Álgebra Linear I - Aula 1. Roteiro
|
|
|
- Sebastião Franca Lemos
- 8 Há anos
- Visualizações:
Transcrição
1 Álgebra Linear I - Aula 1 1. Resolução de Sistemas Lineares. 2. Métodos de substituição e escalonamento. Roteiro 1 Resolução de Sistemas Lineares Uma equação linear é uma equação onde todas as incógnitas (que denotaremos por x 1, x 2,..., x n, ou simplesmente por x, y, z quando há apenas três ou menos incógnitas) que aparecem nas equações têm todas grau igual a um. Por exemplo: a 1 x 1 + a 2 x a n x n = b é uma equação linear com n incógnitas. Por exemplo x 2 + y = 5 e x y = 3 não são equações lineares. Uma solução da equação anterior é qualquer conjunto (l 1, l 2,..., l n ) de n números tal que a 1 l 1 + a 2 l a n l n = b. Em geral (eliminando os casos triviais, quais?) uma equação linear tem sempre solução. Por exemplo, se supomos que a 1 0 temos que (b/a 1, 0,..., 0) é uma solução da equação. Analogamente, se supomos que a 2 0 temos que (0, b/a 2, 0,..., 0) também é uma solução. Porém, em geral há soluções mais complicadas. Por exemplo, se consideramos a equação x + y = 1 é simples verificar que as soluções são da forma (t, 1 t), onde t R. Usando o método anterior, obteriamos (apenas) as soluções (1, 0) e (0, 1). Um sistema linear de m equações com n incógnitas é um conjunto de m equações lineares com as mesmas n incógnitas x 1, x 2,...x n. Uma diferença importante entre os sistemas e as equações lineares é que (novamente eliminando os casos triviais) os primeiros nem sempre têm solução. Por exemplo, 1
2 as duas equações lineares x = 1 e x = 2 têm solução. Porém o sistema linear de duas equações x = 1, x = 2 não tem solução. Ao longo do curso (e nesta aula) veremos casos mais interessantes de sistemas lineares sem solução. O objetivo desta aula é relembrar como resolver sistemas lineares de forma simples. Existem dois tipos de sistemas lineares, os que não admitem solução (impossíveis) e os que admitem solução. Estes últimos se subdividem em determinados (a solução é única) e indeterminados (existem infinitas soluções). Vejamos alguns exemplos: Impossível: x + y = 1, x + y = 2. Com solução única (determinado): x + y = 1, x y = 1. Com infinitas soluções (indeterminado): x + y = 1, 2x + 2y = 2. Mostraremos dois métodos de resolução de sistemas: método de substituição e de escalonamento ou de eliminação gaussiana. Observamos que no caso em que o sistema não tem solução estes métodos fornecem esta informação. 1.1 Método de substituição Neste método isolamos uma das variáveis e a escrevemos em função das outras. Exemplo 1. Resolva o sistema x + y = 2, x y = 1. Resposta: Da primeira equação temos, x = 2 y. Substituindo o valor de x na segunda equação, 2 y y = 1, logo y = 1/2. Portanto, x = 3/2. Neste exemplo, temos um sistema (com solução) determinado (única). 2
3 Lembre sempre de verificar que o resultado está certo! Exemplo 2. Resolva o sistema linear de duas equaçẽs x + y = 2, 2x + 2y = 4. Resposta: Da primeira equação obttemos x = 2 y. Substituindo o valor de x na segunda equação, 4 2y + 2y = 4, 4 = 4. Istoé, a segunda equação não impõe nenhuma condição nova (de fato, é obtida multiplicando a primeira por 2 (!)). As soluções do sistema são da forma x = 2 y, (2 y, y), onde y pode ser qualquer valor de R. Isto é as soluções do sistema determinam uma reta no plano R 2. Logo o sistema admite infinitas soluções (indeterminado). Para verificar que a solução está correta substituimos nas equações: (2 y) + y = 2, 2 = 2, 2(2 y) + 2y = 4, 4 2y + 2y = 4, 4 = 4. A resolução do exemplo agora est completa. Exemplo 3. Resolva o sistema linear x + y = 2, x + y = 3. Resposta: Da primeira equação temos x = 2 y. Substituindo na segunda, 2 y + y = 3, isto é, 2 = 3!, o que é absurdo. Portanto, o sistema não admite solução (impossível). 3
