2.3 DFMs irredutíveis

Tamanho: px
Começar a partir da página:

Download "2.3 DFMs irredutíveis"

Transcrição

1 2.3 DFMs irredutíveis Definição: Duas matrizes polinomiais N(s) e D(s) com o mesmo número de colunas são coprimas à direita se seus m.d.c.s são unimodulares. Lema 2. (Identidade de Bezout): Duas matrizes polinomiais N(s) e D(s) com o mesmo número de colunas são coprimas à direita se e somente se existirem duas matrizes polinomiais X(s) e Y (s) tais que Prova: X(s)D(s) + Y (s)n(s) = I ( ) p q Se N(s) e D(s) são coprimas à direita, então de acordo com o Teorema 2. existem matrizes polinomiais U (s) e U 2 (s) tais que U (s)d(s) + U 2 (s)n(s) = R(s) sendo que R(s) é uma matriz unimodular R (s)u (s) D(s) + R (s)u 2 (s) N(s) = I X(s) Y (s) (X(s) e Y (s) são matrizes polinomiais.) ( ) q p Suponha que existem X(s) e Y (s) polinomiais tais que X(s)D(s) + Y (s)n(s) = I Seja R(s) um m.d.c. à direita de N(s) e D(s), então: N(s) = N(s)R(s) e D(s) = D(s)R(s) X(s) D(s)R(s) + Y (s) N(s)R(s) = I [ ] X(s) D(s) + Y (s) N(s) R(s) = I R (s) = X(s) D(s)+Y (s) N(s) é uma matriz polinomial e, portanto, R(s) é unimodular.

2 Definição: G(s) = N(s)D (s) é uma DFM irredutível se N(s) e D(s) forem coprimas à direita. Lema 2.2 Seja G(s) = N(s)D (s) uma DFM à direita e seja R(s) um m.d.c. à direita de N(s) e D(s). Se as matrizes polinomiais N(s) e D(s) são tais que N(s) = N(s)R(s) e D(s) = D(s)R(s), então G(s) = N(s) D (s) é uma DFM irredutível de G(s). Prova: (i) G(s) = N(s) D (s) G(s) = N(s)D (s) = N(s)R(s) [ ] D(s)R(s) = N(s)R(s)R (s) D (s) G(s) = N(s) D (s) (ii) N(s) e D(s) são coprimas à direita De acordo com o Teorema 2., tem-se [ ] [ ] [ ] U (s) U 2 (s) D(s) R(s) = U 2 (s) U 22 (s) N(s) 0 U (s)d(s) + U 2 (s)n(s) = R(s) U (s) D(s)R(s) + U 2 (s) N(s)R(s) = R(s) U (s) D(s) + U 2 (s) N(s) = I Portanto, de acordo com o Lema 2., as matrizes N(s) e D(s) são coprimas à direita. Definição: Uma matriz G(s) IR p m (s) é chamada de (i) imprópria: quando lim s G(s) não existe (ii) própria: quando lim s G(s) = K 0 (ii) estritamente própria: quando lim s G(s) = 0

3 [ Exemplo: G(s) = s+ ] s+2 s+ lim G(s) = [ ] s G(s) é uma matriz de transferência própria [ G(s) = G sp (s) + D = ] s+ s+ C(sI A) B + [ ] D [ Problema: Obter uma DFM irredutível para G sp (s) = s+ ] s+ G sp (s) = N(s)D (s) = [ ] [ ] s+ N(s) D(s) N(s) e D(s) são coprimas à direita? s+ 0 0 (s+) s (s+) 0 0 [ ] R(s) = 0 s + R(s) = s + R(s) não é unimodular N(s) e D(s) não são coprimas à direita. N(s) = N(s)R(s) N(s) = N(s)R (s). [ ] R (s) = s + s +

4 N(s) = [ ] [ ] s + = [ ] s + D(s) = D(s)R(s) D(s) = D(s)R (s). [ ] [ ] D(s) = s + s + s + s + [ ] s + D(s) = D (s) s + s + Note que N(s) D (s) = G sp (s)

