diferencialensino.com.br
|
|
|
- Dina de Sequeira da Cunha
- 8 Há anos
- Visualizações:
Transcrição
1 1
2 AULA 001 MATEMÁTICA PROFESSOR VICTOR ROCHA (VITINHO) 2
3 AULA 06 SISTEMAS LINEARES SISTEMA Um sistema de equações com duas incógnitas é formado por duas equações com duas incógnitas diferentes em cada equação. Ex.: x + y = 30 x y = 10 Para resolver o sistema é preciso encontrar o par ordenado (x,y) que satisfaça as duas equações do sistema. Isso pode ser feito utilizando dois métodos distintos: o Método da Substituição e o Método da Adição. MÉTODO DA SUBSTITUIÇÃO Esse método consiste em isolar uma das duas incógnitas em uma das equações e a substituir na outra equação, de modo que se obtenha uma equação do 1º grau com apenas uma incógnita. Em seguida resolve-se a equação do 1º grau encontrada e, por fim, substitui-se o valor obtido em qualquer uma das equações que formam o sistema. Ex.: x + y = 3 (I) x y = 1 (II) 1º passo: Isolar uma das incógnitas em qualquer das equações do sistema Isolando x na equação (II): x = 1 + y 2º passo: Substituir a incógnita isolada na outra equação do sistema e resolver a equação do 1º grau obtida. Substituindo x na equação (I): (1 + y) + y = y = 3 2y = 3 1 2y = 2 y = 1 3º passo: Aplicar o valor encontrado em qualquer uma das equações que formam o sistema. Aplicando o valor y = 1 na equação (I): x + 1 = 3 x = 3 1 x = 2 Logo, para o sistema dado, x = 2 e y = 1. Portanto, o par ordenado (x,y) que satisfaz o sistema apresentado é (2,1). COMMENT: Lembre-se que o nome PAR ORDENADO não é à toa!!! Se é ORDENADO é porque existe uma ordem a ser seguida: o primeiro valor é referente a x e o segundo valor é referente a y. 3
4 MÉTODO DA ADIÇÃO Esse método consiste em alterar as equações originais do sistema de tal forma que, ao se somar as equações, a soma de uma das incógnitas seja ZERO! Para isso é necessário deixar as incógnitas que se deseja ZERAR com sinais opostos e com o mesmo coeficiente. Ex.: x + y = 4 (I) x + 3y = 8 (II) 1º passo: Escolher a incógnita que se deseja zerar. Para esse sistema o mais sensato é multiplicar a primeira equação por ( 1), pois assim, após efetuarmos a soma das equações, eliminaremos a incógnita x. Porém, nada impede que se elimine a incógnita y. Se esse fosse o caso, bastaria multiplicar a primeira equação por ( 3) e realizar a soma das equações. Multiplicando a equação (I) por ( 1) temos: 2º passo: Realizar a soma das equações. Somando as equações (I) e (II) temos: x x + 3y y = y = 4 2y = 4 y = 2 x y = 4 (I) x + 3y = 8 (II) 3º passo: Substituir o valor encontrado em qualquer uma das equações que formam o sistema. Substituindo y = 1 na equação (II) temos: x + 3 (2) = 8 x + 6 = 8 x = 8 6 x = 2 Logo, para o sistema dado, x = 2 e y = 2. Portanto, o par ordenado (x,y) que satisfaz o sistema em questão é (2,2). 01) Verifique se: a) (3, -1) é uma solução do sistema 4
5 2x 5y = 11 3x + 6y = 3 b) (4, 1, 3) é uma solução do sistema 2x + y z = 6 x + 3y + 2z = 13 02) Resolva cada sistema linear pelo método da adição: x + y = 20 a) 3x + 4y = 72 x y = 17 b) 6x + 8y = 46 03) Anderson Brasil gosta muito de animais de estimação e de charadas. Certo dia Marcio Tadeu perguntou-lhe quantos poodles e quantos gatinhos ele tinha. Prontamente Brasil respondeu com o seguinte enigma: A soma do dobro do número de poodles e do triplo do número de gatinhos é igual a 17. E a diferença entre o número de poodles e de gatinhos é apenas 1. Quantos poodles e quantos gatinhos Anderson Brasil possui? 04) Em sua rua, Sieffermann observou que havia 20 veículos estacionados, dentre motos e carros. Ao abaixar-se, ele conseguiu visualizar 54 rodas. Qual é a quantidade de motos e de carros estacionados na rua do professor Sieffermann? 