4 Exemplo 4. Resolva o sistema linear Resposta: primeira, x + y + z = 1, x y = 2. Da segunda equação, temos x = 2 + y, e substituindo na Portanto, as soluções são da forma 2 + 2y + z = 1, z = 1 2y. (2 + t, t, 1 2t), t R. Observe que estamos escolhendo y = t como parâmetro. Logo, para cada valor de t, obtemos uma solução. As soluções formam uma reta. Verifiquemos que a resposta é correta: Substituindo nas equações: x + y + z = (2 + t) + t + ( 1 2t) = 1, x y = (2 + t) t = 2. Observamos que poderiamos ter escolhido a variável como parâmetro. Por exemplo, escolhendo x como parâmetro, temos, x = t, y = x 2 = 2 + t e z = 1 x y = 3 2t. Observe que não é possível escolher a variável z como parâmetro (tente!, justifique!). Exemplo 5. Determine k para que o sistema o linear x + y = 1, 2x + 2y = k tenha solução. Estude se em tal caso o sistema é determinado ou indeterminado. Resposta: Da primeira equação obtemos x = 1 y. Substituindo na segunda, 2 2y + 2y = k, logo k = 2. O sistema tem infinitas soluções (indeterminado): todo ponto da forma (1 t, t), t R é solução. Verifique sua resposta. 4
5 1.2 Método de escalonamento Este método consiste em, dado um sistema linear, encontrar outro sistema linear equivalente (com as mesmas soluções) talque no novo sistema na segunda equação apareça (no mínimo) uma incógnita a menos que na primeira, e assim sucessivamente. Desta forma, isolaremos uma variável e a partir desta, obteremos sucessivamente as outras. Por exemplo o sistemas e x + y = 4, 2 x + 3 y = 11 x + y = 4, y = 3 são equivalentes (a única solução dos sistemas é x = 1 e y = 3, confira). Mas é muito mais simples resolver os segundo: já conhecemos o valor de y. De fato, o segundo sistema já est em forma escada. Vejamos o método de escalonamento com um exemplo, considere o sistema x + y + z = 2, 2x y + z = 5, x 2y + 3z = 9. Em primeiro lugar, eliminaremos a variável x das segunda e terceira equações. Para isto, efetuamos as seguintes operações: substituimos a segunda equação equação pela segunda equação menos duas vezes a primeira equação, e substituimos a terceira equação pela terceira equação menos a primeira. Assim obtemos, x + y + z = 2, 3 y z = 1, 3y + 2z = 7. Este sistema linear é equivalente ao primeiro (isto é, tem as mesmas soluções). Para eliminar a variável y da terceira equação, consideraremos a terceira menos a segunda, obtendo x + y + z = 2, 3 y z = 1, +3 z = 6. Portanto, z = 2. Da segunda equação, temos, y = 1 e finalmente x = 1. Portanto, o sistema tem solução única (determinado). Verifique que a solução achada é correta. 5
6 Exemplo 6. Resolva o sistema linear de três equações x + y + z = 0, 2x + y = 4, x z = 4. Resposta: Eliminaremos a variável x da segunda e da terceira equações. Para isto, subtrairemos da segunda equação duas vezes a primeira e da terceira a primeira. Obtemos, x + y + z = 0, y 2z = 4, y 2z = 4. Vemos que as duas últimas equações estão repetidas. Logo, obtemos o sistema x + y + z = 0, y + 2z = 4. Isto significa que no sistema inicial uma das equações não fornece informação alguma: a terceira equação é a segunda equação menos a primeira. Neste ponto já não é possível fazer mais eliminações. Escolhemos z como parâmetro e escrevemos as outras variáveis em função de z = t R. Temos, y = 4 2 t, x = y z = t t = 4 + t. Logo, a solução é da forma: (4 + t, 4 2 t, t), t R. Portanto, o sistema é indeterminado (existem infinitas soluções). Exemplo 7. Resolva o sistema linear, x + y + z = 1, x y z = 2, 3x + y + z = 10. Resposta: Eliminaremos x da segunda e da terceira equações (segunda menos primeira e terceira menos três vezes a primeira). Obtemos, x + y + z = 1, 2y 2z = 1, 2y 2z = 7. Ao eliminar y da terceira equação temos, 0 = 6, o que é impossível, logo o sistema não admite solução. 6
Álgebra Linear I - Aula 1. Roteiro