5 2.4 Matrizes Polinomiais e Racionais 2.4. Forma de Smith Para N(s) IR p m [s] existem matrizes unimodulares U(s) IR p p [s] e V (s) IR m m [s] tais que onde U(s)N(s)V (s) = Σ(s) i) Σ(s) = σ (s) σ 2 (s)... σ r (s) 0 (p r) r 0 r (m r) 0 (p r) (m r) ii) σ i (s), i =,..., r são polinômios mônicos e σ i (s)σ i+ (s) (σ i (s) divide σ i+ (s), i.e. σ i+ (s) = p(s)σ i (s)) A Matriz Σ(s) é chamada de forma de Smith de N(s) Observações: (i) Seja i (s) o m.d.c. mônico de todos os menores de ordem i da matriz N(s). Pode-se mostrar que σ i (s) = i(s) i (s) onde 0 (s) =, por definição. Os menores de ordem i da matriz N(s) são os determinantes de todas as submatrizes quadradas i i de N(s) (ii) Os polinômios σ i (s) são chamados de polinômios invariantes da matriz N(s). (iii) r é denominado de posto normal de N(s) (iv) Como U(s) e V (s) são unimodulares, então ρ[n(s)] = ρ[σ(s)], s. Portanto, N(s) perde posto para todos os valores de s = z tais que σ i (z) = 0.

6 Exemplo: N(s) = Cálculo de Σ(s) ) 0 (s) = s 2 +3s+2 s 2 s+ s 2 +3s+2 (s) = (menores de ordem são os próprios elementos de N(s)) Menores de ordem 2: m 2 (s) = (s+)(s+2) (s )(s+) = (s )(s+)(s+2) (s+)(s+2) 2 (s+)(s+2)[ s s 2] = 3(s+)(s+2) m 3 (s) = (s+) (s+)(s+2) = (s+)(s+2) 2 (s+)(s+2) (s+)(s+2)[s + 2 ] = (s+) 2 (s+2) m 23 (s) = (s+)(s+2) (s+) (s )(s+) (s+)(s+2) = (s+) 2 (s+2) 2 (s+) 2 (s ) (s+) 2 [s 2 +4s+4 s+] = (s+) 2 (s 2 +3s+5) 2 (s) = s + Portanto: σ (s) = (s) 0 (s) = σ 2 (s) = 2(s) (s) = s + Σ(s) = 0 0

7 2) 0 (s+) U (s) (s+)(s+2) (s )(s+) s+ (s+)(s+2) U 2 (s) 0 3(s+) s(s+2) 0 0 (s+2) U 3 (s) s(s+2) 0 3(s+) s(s+2) [ ] s(s+2) 0 3(s+) 0 (s+) 2 (s+2) V (s) (s+)(s+2) U 4 (s) 0 3(s+) 0 (s+) 2 (s+2) Σ(s) = 0 0 U(s) = U 4 (s)u 3 (s)u 2 (s)u (s) U(s) = [ ] s(s+2) V (s) = V (s) = 3 (s+) 3 3 (s+)(s2 +3s+5) (s+)(s+2) s+2 3 Note que N( ) = 0 0 ρ[n( )] = Forma de Smith-McMillan Seja G(s) IR p m (s) escrita como G(s)= N(s), sendo d(s) o mínimo múltiplo comum d(s) (m.m.c.) mônico dos denominadores de G(s) e N(s) IR p m [s]. Então, existem matrizes unimodulares U(s) e V (s) tais que U(s)N(s)V (s) = Σ(s) onde Σ(s) é a forma de Smith de N(s).

8 Portanto, M(s) = U(s)G(s)V (s) = Σ(s) U(s)N(s)V (s) = d(s) d(s) = M(s) σ (s) d(s) σ 2 (s) d(s)... σ r (s) d(s) 0 (p r) r 0 r (m r) 0 (p r) (m r) Reduzindo os elementos racionais em termos de menor ordem, tem-se: σ i (s) d(s) = ε i(s) ψ i (s), sendo que ε i(s) e ψ i (s) são coprimos, e além disso (i) ε i (s) ε i+ (s) (ε i+ (s) = p i (s)ε i (s)) (ii) ψ i+ (s) ψ i (s) A matriz M(s) = (ψ i (s) = q i (s)ψ i+ (s)) ε (s) ψ (s) ε 2 (s) ψ 2 (s)... ε r (s) ψ r (s) 0 (p r) r 0 r (m r) 0 (p r) (m r) é chamada de forma de Smith-McMillan de G(s) Obs. : O grau de McMillan é definido como: n = r gr [ψ i (s)] i= Obs. 2: O grau de McMillan é igual à ordem da realização mínima.

