Onofre Tutor:

Leia mais

Matemática. 1

Matemática.   1 PROFº Marcelo Jardim www.concursovirtual.com.br 1 CONJUNTOS NUMÉRICOS 1.NÚMEROS NATURAIS O conjunto dos números naturais é representado por IN e IN= {0;1;2;3;4;...} ATENÇÃO!!! O (*) EXCLUI O ZERO. IN*={1;2;3;4;...}

Leia mais

7. Subtração de números inteiros Adição algébrica de números inteiros 31 Expressões numéricas com adição algébrica 33

7. Subtração de números inteiros Adição algébrica de números inteiros 31 Expressões numéricas com adição algébrica 33 Sumário CAPÍTULO 1 Os números inteiros 1. A necessidade de outros números 11 2. Representação dos números inteiros na reta numérica 14 3. Valor absoluto ou módulo de um número inteiro 15 4. Números inteiros

Leia mais

UM ESTUDO SOBRE O VALOR DA PERFEIÇÃO: A DIVINA PROPORÇÃO

UM ESTUDO SOBRE O VALOR DA PERFEIÇÃO: A DIVINA PROPORÇÃO Sociedade Brasileira de na Contemporaneidade: desafios e possibilidades UM ESTUDO SOBRE O VALOR DA PERFEIÇÃO: A DIVINA PROPORÇÃO Matheus Alexandre Oliveira de Souza [email protected] Raphael Vasconcelos

Leia mais

CURSO DE MATEMÁTICA. Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha

CURSO DE MATEMÁTICA. Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha CURSO DE MATEMÁTICA Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Meu querido aluno,

Leia mais

LISTA DE MATEMÁTICA (SETOR A) (Prof. Pinda)

LISTA DE MATEMÁTICA (SETOR A) (Prof. Pinda) LISTA DE MATEMÁTICA (SETOR A) (Prof Pinda) 6 (Uece 06) Seja x 0,, 0,760,, 7 7 Se a e b são respectivamente o maior e o menor dos elementos de x, então, a) entre e entre e entre e maior do que a b b um

Leia mais

Pensamento. (Provérbio Chinês) Prof. MSc. Herivelto Nunes

Pensamento. (Provérbio Chinês) Prof. MSc. Herivelto Nunes Aula Introdutória Matemática Básica- março 2017 Pensamento Não creio em números, não creio na palavra tudo e nem na palavra nada. São três afirmações exatas e imóveis: o mundo está sempre dando voltas.

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2017/

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2017/ DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2017/2018... 1º Período Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas Geometria

Leia mais

Agrupamento de Escolas da Benedita. CONTEÚDOS ANUAIS 2º Ciclo - 5º Ano ANO LETIVO 2017/2018 AULAS PREVISTAS

Agrupamento de Escolas da Benedita. CONTEÚDOS ANUAIS 2º Ciclo - 5º Ano ANO LETIVO 2017/2018 AULAS PREVISTAS CONTEÚDOS ANUAIS 2º Ciclo - 5º Ano ANO LETIVO 2017/2018 Disciplina:Matemática AULAS CONTEÚDOS PREVISTAS 5ºA 5ºB 5ºC 5ºD 5ºE 5ºF 5ºG 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP 1ºP 2ºP 3ºP

Leia mais

PRÓPRIA CASA,COMO PRETENDES EN- CONTRAR OUTRAS EXCELÊNCIAS? EM TI ESTÁ OCULTO O TESOURO DOS TE- SOUROS. (Sócrates)

PRÓPRIA CASA,COMO PRETENDES EN- CONTRAR OUTRAS EXCELÊNCIAS? EM TI ESTÁ OCULTO O TESOURO DOS TE- SOUROS. (Sócrates) ADVIRTO,SEJA QUEM FORES! Ó TU, QUE DESEJAS SONDAR OS ARCANOS DA NATUREZA;SE NÃO ACHARES DEN- TRO DE TI AQUILO QUE PROCURAS, TAMBÉM NÃO PODERÁS ACHAR FORA. SE IGNORAS AS EXCELÊNCIAS DE TUA PRÓPRIA CASA,COMO

Leia mais

Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas

Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: MATEMÁTICA ANO: 8º ANO Planificação (Conteúdos)... Período Letivo: 1º Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas Geometria

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

CONCURSO DE BOLSAS 2018

CONCURSO DE BOLSAS 2018 6º ANO ENSINO FUNDAMENTAL Leitura e interpretação de texto Classes gramaticais Verbo: conjugação nos modos indicativo e subjuntivo Pronomes: classificação Adjetivo: flexão de gênero, número e grau Encontros

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar).