Álgebra Linear I - Aula 1 1. Resolução de Sisteas Lineares. 2. Métodos de substituição e escalonaento. 3. Coordenadas e R 2 e R 3. Roteiro 1 Resolução de Sisteas Lineares Ua equação linear é ua equação
INTRODUÇÃO AO CÁLCULO AULA 04: EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES TÓPICO 02: SISTEMA DE EQUAÇÕES DO 1º GRAU 1. SISTEMA DE EQUAÇÕES DO PRIMEIR
INTRODUÇÃO AO CÁLCULO AULA 04: EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES TÓPICO 02: SISTEMA DE EQUAÇÕES DO 1º GRAU 1. SISTEMA DE EQUAÇÕES DO PRIMEIRO GRAU COM DUAS INCÓGNITAS 1.1 Definição: Um sistema
[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo
7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a
Álgebra Linear I - Aula 9. Roteiro
Álgebra Linear I - Aula 9 1. Distância entre duas retas. 2. A perpendicular comum a duas retas. 3. Posições relativas. Roteiro 1 Distância entre duas retas r e s Calcularemos a distância entre duas retas
Álgebra Linear I - Aula 6. Roteiro
Álgebra Linear I - Aula 6 1. Equação cartesiana do plano. 2. Equação cartesiana da reta. 3. Posições relativas: de duas retas, de uma reta e um plano, de dois planos. Roteiro 1 Equação cartesiana do plano
Álgebra Linear I - Aula 10. Roteiro
Álgebra Linear I - Aula 10 1. Distância entre duas retas. 2. A perpendicular comum a duas retas. 3. Posições relativas. Roteiro 1 Distância entre duas retas r e s Calcularemos a distância entre duas retas
Módulo de Matrizes e Sistemas Lineares. Sistemas Lineares
Módulo de Matrizes e Sistemas Lineares Sistemas Lineares Matrizes e Sistemas Lineares Sistemas Lineares Eercícios Introdutórios 9 3 5 7 = 4 5 Eercício. Determine quais das equações abaio são lineares +
Álgebra Linear
Álgebra Linear - 09 Lista - Sistemas lineares ) Descreva todas as possíveis matrizes, que estão na forma escada reduzida por linha De acordo com a definição de uma matriz na forma escada reduzida por linhas
Álgebra Linear I - Aula 8. Roteiro
Álgebra Linear I - Aula 8 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. 5. Distância entre duas retas.
Métodos Numéricos - Notas de Aula
Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,
P1 de Álgebra Linear I
P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para
P1 de Álgebra Linear I de setembro de Gabarito
P1 de Álgebra Linear I 2005.2 8 de setembro de 2005. Gabarito 1) (a) Considere os planos de equações cartesianas α: β : 2 x y + 2 z = 2, γ : x 5 y + z = k. Determine k para que os planos se interceptem
2 Sistemas de Equações Lineares
2 Sistemas de Equações Lineares 2.1 Introdução Definição (Equação linear): Equação linear é uma equação da forma: a 1 x 1 +a 2 x 2 + +a n x n = b (1) na qual x 1,x 2,...,x n são as incógnitas; a 1,a 2,...,a
G3 de Álgebra Linear I
G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma
Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.
Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum
Sistema de Equaçõs Lineares
Summary Sistema de Equaçõs Lineares Hector L. Carrion ECT-UFRN Agosto, 2010 Summary Equações Lineares 1 Sistema de Eq. Lineares 2 Eliminação Gaussiana-Jordan 3 retangular 4 5 Regra de Cramer Summary Equações
Álgebra Linear I - Aula 10. Roteiro
Álgebra Linear I - Aula 10 1. Combinação linear de vetores. 2. Subespaços e geradores. Roteiro 1 Combinação linear de vetores Definição 1 (Combinação linear de vetores). Dada um conjunto de vetores U =
Sistemas Lineares. Márcio Nascimento
Sistemas Lineares Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2016.1 14 de abril de
FORMAÇÃO CONTINUADA EM MATEMÁTICA. Matemática 2º Ano 4º Bimestre/2012. Plano de Trabalho 1 SISTEMAS LINEARES
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 4º Bimestre/2012 Plano de Trabalho 1 SISTEMAS LINEARES Cursista: Izabel Leal Vieira Tutor: Paulo Alexandre Alves de Carvalho 1 SUMÁRIO INTRODUÇÃO........................................
Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas
Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 6 - Solução de Sistema de Equações Algébricas Métodos diretos: 1- Eliminação de Gauss com substituição recuada 2- Decomposição
Sistemas Lineares. Juliana Pimentel. juliana.pimentel. Sala Bloco A, Torre 2
Sistemas Lineares Juliana Pimentel [email protected] http://hostel.ufabc.edu.br/ juliana.pimentel Sala 507-2 - Bloco A, Torre 2 O que é uma equação linear? O que é uma equação linear? Ex: 1)
APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA)
APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA) 36 - TÓPICO 10.1 a 10.5 10. SISTEMAS LINEARES 10.1. EQUAÇÃO LINEAR 10.2. SISTEMA LINEAR Exemplos: É um sistema formado por equações lineares. APOSTILA 5 MATEMÁTICA 1 (ÁLGEBRA)
Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio
Material Teórico - Módulo Matrizes e Sistemas Lineares Sistemas Lineares - Parte 2 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 A representação
Álgebra Linear I - Aula 2. Roteiro
Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um
Álgebra Linear I - Aula 5. Roteiro
Álgebra Linear I - Aula 5 1. Produto misto. 2. Equação paramétrica da reta. 3. Retas paralelas e reversas. 4. Equação paramétrica do plano. 5. Ortogonalizade. Roteiro 1 Produto Misto Dados três vetores
Álgebra Linear I - Aula 6. Roteiro
Álgebra Linear I - Aula 6 1. Posições relativas e sistemas de equações. 2. Distância de um ponto a uma reta. 3. Distância de um ponto a um plano. Roteiro 1 Sistemas de equações lineares (posição relativa
Álgebra Linear I - Aula 11. Roteiro. 1 Dependência e independência linear de vetores
Álgebra Linear I - Aula 11 1. Dependência e independência linear. 2. Bases. 3. Coordenadas. 4. Bases de R 3 e produto misto. Roteiro 1 Dependência e independência linear de vetores Definição 1 (Dependência
Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan
Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú Curso de Licenciatura em Matemática [email protected] 8
GAAL - Primeira Prova - 06/abril/2013. Questão 1: Considere o seguinte sistema linear nas incógnitas x, y e z.
GAAL - Primeira Prova - 06/abril/203 SOLUÇÕES Questão : Considere o seguinte sistema linear nas incógnitas x, y e z. x + ay z = x + y + 2z = 2 x y + az = a Determine todos os valores de a para os quais
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com três variáveis - Parte 1. Terceiro Ano do Ensino Médio
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica Sistemas com três variáveis - Parte 1 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto
4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais
MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por
Matrizes e Sistemas Lineares
MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes
Métodos Numéricos. Turma CI-202-X. Josiney de Souza.
Métodos Numéricos Turma CI-202-X Josiney de Souza [email protected] Agenda do Dia Aula 15 (21/10/15) Sistemas Lineares Métodos Diretos: Regra de Cramer Método da Eliminação de Gauss (ou triangulação)
Sistemas Lineares. Prof. Márcio Nascimento
Sistemas Lineares Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 www.matematicauva.org
Módulo de Plano Cartesiano e Sistemas de Equações. Discussão de Sistemas de Equações. Professores: Tiago Miranda e Cleber Assis
Módulo de Plano Cartesiano e Sistemas de Equações Discussão de Sistemas de Equações 7 ano E.F. Professores: Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações O Plano Cartesiano 1 Exercícios
Sistemas de equações do 1 grau a duas variáveis
Sistemas de equações do 1 grau a duas variáveis Introdução Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se que as equações
Sistemas Lineares. Prof. Márcio Nascimento
Sistemas Lineares Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.2 www.matematicauva.org
P4 de Álgebra Linear I de junho de 2005 Gabarito
P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana
Matemática Régis Cortes EQUAÇÕES DE GRAUS
EQUAÇÕES DE 1 0 E 2 0 GRAUS 1 EQUAÇÃO DO 1º GRAU As equações do primeiro grau são aquelas que podem ser representadas sob a forma ax+b=0,em que a e b são constantes reais, com a diferente de 0, e x é a
Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios
Sistemas de equações do 1 grau com duas incógnitas Explicação e Exercícios Introdução Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas incógnitas.