2.2.1 Cálculo do m.d.c. à direita de matrizes polinomiais

2.2.1 Cálculo do m.d.c. à direita de matrizes polinomiais 2.2.1 Cálculo do m.d.c. à direita de matrizes polinomiais Teorema 2.1: Sejam N(s) IR p m [s] e D(s) IR m m [s] e assuma que det[d(s)] 0. Seja U(s) uma matriz unimodular tal que [ ] D(s) U(s) = N(s) R(s),

Leia mais

Teorema 2.3: (Identidade de Bezout Generalizada) Sejam G(s) = N(s)D 1 1

Teorema 2.3: (Identidade de Bezout Generalizada) Sejam G(s) = N(s)D 1 1 Teorema 2.3: (Identidade de Bezout Generalizada) ejam G(s) D (s) D (s)ñ(s) DFMs irredutíveis, então existem matrizes polinomiais X (s), Y (s), X(s) e Y(s) tais que Y(s) X(s) X (s) D(s) Ñ(s) D(s) Y (s)

Leia mais

ALGORITMOS PARA MATRIZES POLINOMIAIS. Arlei Fonseca Barcelos

ALGORITMOS PARA MATRIZES POLINOMIAIS. Arlei Fonseca Barcelos ALGORITMOS PARA MATRIZES POLINOMIAIS Arlei Fonseca Barcelos TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE

Leia mais

5 Descrição entrada-saída

5 Descrição entrada-saída Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)

Leia mais

LISTAS DE EXERCÍCIOS PTC Controle Linear Multivariável (Pós-Graduação) Prof. Paulo Sérgio Pereira da Silva

LISTAS DE EXERCÍCIOS PTC Controle Linear Multivariável (Pós-Graduação) Prof. Paulo Sérgio Pereira da Silva LISTAS DE EXERCÍCIOS PTC - 5746 Controle Linear Multivariável Pós-Graduação Prof. Paulo Sérgio Pereira da Silva 27 ạ Lista de Exercícios Algebra Linear Controle Multivariável PTC 5746 Prof. Paulo Sérgio

Leia mais

O Papel dos Pólos e Zeros

O Papel dos Pólos e Zeros Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),

Leia mais

2 Conceitos Básicos da Geometria Diferencial Afim

2 Conceitos Básicos da Geometria Diferencial Afim 2 Conceitos Básicos da Geometria Diferencial Afim Antes de iniciarmos o estudo das desigualdades isoperimétricas para curvas convexas, vamos rever alguns conceitos e resultados da Geometria Diferencial

Leia mais

Critério de Estabilidade: Routh-Hurwitz

Critério de Estabilidade: Routh-Hurwitz Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha

Leia mais

Estabilidade de sistemas de controle lineares invariantes no tempo

Estabilidade de sistemas de controle lineares invariantes no tempo Capítulo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2. Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no

Leia mais

IV. ESTABILIDADE DE SISTEMAS LIT

IV. ESTABILIDADE DE SISTEMAS LIT INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE IV. ESTABILIDADE DE SISTEMAS LIT Prof. Davi Antônio dos Santos ([email protected]) Departamento de

Leia mais

Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a):

Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a): Pontifícia Universidade Católica de Goiás Departamento de Engenharia Laboratório ENG 3502 Controle de Processos 01 Prof: Marcos Lajovic Carneiro Aluno (a): Aula Prática 01 Polinômios, frações parciais,

Leia mais

Capítulo 2 Dinâmica de Sistemas Lineares

Capítulo 2 Dinâmica de Sistemas Lineares Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com [email protected] PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

Sistemas lineares. Aula 6 Transformada de Laplace

Sistemas lineares. Aula 6 Transformada de Laplace Sistemas lineares Aula 6 Transformada de Laplace Introdução Transformada de Laplace Convergência da transformada de laplace Exemplos Região de Convergência Introdução Transformações matemáticas: Logaritmo:

Leia mais

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. Lista 1 - Teoria de Anéis - 2013 Professor: Marcelo M.S. Alves Data: 03/09/2013 obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. 1. Os conjuntos

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

Irredutibilidade em Q[x]

Irredutibilidade em Q[x] META: Fundamentar a busca de critérios de irredutibilidade em Z[x] para mostrar irredutibilidade em Q[x]. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de: Definir polinômios primitivos em Z[x].