05) (Fuvest) Um supermercado adquiriu detergentes nos aromas limão e coco. A compra foi entregue, embalada em 10 caixas, com 24 frascos em cada caixa. Sabendo-se que cada caixa continha 2 frascos de detergentes a mais no aroma limão do que no aroma coco, o número de frascos entregues, no aroma limão, foi: a) 110 b) 120 c) 130 d) 140 e) ) (Vunesp) Em um campeonato de futsal, se um time vence, marca 3 pontos; se empata, marca 1 ponto e se perde não marca nenhum ponto. Admita que, nesse campeonato, o time A tenha participado de 16 jogos e perdido apenas dois jogos. Se o time A, nesses jogos, obteve 24 pontos, então a diferença entre o número de jogos que o time A venceu e o número de jogos que empatou, nessa ordem, é: a) 8 b) 4 c) 0 d) - 4 e) ) Em uma sorveteria, o preço de 3 sorvetes e 1 garrafa de água é de R$ 12,00. Ângelo comprou dois desses sorvetes e três garrafas dessa água e pagou R$ 15,00. O valor de uma garrafa de água é: a) R$ 1,00 b) R$ 1,50 c) R$ 2,00 d) R$ 2,50 e) R$ 3,00 08) (TJSP) Numa fazenda há ovelhas e avestruzes, totalizando 90 cabeças e 260 patas. Comparando-se o número de avestruzes com o das ovelhas, pode-se afirmar que há: a) igual número de ovelhas e de avestruzes b) dez cabeças a mais de ovelhas c) dez cabeças a mais de avestruzes d) oito cabeças a mais de ovelhas e) oito cabeças a mais de avestruzes 5
6 09) (SEAP) Um determinado presídio abriga um total de 376 detentos em 72 celas. Sabe-se que uma parte dessas celas abriga 4 detentos por cela, e que a outra parte abriga 6 detentos por cela. O número de celas com 4 detentos é igual a: a) 46 b) 42 c) 30 d) 28 e) 24 10) (PMES Soldado 2ª Classe) Uma pessoa comprou vários sabonetes, todos da mesma marca, alguns com 50 g e outros com 90 g, num total de 40 unidades. O preço de um sabonete de 50 g era R$ 0,70 e o de 90 g era R$ 1,20. Sabendo-se que no total dessa compra foram gastos R$ 35,50, então o número comprado de sabonetes de 50 g foi: a) 27 b) 25 c) 23 d) 20 e) 18 GABARITO QUESTÃO 01 a) é solução; b) é solução QUESTÃO 02 a) (8, 12); b) (13, -4) QUESTÃO 03 4 poodles e 3 gatinhos QUESTÃO motocas e 7 carros QUESTÃO 05 LETRA C QUESTÃO 06 LETRA D QUESTÃO 07 LETRA E QUESTÃO 08 LETRA C QUESTÃO 09 LETRA D QUESTÃO 09 LETRA B 6
Sistemas de equações do 1 grau com duas variáveis LISTA 1
Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se
AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU
AULA EQUAÇÕES E SISTEMAS DO º GRAU EQUAÇÕES DO º GRAU Uma equação é classificada como sendo do º grau quando puder ser escrita na forma ax + b 0 onde a e b são reais com a 0. Uma equação do º grau admite
SISTEMAS DE EQUAÇÕES DO 1º GRAU
SISTEMAS DE EQUAÇÕES DO 1º GRAU I INTRODUÇÃO: Os sistemas de equação são ferramentas muito comuns na resolução de problemas em várias áreas ( matemática, química, física, engenharia,...) e aparecem sempre
Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.
Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses
2y 2z. x y + 7z = 32 (3)
UFJF MÓDULO III DO PISM TRIÊNIO 0-03 GABARITO DA PROVA DE MATEMÁTICA Questão Três amigos, André, Bernardo arlos, reúnem-se para disputar um jogo O objetivo do jogo é cada jogador acumular pontos, retirando
EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros exercícios)
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA EXERCÍCIOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (sistemas de equações lineares e outros eercícios) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Eercícios
Módulo de Princípios Básicos de Contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto
COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 3ª Etapa 2014. Ano: 7º Turma: 7.1
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 3ª Etapa 2014 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 7º Turma: 7.1 Caro aluno, você está recebendo o conteúdo de recuperação.