Sistemas Lineares e Matrizes
Sistemas Lineares e Matrizes Lino Marcos da Silva linosilva@univasfedubr Obs Este texto ainda está em fase de redação Por isso, peço a gentileza de avisar-me sobre a ocorrência de erros conceituais, gráficos
G1 de Álgebra Linear I Gabarito
G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
Método da substituição
Prof. Neto Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemática são resolvidos a partir
1 NOTAS DE AULA FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA. Professor Doutor: Jair Silvério dos Santos
FFCLRP-USP - VETORES E GEOMETRIA ANALÍTICA 1 NOTAS DE AULA Professor Doutor: Jair Silvério dos Santos (i) Matrizes Reais Uma matriz real é o seguinte arranjo de números reais : a 11 a 12 a 13 a 1m a 21
PET-FÍSICA SISTEMAS LINEARES BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ
PET-FÍSICA SISTEMAS LINEARES Aula 8 BRUNO RANDAL DE OLIVEIRA VANESSA CRISTINA DA SILVA FERREIRA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de
MATEMÁTICA II. Aula 13. 3º Bimestre. Sistemas Lineares Professor Luciano Nóbrega
1 MATEMÁTICA II Aula 13 Sistemas Lineares Professor Luciano Nóbrega 3º Bimestre 2 INTRODUÇÃO Em uma partida de basquete, dois jogadores marcaram juntos 42 pontos. Quantos pontos marcou cada um? Para responder
Introdução à Álgebra Linear - 1a lista de exercícios Prof. - Juliana Coelho
Introdução à Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Ache uma forma escalonada para cada matriz abaixo. (Lembre que a forma escalonada não é única, então você pode obter uma resposta
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR
UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE CAMPUS AVANÇADO DE NATAL CURSO DE CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: ÁLGEBRA LINEAR PROFESSOR: MARCELO SILVA 1. Introdução No ensino fundamental você estudou
equações do 1 grau a duas variáveis 7 3.(3) = 2
Sistemas de equações do 1 grau a duas variáveis ESTUDE A PARTE TEÓRICA E RESOLVA OS EXERCÍCIOS DO FINAL DA FOLHA NO CADERNO. Introdução Alguns problemas de matemáticaa são resolvidos a partir de soluções
Álgebra Linear - 1 a lista de exercícios Prof. - Juliana Coelho
Álgebra Linear - a lista de exercícios Prof. - Juliana Coelho - Considere as matrizes abaixo e faça o que se pede: M N O 7 P Q R 8 4 T S a b a Determine quais destas matrizes são simétricas. E antisimétricas?
Regra geral para a resolução de equações do primeiro grau com mais de. uma variável
EQUAÇÃO DO PRIMEIRO GRAU COM DUAS VARIÁVEIS Uma equação do 1 grau com duas incógnitas, é qualquer equação que possa ser reduzida à forma ax + by = c, onde x e y são incógnitas e a, b e c são números racionais,
Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas
Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade
Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1
setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES
Álgebra Linear I - Aula 18
Álgebra Linear I - Aula 18 1. Matrizes semelhantes. 2. Matriz de uma transformação linear em uma base. Roteiro 1 Matrizes semelhantes Definição 1 (Matrizes semelhantes). Considere duas matrizes quadradas
Escalonamento. Sumário. 1 Pré-requisitos. 2 Sistema Linear e forma matricial. Sadao Massago a Pré-requisitos 1
Escalonamento Sadao Massago 2011-05-05 a 2014-03-14 Sumário 1 Pré-requisitos 1 2 Sistema Linear e forma matricial 1 3 Forma escalonada 3 4 Método de eliminação de Gauss (escalonamento) 5 5 A matriz inversa
Álgebra Linear I - Lista 10. Matrizes e Transformações lineares. Respostas
Álgebra Linear I - Lista 1 Matrizes e Transformações lineares Respostas 1 Sejam A e B matrizes quadradas do mesmo tamanho Dê um exemplo onde (A + B 2 A 2 + 2A B + B 2 Complete: (A + B 2 = A 2 + B 2 +?
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A
MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode
Funções Hiperbólicas:
Funções Hiperbólicas: Estas funções são parecidas as funções trigonométricas e possuem muitas aplicações como veremos ao longo da disciplina. Definiremos primeiro as funções seno hiperbólico e cosseno
Álgebra Linear I - Lista 7. Respostas
Álgebra Linear I - Lista 7 Distâncias Respostas 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r. Resposta: 3. 2) Ache o ponto P do conjunto { (x,
Revisão: Matrizes e Sistemas lineares. Parte 01
Revisão: Matrizes e Sistemas lineares Parte 01 Definição de matrizes; Tipos de matrizes; Operações com matrizes; Propriedades; Exemplos e exercícios. 1 Matrizes Definição: 2 Matrizes 3 Tipos de matrizes
ENSINO FUNDAMENTAL II. Sistemas de equações do 1 grau a duas variáveis
ENSINO FUNDAMENTAL II ALUNO (A): Nº PROFESSOR(A):Rosylanne Gomes/ Marcelo Vale e Marcelo Bentes DISCIPLINA: matemática SÉRIE: 7 ano TURMA: TURNO: DATA: / / 2016 Sistemas de equações do 1 grau a duas variáveis
Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009
Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução
Seção 10: Redução de ordem de EDOLH s de 2 a ordem se for conhecida uma solução não trivial
Seção 0: Redução de ordem de EDOLH s de a ordem se for conhecida uma solução não trivial Método de D Alembert Se for conhecida uma solução não trivial de uma EDOLH de a ordem, empregando o método de D
Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação
Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares
Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares
P2 de Álgebra Linear I Data: 10 de outubro de Gabarito
P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de
Os números reais. Capítulo O conjunto I
Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais
Direto ao Ponto. Dinâmica 3. 2º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. Matemática 2ª do Ensino Médio Algébrico-Simbólico Sistemas lineares
Reforço escolar M ate mática Direto ao Ponto Dinâmica 3 2º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 2ª do Ensino Médio Algébrico-Simbólico Sistemas lineares DINÂMICA Direto ao Ponto.