Leia mais

Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos

Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos 107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016

Leia mais

MA14 - Aritmética Unidade 6 - Parte 3 Resumo

MA14 - Aritmética Unidade 6 - Parte 3 Resumo MA14 - Aritmética Unidade 6 - Parte 3 Resumo A Equação Pitagórica Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Aula 6 Transformada de Laplace

Aula 6 Transformada de Laplace Aula 6 Transformada de Laplace Introdução Propriedades da Transformada de Laplace Tabela Transformada ade Laplace Transformada Inversa de Laplace Função de transferência Definição: X s = L x t = s é uma

Leia mais

Aula 10. variáveis; a resultante fatoração única em Z[x]

Aula 10. variáveis; a resultante fatoração única em Z[x] Aula 10 fatoração única em várias variáveis; a resultante (Anterior: Gauss. ) 10.1 fatoração única em Z[x] 1. Prop. Seja f Z[x], deg f > 0. Então existem m Z e polinômios irredutíveis p 1,..., p t Z[x]

Leia mais

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em

Leia mais

Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros

Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros 107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para

Leia mais

AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I

AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I AULA 3 CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz PROF. DR. ALFREDO DEL SOLE LORDELO TELA CHEIA Critério de estabilidade de Routh A questão

Leia mais

Transformada de Laplace Inversa Expansão em Frações Parciais

Transformada de Laplace Inversa Expansão em Frações Parciais Transformada de Laplace Inversa Expansão em Frações Parciais 1 Introdução Estamos interessados em determinar a transformada inversa de uma função da forma D(s) = a ms m + a m 1 s m 1 +... + a 1 s + a 0

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Sistemas lineares. Aula 7 Transformada Inversa de Laplace

Sistemas lineares. Aula 7 Transformada Inversa de Laplace Sistemas lineares Aula 7 Transformada Inversa de Laplace Transformada Inversa de Laplace Transformada Inversa de Laplace e RDC x(t) única Metódos Inversão pela Definição Inversão pela Expansão em Frações

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Aula 9. Diagrama de Bode

Aula 9. Diagrama de Bode Aula 9 Diagrama de Bode Hendrik Wade Bode (americano,905-98 Os diagramas de Bode (de módulo e de fase são uma das formas de caracterizar sinais no domínio da frequência. Função de Transferência Os sinais

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica

Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica Aula 11 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução - Lugar das Raízes

Leia mais

EES-49/2012 Correção do Exame. QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência:

EES-49/2012 Correção do Exame. QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência: EES-49/2012 Correção do Exame QBM1 Esboce o diagrama de Nyquist para a seguinte função de transferência: Analise a estabilidade do sistema em malha fechada (dizendo quantos polos instáveis o sistema tem

Leia mais

O lugar das raízes p. 1/54. O lugar das raízes. Newton Maruyama

O lugar das raízes p. 1/54. O lugar das raízes. Newton Maruyama O lugar das raízes p. 1/54 O lugar das raízes Newton Maruyama O lugar das raízes p. 2/54 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização

Leia mais

Projeto de Filtros IIR. Métodos de Aproximação para Filtros Analógicos

Projeto de Filtros IIR. Métodos de Aproximação para Filtros Analógicos Projeto de Filtros IIR Métodos de Aproximação para Filtros Analógicos Introdução Especificações para filtros passa-baixas analógicos - Faixa de passagem: 0 W W p - Faixa de rejeição: W W r - Ripple na

Leia mais

Controle e Sistemas Não lineares

Controle e Sistemas Não lineares Controle e Sistemas Não lineares Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 01 de dezembro de 2016. Sumário Objetivos Introduzir

Leia mais

Universidade Federal do Espírito Santo Prova de Álgebra II Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 07/05/2015

Universidade Federal do Espírito Santo Prova de Álgebra II Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 07/05/2015 Universidade Federal do Espírito Santo Prova de Álgebra II Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 07/05/2015 Aluno: Matrícula. Nota: : :.Observações: I A prova tem duração de 100 min; não é permitido

Leia mais

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 27/2 - Mestrado A prova é composta de 6 (seis) questões, das quais o candidato

Leia mais

Controle de Processos Aula: Estabilidade e Critério de Routh

Controle de Processos Aula: Estabilidade e Critério de Routh 107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)

Leia mais

O método do lugar das raízes

O método do lugar das raízes 4 O método do lugar das raízes 4.1 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização dos pólos de um sistema em malha fechada em função

Leia mais

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle

Representação e Análise de Sistemas Dinâmicos Lineares Componentes Básicos de um Sistema de Controle Representação e Análise de Sistemas Dinâmicos Lineares 1 Introdução 11 Componentes Básicos de um Sistema de Controle Fundamentos matemáticos 1 Singularidades: Pólos e zeros Equações diferencias ordinárias

Leia mais

Algebra Linear. 1. Funções de Matriz Quadrada 1.1. Teorema de Cayley-Hamilton. pag.1 Teoria de Sistemas Lineares Aula 8. c Reinaldo M.

Algebra Linear. 1. Funções de Matriz Quadrada 1.1. Teorema de Cayley-Hamilton. pag.1 Teoria de Sistemas Lineares Aula 8. c Reinaldo M. Algebra Linear 1. 1.1. Teorema de Cayley-Hamilton pag.1 Teoria de Sistemas Lineares Aula 8 Considere A R n n associada a transformação linear f : R n R n Polinômios de matriz quadrada Para k positivo e

Leia mais

Pólos, Zeros e Estabilidade

Pólos, Zeros e Estabilidade Pólos, Zeros e Estabilidade Definindo Estabilidade A condição para estabilidade pode também ser expressa da seguinte maneira: se um sistema é estável quando sujeito a um impulso, a saída retoma a zero.

Leia mais

Polinômios irredutíveis

Polinômios irredutíveis Polinômios irredutíveis Sérgio Tadao Martins 23 de janeiro de 2009 1 Introdução: polinômios em uma variável Um polinômio de grau n em uma variável x é uma expressão da forma p(x) = a 0 + a 1 x + a 2 x

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

Cap.2. Representação de Estado e Controlabilidade

Cap.2. Representação de Estado e Controlabilidade Cap.2. Representação de Estado e Controlabilidade Visão geral do capítulo Neste capítulo trataremos o problema da controlabilidade de sistemas lineares invariantes no tempo. Faremos antes uma breve revisão

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e vectores próprios Álgebra Linear C (Engenharia Biológica) 0 de Dezembro de 006 Conteúdo Motivação e definições Propriedades 4 3 Matrizes diagonalizáveis 5 Motivação e definições Considere a matriz

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

II. REVISÃO DE FUNDAMENTOS

II. REVISÃO DE FUNDAMENTOS INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos ([email protected]) Departamento de Mecatrônica

Leia mais

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada.

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada. CÁLCULO I Aula 14:.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Denição Sejam f : A B uma função e x 1, x 2 D f. Denimos que f é uma (i) função crescente se x 1

Leia mais

Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov

Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov Estabilidade Interna 1. Estabilidade Interna 2. Análise de Estabilidade Segundo Lyapunov 3. Teorema de Lyapunov 4. Teorema de Lyapunov Caso Discreto pag.1 Teoria de Sistemas Lineares Aula 13 Estabilidade

Leia mais

CRITÉRIO DE ESTABILIDADE DE ROUTH

CRITÉRIO DE ESTABILIDADE DE ROUTH ENGENHARIA ELETRÔNICA DAELN UTFPR Prof. Paulo R. Brero de Campos CRITÉRIO DE ESTABILIDADE DE ROUTH Um sistema será estável quando todos os polos estiverem no semiplano esquerdo do plano S. Exemplo: G(s)

Leia mais

Márcio Antônio de Andrade Bortoloti

Márcio Antônio de Andrade Bortoloti Márcio Antônio de Andrade Bortoloti Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia Sumário 1 Definição Uma matriz quadrada de ordem n é definida positiva

Leia mais

3.3 Retrato de fase de sistemas lineares de 1 a ordem

3.3 Retrato de fase de sistemas lineares de 1 a ordem MAP 2310 - Análise Numérica e Equações Diferenciais I Continuação - 25/05/2006 1 o Semestre de 2006 3.3 Retrato de fase de sistemas lineares de 1 a ordem O espaço de fase de um sistema da forma ẏ = Ay,

Leia mais

Aula 19: Lifting e matrizes ideais

Aula 19: Lifting e matrizes ideais Aula 19: Lifting e matrizes ideais Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Branch-and-bound Formulações

Leia mais

Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica

Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Aula 9 Carlos Amaral Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Abril de 2012. Resumo 1 Introdução - Estabilidade

Leia mais

Álgebra Linear I - Aula 19

Álgebra Linear I - Aula 19 Álgebra Linear I - Aula 19 1. Matrizes diagonalizáveis. 2. Matrizes diagonalizáveis. Exemplos. 3. Forma diagonal de uma matriz diagonalizável. 1 Matrizes diagonalizáveis Uma matriz quadrada T = a 1,1 a

Leia mais

TRABALHO DE ÁLGEBRA I

TRABALHO DE ÁLGEBRA I UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA TRABALHO DE ÁLGEBRA I PROFESSOR KOSTIANTYN IUSENKO TEMA: Critério de Irredutibilidade de Eisenstein CÓDIGO DA DISCIPLINA: MAT1201 LEONARDO