Seu pé direito nas melhores Faculdades
10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
Observando embalagens
Observando embalagens A UUL AL A O leite integral é vendido em caixas de papelão laminado por dentro. Essas embalagens têm a forma de um paralelepípedo retângulo e a indicação de que contêm 1000 ml de
Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par.
Teoria dos Números Resultado obtido nas aulas de Teoria dos Números. Números pares e números ímpares. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA
TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime
Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos
Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos 1º) Para o circuito abaixo, calcular a tensão sobre R3. a) O Teorema de Thévenin estabelece que qualquer circuito linear visto de
Matemática Financeira. 1ª Parte: Porcentagem Comparação entre Valores - Aumento e Desconto Juros
Matemática ª série Lista 08 Junho/2016 Profª Helena Matemática Financeira 1ª Parte: Porcentagem Comparação entre Valores - Aumento e Desconto Juros 1) (GV) Carlos recebeu R$ 240.000,00 pela venda de um
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;
Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano
Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com
QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES
QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a
Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais
Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto
ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)
P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a
Lista de Exercícios 2º Ensino médio manhã
1. (Ufrrj) Em uma PA não constante de 7 termos, com termo médio igual a 6, os termos 2Ž, 4Ž e 7Ž, nesta ordem, formam uma PG. Determine esta PA. 2. (Ufba) Numa progressão geométrica, o primeiro termo é
Equação e Inequação do 2 Grau Teoria
Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo
Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner. Projeto AIPRA (Processo CNPq 559912/2010-2)
Autoria: Fernanda Maria Villela Reis Orientadora: Tereza G. Kirner Coordenador do Projeto: Claudio Kirner 1 ÍNDICE Uma palavra inicial... 2 Instruções iniciais... 3 Retângulo... 5 Quadrado... 6 Triângulo...
6º Ano do Ensino Fundamental
MINISTÉRIO DA DEFESA Manaus AM 8 de outubro de 2009. EXÉRCITO BRASILEIRO CONCURSO DE ADMISSÃO 2009/200 DECEx - D E P A COLÉGIO MILITAR DE MANAUS MATEMÁTICA 6º Ano do Ensino Fundamental INSTRUÇÕES (CANDIDATO
Função. Adição e subtração de arcos Duplicação de arcos
Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração
Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.
MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar
Universidade Federal de Goiás Campus Catalão Departamento de Matemática
Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares
Quatro alunos do 6º ano de uma escola, em uma aula de matemática, fizeram as seguintes afirmativas:
ATIVIDADE PROVÃO 2º BIMESTRE 6º ANO MAT PROVA DIA 09/07 QUESTÃO 01 (Descritor: estabelecer uma conclusão baseando-se nas definições de divisores e múltiplos de um número natural e números primos) Quatro
Exemplos. Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas. Criptoaritmética. Missionários e Canibais.
istemas Inteligentes, 10-11 1 Exemplos Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas Criptoaritmética Missionários e Canibais Resta-um e muitos outros... istemas Inteligentes,
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.
PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades
Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij
Resolução das atividades complementares Matemática M Matrizes p. 6 Construa a matriz linha (a ij ) tal que cada elemento obedeça à lei a ij i j. (a ij ) ; a ij i j a a 6 a 9 7 a 0 a [ 7 0 ] [ ] 7 0 Determine
3º Ano do Ensino Médio. Aula nº06
Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta
Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8
ESCOLA TÉCNICA ESTADUAL ZONA SUL CURSO TÉCNICO EM ELETRÔNICA II. CIRCUITOS ELÉTRICOS Aula 0 TEOREMAS DA ANÁLISE DE CIRCUITOS Prof. Marcio Leite Página de 8 0 TEOREMA DA ANÁLISE DE CIRCUITOS.0 Introdução
Dureza Rockwell. No início do século XX houve muitos progressos. Nossa aula. Em que consiste o ensaio Rockwell. no campo da determinação da dureza.
A UU L AL A Dureza Rockwell No início do século XX houve muitos progressos no campo da determinação da dureza. Introdução Em 1922, Rockwell desenvolveu um método de ensaio de dureza que utilizava um sistema
Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:
EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine
C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando volume de sólidos geométricos. Elizabete Alves de Freitas
C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 06 matemática Calculando volume de sólidos geométricos Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico
EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel
EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de
MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega
1 MATEMÁTICA II Aula 12 Determinantes Professor Luciano Nóbrega º Bimestre 2 DETERMINANTES DEFINIÇÃO A toda matriz quadrada está associado um número real ao qual damos o nome de determinante. O determinante
Resolução da Prova de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015.
de Raciocínio Lógico do TRE/MT, aplicada em 13/12/2015. Raciocínio Lógico p/ TRE-MT Analista Judiciário QUESTÃO 19 Um grupo de 300 soldados deve ser vacinado contra febre amarela e malária. Sabendo-se
MATEMATICA PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9?
MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE ORIENTAÇÃO PARA O PROFESSOR EXEMPLO PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto
OPERAÇÕES COM FRAÇÕES
OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que
MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 10: Exercícios Cap 01. www.laercio.com.br
MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 10: Exercícios Cap 01 www.laercio.com.br APOSTILA 10 Exercícios cap 01 MATÉRIA FÁCIL, QUESTÕES DIFÍCEIS HORA DE ESTUDAR (cap 01) Apostila de complemento
CENTRO EDUCACIONAL NOVO MUNDO Matemática
Desafio de Matemática 3 ano EF 2D 2014 1/ 6 CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 2 o DESAFIO CENM - 2014 Matemática Direção: Ano: 3 Ef 1. Em uma sala de aula, a professora realizou uma pesquisa
ARQUITETURA DE COMPUTADORES. Professor: Clayton Rodrigues da Siva
ARQUITETURA DE COMPUTADORES Professor: Clayton Rodrigues da Siva OBJETIVO DA AULA Objetivo: Conhecer a estrutura da arquitetura da Máquina de Von Neumann. Saber quais as funcionalidades de cada componente
PROVA DE MATEMÁTICA _ VESTIBULAR DA FUVEST- 2005 _ FASE 1. a) 37 b) 36 c) 35 d) 34 e) 33
PROV MTMÁTI _ VSTIBULR FUVST- 005 _ FS Professora MRI NTONI ONIÇÃO GOUVI 0) Um supermercado adquiriu detergentes nos aromas limão e coco. compra foi entregue, embalada em 0 caias, com frascos em cada caia.
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected].
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP [email protected] Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e
Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014
1 2 Questão 1 Um dado é feito com pontos colocados nas faces de um cubo, em correspondência com os números de 1 a 6, de tal maneira que somados os pontos que ficam em cada par de faces opostas é sempre
Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento
Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 04 GABARITO COMENTADO 40 40 ) Sabendo que O B M = 40 O B = B M M = O, 40 O B+ M = 46 + M = 46 M 46M + 40 =
Jogos com números Colocando números
Jogos com números Colocando números 1) Coloque os dígitos de 1 a 6 sem repeti-los, cada um em um quadrado para que a igualdade expressada a seguir seja correta. Observe que dois quadrados juntos indicam
Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma:
Matemática Resoluções A. Combinatória 3 os anos Blaidi/Walter Ago/09 Nome: Nº: Turma: Prezadísssimos alunos e alunas, Neste bimestre, aprenderemos a resolver questões de análise combinatória com o auílio
TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora
1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração
Considere as situações:
Considere as situações: 1ª situação: Observe as dimensões da figura a seguir. Qual a expressão que representa a sua área? X X x 2 ou x. x 2ª situação: Deseja se cercar um terreno de forma retangular cujo
REGULAMENTO ESPECÍFICO DE BASQUETEBOL
REGULAMENTO ESPECÍFICO DE BASQUETEBOL 2009-2013 ÍNDICE 1. INTRODUÇÃO... 3 2. ESCALÕES ETÁRIOS/ BOLA DE JOGO/DURAÇÃO DE JOGO... 4 3. CONSTITUIÇÃO DA EQUIPA... 5 4.ARBITRAGEM... 6 5. CLASSIFICAÇÃO/ PONTUAÇÃO/DESEMPATE...
Matemática Fascículo 05 Manoel Benedito Rodrigues
Matemática Fascículo 05 Manoel Benedito Rodrigues Índice Revisão de Tópicos do Ensino Fundamental Exercícios...1 Dicas...2 Resoluções... Revisão de Tópicos do Ensino Fundamental Exercícios 01. Sobre o
Equações Trigonométricas
Equações Trigonométricas. (Insper 04) A figura mostra o gráfico da função f, dada pela lei 4 4 f(x) (sen x cos x) (sen x cos x) O valor de a, indicado no eixo das abscissas, é igual a a) 5. b) 4. c). d)
REGULAMENTO ESPECÍFICO DE BASQUETEBOL
Índice 1. Introdução 3 2. Escalões Etários/Bola de Jogo/Duração de Jogo 3 3. Constituição da Equipa 4 4. Classificação/Pontuação 4 5. Arbitragem 5 6. Mesa de Secretariado 6 7. Regulamento Técnico-Pedagógico
Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões
Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Prof. Carlos A. Heuser Dezembro de 2009 Duração: 2 horas Prova com consulta Questão 1 (Construção de modelo ER) Deseja-se projetar a base de
Exercícios e questões de Álgebra Linear
CEFET/MG Exercícios e questões de Álgebra Linear Versão 1.2 Prof. J. G. Peixoto de Faria Departamento de Física e Matemática 25 de outubro de 2012 Digitado em L A TEX (estilo RevTEX). 2 I. À GUISA DE NOTAÇÃO
Engrenagens IV. Para grandes problemas, grandes soluções. Cálculo para engrenagem cônica
A UU L AL A Engrenagens IV Para grandes problemas, grandes soluções. Por exemplo: qual a saída para o setor de projeto e construção de uma empresa em que o setor de usinagem necessita fazer a manutenção
AULA DO CPOG. Progressão Aritmética
AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma
REGULAMENTO ESPECÍFICO BASQUETEBOL. (Revisto em Setembro de 2014)
REGULAMENTO ESPECÍFICO BASQUETEBOL 2013 2017 (Revisto em Setembro de 2014) Índice 1. Introdução 2 2. Escalões etários 3 3. Constituição das Equipas 4 4. Regulamento Técnico Pedagógico 5 5. Classificação,
Unidade 1: O Computador
Unidade : O Computador.3 Arquitetura básica de um computador O computador é uma máquina que processa informações. É formado por um conjunto de componentes físicos (dispositivos mecânicos, magnéticos, elétricos
Probabilidade. Luiz Carlos Terra
Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA
RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática Financeira da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei
Aula 15 Amplificadores Operacionais (pág. 453 a 459)
Aula 15 Amplificadores Operacionais (pág. 453 a 459) Prof. Dr. Aparecido Nicolett PUC-SP Slide 1 Considerações gerais: Amplificadores Operacionais são amplificadores diferencias com ganho muito alto, impedância
Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.
Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1
Registro de Retenções Tributárias e Pagamentos
SISTEMA DE GESTÃO DE PRESTAÇÃO DE CONTAS (SiGPC) CONTAS ONLINE Registro de Retenções Tributárias e Pagamentos Atualização: 20/12/2012 A necessidade de registrar despesas em que há retenção tributária é
Determinantes. Matemática Prof. Mauricio José
Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.
Centro Universitário Anchieta
1) Um elemento da família 2 da tabela periódica forma um composto com o flúor. A massa molar desse composto é 78,074g. Escreva a fórmula e o nome do composto. O composto formado entre flúor e um elemento
I-OBJETIVO DO JOGO ENQUANTO ATIVIDADE DE ENSINO
6 I-OBJETIVO DO JOGO ENQUANTO ATIVIDADE DE ENSINO Resolver problemas envolvendo as operações: adição subtração e multiplicação; Desenvolver a habilidade de cálculo mental. II-MATERIAL 1. Fichas com a figura
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)
MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Um aluno da 5ª série do CMB saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma, gastou a metade
Exercício. Exercício
Exercício Exercício Aula Prática Utilizar o banco de dados ACCESS para passar o MER dos cenários apresentados anteriormente para tabelas. 1 Exercício oções básicas: ACCESS 2003 2 1 Exercício ISERIDO UMA
Descobrindo medidas desconhecidas (I)
Descobrindo medidas desconhecidas (I) V ocê é torneiro em uma empresa mecânica. Na rotina de seu trabalho, você recebe ordens de serviço acompanhadas dos desenhos das peças que você tem de tornear. Vamos
Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:
Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,
1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS
Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.
Circuitos de Comunicação. Prática 1: PWM
Circuitos de Comunicação Prática 1: PWM Professor: Hélio Magalhães Grupo: Geraldo Gomes, Paulo José Nunes Recife, 04 de Maio de 2014 SUMÁRIO Resumo 3 Parte I PWM - Teoria 3 Geração do PWM 5 Parte II Prática
Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1)
Matemática aula POLINÔMIOS I. COMENTÁRIOS ATIVIDADES PARA SALA b a P() b P() + + Calculando P (), temos: b a P() b b + b + a ab b a P () b + ( ab) + b + a b Se P () P (), podemos observar que: b + ( ab)
AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA
AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTICA 1.0 INTRODUÇÃO 1.1 Ponte de Wheatstone O método da ponte de Wheatstone, estudado por Wheatstone no sec. XIX é um dos métodos mais empregados para a medição de resistências
Inteligência Artificial
Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu
Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.
O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:
Contabilidade Questões Comentadas da Cesgranrio
1 - (Cesgranrio - Contador ANP - 2008) A Indústria Alvorada, no Balanço encerrado em 31 de dezembro de 2006, apresentou a seguinte informação parcial, em reais, de seu Ativo Permanente / Imobilizado: Computadores
A prova foi de nível médio para difícil, considerando que se trata de uma matéria complexa, que a maioria não gosta, nem tem afinidade.
Comentário da prova de Física PRF 013 COMNTÁRIO PROA DA PRF 013 Pro. - CSP inícius Silva Aula 03 Olá prezados concurseiros da PRF 013, é com muito prazer que venho echar o meu trabalho para esse concurso
Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120
Que algarismos devem ser colocados nos pontinhos da conta abaixo?... 34 x 41... O Invente um problema que tenha como solução os cálculos abaixo: IS x 12 = 180 300-180 = 120 Em diversas situações do nosso
Aula 03. Processadores. Prof. Ricardo Palma
Aula 03 Processadores Prof. Ricardo Palma Definição O processador é a parte mais fundamental para o funcionamento de um computador. Processadores são circuitos digitais que realizam operações como: cópia
Expressões de sequencias
Expressões de sequencias Semana Olímpica/01 Prof. Armando 01 de fevereiro de 01 1 Introdução Um assunto que cai com frequência em olimpíada são as sequências. Sequências são listas ordenadas de números
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa
(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,
Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)
Avaliação de Empresas Profa. Patricia Maria Bortolon
Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1
Solubilidade de um sólido em água. Objectivos de Aprendizagem. No final desta lição, você será capaz de:
Lição N o 5 Solubilidade de um sólido em água Objectivos de Aprendizagem No final desta lição, você será capaz de: Indicar os factores que influenciam a solubilidade de um sólido na água. Tem empo po necessário
SIMULADO MATEMÁTICA. 3) Com os algarismos 2, 5, 7, e 8, quantos números naturais de três algarismos distintos podem ser escritos?
NOME: DATA DE ENTREGA: / / SIMULADO MATEMÁTICA 1) Uma sorveteria oferece uma taça de sorvete que pode vir coberta com calda de chocolate, ou de morango ou de caramelo. O sorvete pode ser escolhido entre
Lista de Exercícios - Adição
Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 4 - Adição - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=ss7v8dgjz34 Gabaritos nas últimas páginas!
Técnicas de Resolução de Problemas - 2 a Parte
Curso Preparatório - PROFMAT 2014 Germán Ignacio Gomero Ferrer [email protected] 15 de Agosto de 2013 Trigonometria Problema I.2.1 (Chinese National High School Mathematics Competition - 1983/1984) No
Apontamentos de matemática 5.º ano - Múltiplos e divisores
Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,
PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana
PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana PERMUTAÇÕES SIMPLES Uma permutação de se denominarmos objetos distintos é qualquer agrupamento ordenado desses objetos, de modo que, o número das permutações
A 'BC' e, com uma régua, obteve estas medidas:
1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,
QUESTÃO 18. Cada um dos cartões abaixo tem de um lado um número e do outro uma letra.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 3 8 + 30 = a) 8 b) 9 c) 8 d) 9 e) 58 5 5 3 3 8
ActivALEA. ative e atualize a sua literacia
ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL