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar). Divisibilidade - Regras de divisibilidade por 2, 3, 4, 5, 6, 8, 9 e 10. - Divisores de um número natural. - Múltiplos de um número natural. - Números primos. - Reconhecimento de um número primo. - Decomposição

Leia mais

Eduardo. Competência Objeto de aprendizagem Habilidade

Eduardo. Competência Objeto de aprendizagem Habilidade Matemática Eduardo 3ª 8 Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 2 Foco: Os conjuntos numéricos Construir significados para os números naturais, inteiros, racionais e reais. Competência

Leia mais

Plano de Recuperação Semestral EF2

Plano de Recuperação Semestral EF2 Série/Ano: 8º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para

Leia mais

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação

PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação PROFICIÊNCIA EM MATEMÁTICA Conjuntos Numéricos, Potenciação e Radiciação Professor Alexandre M. M. P. Ferreira Sumário Definição dos conjuntos numéricos... 3 Operações com números relativos: adição, subtração,

Leia mais

1.º Bimestre / Matemática. Descritores

1.º Bimestre / Matemática. Descritores 1.º Bimestre / 2017 Matemática Descritores 4º ANO Calcular o resultado de uma adição ou de uma subtração de números naturais. Estimar a medida de grandeza, utilizando unidades de medida convencionais ou

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS

Leia mais

Síntese da Planificação da Disciplina de Matemática 6.º Ano

Síntese da Planificação da Disciplina de Matemática 6.º Ano Síntese da Planificação da Disciplina de Matemática 6.º Ano 2017-18 Período Dias de aulas previstos 2.ª 3.ª 4.ª 5.ª 6.ª 1.º período 13 13 13 13 12 2.º período 10 10 11 12 12 3.º período 10 9 9 9 10 NÚMEROS

Leia mais

Síntese da Planificação da Disciplina de Matemática - 6º Ano

Síntese da Planificação da Disciplina de Matemática - 6º Ano Síntese da Planificação da Disciplina de Matemática - 6º Ano Período Dias de aulas previstos 2.ª 3.ª 4.ª 5.ª 6.ª 1.º período 13 13 13 13 12 2.º período 10 10 11 12 12 3.º período 10 9 9 9 10 (As Aulas

Leia mais

Conteúdo Programático. Cursos Técnicos Integrados

Conteúdo Programático. Cursos Técnicos Integrados Conteúdo Programático Cursos Técnicos Integrados Especificações das Provas Disciplinas da prova objetiva Nº questões Pesos Total de pontos Língua Portuguesa 15 2 30 Matemática 15 2 30 Total 30-60 Prova

Leia mais

Álgebra- Prof.ª Adriana Almeida 9º ano - Ensino Fundamental II ROTEIRO DE RECUPERAÇÃO 1 TRIMESTRE 9º ANO FEDERAL MATEMÁTICA DATA: / /2017

Álgebra- Prof.ª Adriana Almeida 9º ano - Ensino Fundamental II ROTEIRO DE RECUPERAÇÃO 1 TRIMESTRE 9º ANO FEDERAL MATEMÁTICA DATA: / /2017 ROTEIRO DE RECUPERAÇÃO 1 TRIMESTRE 9º ANO FEDERAL MATEMÁTICA NOME: DATA: / /2017 O QUE ESTUDAR ONDE ESTUDAR Conjuntos numéricos: Naturais, Inteiros, Racionais, Irracionais e Reais. Dízimas periódicas Notação

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas

Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: MATEMÁTICA ANO: 5º Planificação (Conteúdos)... Período Letivo: 1º Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas Números

Leia mais

Geometria: Razão Áurea

Geometria: Razão Áurea ..06 Geometria: Razão Áurea ..06 Geometria: Razão Áurea. As manifestações da Geometria na natureza vêm intrigando muitas pessoas ao longo do tempo. Nas proporções do corpo humano e na forma da concha do

Leia mais

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria

Leia mais

2ª série do Ensino Médio

2ª série do Ensino Médio 2ª série do Ensino Médio Geometria Plana Cálculo de Áreas e Relações na Circunferência. Polígonos Regulares, Polígonos Inscritos na Circunferência e Trigonometria. Relações Métricas no Triângulo Retângulo

Leia mais

MATEMÁTICA 8.º ANO/EF

MATEMÁTICA 8.º ANO/EF MATEMÁTICA 8.º ANO/EF A Recuperação é uma estratégia do processo educativo que visa à superação de dificuldades específicas encontradas pelo aluno durante a Etapa Letiva. Trata-se de uma oportunidade para

Leia mais

1 Breve introdução, fi e bonacci. 2 Construindo as ferramentas. Thiago Yukio Tanaka

1 Breve introdução, fi e bonacci. 2 Construindo as ferramentas. Thiago Yukio Tanaka V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a de outubro de 010 a razão áurea e a seqüência de fibonacci Thiago Yukio Tanaka 1 Breve introdução, fi e bonacci

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro)

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Números e operações - Números

Leia mais

Números Complexos - Forma Algébrica

Números Complexos - Forma Algébrica Matemática - 3ª série Roteiro 07 Caderno do Aluno Números Complexos - Forma Algébrica I - Introdução ao Estudo dos Números Complexos Desafio: 1) Um cubo tem volume equivalente à soma dos volumes de dois

Leia mais

Funções - Primeira Lista de Exercícios

Funções - Primeira Lista de Exercícios Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando

Leia mais

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 3º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 3º

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

DIVISÃO EM PARTES PROPORCIONAIS

DIVISÃO EM PARTES PROPORCIONAIS Página DIVISÃO EM PARTES PROPORCIONAIS A) Divisão em Partes Diretamente Proporcionais Dividir um número N em partes diretamente proporcionais a outros é achar partes de N, (, 2,..., n ), diretamente proporcionais

Leia mais

8.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 8.º Ano

8.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 8.º Ano 8.º Ano Planificação Matemática 16/17 Escola Básica Integrada de Fragoso 8.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Dízimas finitas e infinitas

Leia mais

Agrupamento de Escolas Cego do Maio Póvoa de Varzim (Cód ) INFORMAÇÃO PROVA - PROVA EQUIVALÊNCIA À FREQUÊNCIA (PEF)

Agrupamento de Escolas Cego do Maio Póvoa de Varzim (Cód ) INFORMAÇÃO PROVA - PROVA EQUIVALÊNCIA À FREQUÊNCIA (PEF) INFORMAÇÃO PROVA - PROVA EQUIVALÊNCIA À FREQUÊNCIA (PEF) Matemática (62) MAIO DE 2019 Prova de 2019 2.º Ciclo do Ensino Básico O presente documento visa divulgar informações da prova de equivalência à

Leia mais

MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Números Reais - Dízimas (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios. Como o ponto O é a origem da reta e a abcissa do ponto A é 5, então OA

Leia mais

ANEXO I UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE COLÉGIO DA UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM

ANEXO I UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE COLÉGIO DA UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM ANEXO I UNIVERSIDADE DA REGIÃO DE JOINVILLE UNIVILLE COLÉGIO DA UNIVILLE PLANEJAMENTO DE ENSINO E APRENDIZAGEM 1. Curso: Missão do Colégio: Promover o desenvolvimento do cidadão e, na sua ação educativa,

Leia mais

CONJUNTOS NUMÉRICOS. O que são?

CONJUNTOS NUMÉRICOS. O que são? CONJUNTOS NUMÉRICOS O que são? Os Naturais Os números Naturais surgiram da necessidade de contar as coisas. Eles são todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula

Leia mais

Calendarização da Componente Letiva Ano Letivo 2016/2017

Calendarização da Componente Letiva Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS ANDRÉ SOARES (150952) Calendarização da Componente Letiva Ano Letivo 2016/2017 8º Ano Matemática Períodos 1º Período 2º Período 3º Período Número de aulas previstas (45 minutos)

Leia mais

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5. Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =

Leia mais

Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro.

Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro. Capítulo 1 Números Naturais Múltiplos e Divisores Se um número natural é múltiplo de outro número, este é divisor do primeiro. Números primos e números compostos Decomposição de um número em factores primos

Leia mais

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas

Domínio Números e Operações Subdomínio Adição e subtração de números racionais não negativos. Metas/Objetivos Conceitos/Conteúdos Aulas previstas Números e Operações Adição e subtração de números racionais não negativos DEPARTAMENTO DE MATEMÀTICA DISCIPLINA: Matemática PLANIFICAÇÃO 1ºperíodo - 5º ANO - Efetuar operações com números racionais não

Leia mais

MATEMÁTICA I. Ana Paula Figueiredo

MATEMÁTICA I. Ana Paula Figueiredo I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos

Leia mais

Fontes utilizadas nessa palestra: - Arquivo pessoal (Cláudia Couto) e pesquisa Internet

Fontes utilizadas nessa palestra: - Arquivo pessoal (Cláudia Couto) e pesquisa Internet Fontes utilizadas nessa palestra: - Arquivo pessoal (Cláudia Couto) e pesquisa Internet PRA COMEÇAR VAMOS FAZER: 2 LINHAS VERTICAIS E 2 LINHAS HORIZONTAIS Nos papéis que receberam ESTAS LINHAS TÊM QUE

Leia mais

PROVAS DE NÍVEL MÉDIO DA FUNDATEC

PROVAS DE NÍVEL MÉDIO DA FUNDATEC PROVAS DE NÍVEL MÉDIO DA FUNDATEC Obs: Algumas questões das provas abaixo continham questões que não estavam de acordo com o edital atual da Câmara/POA. Nesses casos, cada questão foi retirada ou adaptada.

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/ DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/2017... 1º Período Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas Geometria

Leia mais

1º Período PROGRESSÃO 2º Período º Período... 32

1º Período PROGRESSÃO 2º Período º Período... 32 Ano Letivo 17/ 18 Turma: A 8º Ano PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 8º ANO Professora: Grácia Alexandra Catela 1º Período... 55 PROGRESSÃO 2º Período... 43 3º Período... 32 1º período ( 55 aulas) N.º

Leia mais

Plano Curricular de Matemática 5ºAno - 2º Ciclo

Plano Curricular de Matemática 5ºAno - 2º Ciclo Plano Curricular de Matemática 5ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Números racionais não negativos (Educação Financeira) - Cidadania - Simplificação de frações;

Leia mais