Leia mais

Transformada de Laplace

Transformada de Laplace Sinais e Sistemas Transformada de Laplace [email protected] Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada

Leia mais

Controle de Processos Aula: Sistema em malha fechada

Controle de Processos Aula: Sistema em malha fechada 107484 Controle de Processos Aula: Sistema em malha fechada Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle

Leia mais

Controle de Processos Aula: Sistema em malha fechada

Controle de Processos Aula: Sistema em malha fechada 107484 Controle de Processos Aula: Sistema em malha fechada Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2017 E. S. Tognetti (UnB) Controle

Leia mais

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013

Limites. Slides de apoio sobre Limites. Prof. Ronaldo Carlotto Batista. 7 de outubro de 2013 Cálculo 1 ECT1113 Slides de apoio sobre Limites Prof. Ronaldo Carlotto Batista 7 de outubro de 2013 AVISO IMPORTANTE Estes slides foram criados como material de apoio às aulas e não devem ser utilizados

Leia mais

Fundamentos de Controlo

Fundamentos de Controlo Fundamentos de Controlo a Série Resposta no Tempo de Sistemas Causais. S.1 Exercícios Resolvidos P.1 Seja H(s) = s (s + ) a função de transferência de um SLIT contínuo causal. Qual dos sinais da Figura

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

SC1 Sistemas de Controle 1. Cap. 2 - Estabilidade Prof. Tiago S Vítor

SC1 Sistemas de Controle 1. Cap. 2 - Estabilidade Prof. Tiago S Vítor SC1 Sistemas de Controle 1 Cap. 2 - Estabilidade Prof. Tiago S Vítor Sumário 1. Introdução 2. Critério de Routh-Hurwitz 3. Critério de Routh-Hurwitz: Casos Especiais 4. Projeto de Estabilidade via Routh-Hurwitz

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas Função de Transferência Caracterização da relação entre uma entrada e uma saída (SISO) de um dado sistema linear e invariante no tempo (LIT). Definida como a relação entre

Leia mais

Aula 8. Cristiano Quevedo Andrea 1. Curitiba, Abril de DAELT - Departamento Acadêmico de Eletrotécnica

Aula 8. Cristiano Quevedo Andrea 1. Curitiba, Abril de DAELT - Departamento Acadêmico de Eletrotécnica Classificaçã dos Sistemas de Controle Especificaçõe do Estado Estacionário de Erro Aula 8 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico

Leia mais

Fundamentos de Controlo

Fundamentos de Controlo Fundamentos de Controlo 3 a Série Estabilidade e Desempenho, Critério de Routh-Hurwitz, Rejeição de Perturbações, Sensibilidade à Variação de Parâmetros, Erros em Regime Estacionário. S3. Exercícios Resolvidos

Leia mais

Estabilidade entrada-saída (externa).

Estabilidade entrada-saída (externa). Estabilidade entrada-saída (externa) ENGC33: Sinais e Sistemas II Departamento de Engenharia Elétrica - DEE Universidade Federal da Bahia - UFBA 05 de junho de 2019 Prof Tito Luís Maia Santos 1/ 38 Sumário

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais

Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

O método do lugar das raízes

O método do lugar das raízes Capítulo 4 O método do lugar das raízes 4.1 Introdução Neste capítulo é apresentado o método do lugar das raízes, que consiste basicamente em levantar a localização dos pólos de um sistema em malha fechada

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e

Leia mais

1. Diagrama de Blocos. 2. Gráfico de fluxo de sinais. Representação e Análise de Sistemas Dinâmicos Lineares

1. Diagrama de Blocos. 2. Gráfico de fluxo de sinais. Representação e Análise de Sistemas Dinâmicos Lineares Representação e Análise de Sistemas Dinâmicos Lineares 1. Diagrama de Blocos 2. Gráfico de fluxo de sinais Fernando de Oliveira Souza pag.1 Engenharia de Controle Aula 3 Diagrama de Blocos U(s) G(s) Y

Leia mais

PMR3404 Controle I Aula 2

PMR3404 Controle I Aula 2 PMR3404 Controle I Aula 2 Pólos e zeros, Estabilidade, Critério de Estabilidade de Routh-Hurwitz Newton Maruyama 16 de março de 2017 PMR-EPUSP Introdução Introdução O cálculo da resposta no domínio do

Leia mais