V MATRIZES E DETERMINANTES
V MATRIZES E DETERMINANTES Por que aprender Matrizes e Deter erminant minantes?... Algumas vezes, para indicar com clareza determinadas situações, é necessário formar um grupo ordenado de números dispostos
Material Teórico - Módulo Sistemas de Equações do 1 o Grau. Sistemas de Equações do 1 o Grau. Oitavo Ano
Material Teórico - Módulo Sistemas de Equações do 1 o Grau Sistemas de Equações do 1 o Grau Oitavo Ano Autor: Prof Ulisses Lima Parente Revisor: Prof Antonio Caminha M Neto 1 Introdução Um sistema linear
Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental
Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio
Problema 5a by
Problema 5a by [email protected] Resolva o sistema linear por escalonamento S = x y z=1 x y z= 1 2x y 3z=2 Resolução Utilizaremos quatro métodos para ilustrar a resolução do sistema linear acima.
Álgebra Linear I - Aula 9. Roteiro
Álgebra Linear I - Aula 9 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. oteiro 1 Distância de um ponto
Álgebra Matricial(MAT110) - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes. Prof Carlos Alberto Santana Soares
Álgebra Matricial(MAT110 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes 1 Prof Carlos Alberto Santana Soares 2019 2 3 Sumário Sumário 3 1 Introdução 5 11 Equaçoes Lineares a Uma Incógnita
Um sistema linear é um conjunto de n equações lineares do tipo:
Um sistema linear é um conjunto de n equações lineares do tipo: Este sistema pode ser representado através de uma representação matricial da forma: A.x = b onde: A matriz de coeficientes de ordem x vetor
Equações exponenciais
A UA UL LA Equações exponenciais Introdução Vamos apresentar, nesta aula, equações onde a incógnita aparece no expoente. São as equações exponenciais. Resolver uma equação é encontrar os valores da incógnita
Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares
Elementos de Cálculo 1 - Notas de Aulas I Sistemas Lineares, Matrizes e Determinantes Prof Carlos Alberto S Soares 1 Introdução Neste capitulo, estaremos interessados em estudar os sistemas de equações
ficha 4 valores próprios e vectores próprios
Exercícios de Álgebra Linear ficha 4 valores próprios e vectores próprios Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12
MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES
MATRIZES, DETERMINANTES E SISTEMAS LINEARES SISTEMAS LINEARES SISTEMAS LINEARES Equação linear Equação linear é toda equação da forma: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b em que a 1, a 2, a
Cálculo Diferencial e Integral C. Me. Aline Brum Seibel
Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno
Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA 1- IDENTIFICAÇÃO Instituto
Aula 4 Colinearidade, coplanaridade e dependência linear
Aula 4 Colinearidade, coplanaridade e dependência linear MÓDULO 1 - AULA 4 Objetivos Compreender os conceitos de independência e dependência linear. Estabelecer condições para determinar quando uma coleção
P4 de Álgebra Linear I
P4 de Álgebra Linear I 2008.2 Data: 28 de Novembro de 2008. Gabarito. 1) (Enunciado da prova tipo A) a) Considere o plano π: x + 2 y + z = 0. Determine a equação cartesiana de um plano ρ tal que a distância
x 3y +6z = 1 2x 5y +10z =0 3x 8y +17z =1
Lista de Exercícios # - Métodos Quantitativos em Economia - FCE- UERJ Professor Pedro Hemsley - 0.. Identifique as equações lineares. R. Equações lineares: todas as variáveis devem ter expoente igual a,
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes
Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema
