Gabarito de Respostas
|
|
|
- Luiz Gustavo Brás Teixeira
- 8 Há anos
- Visualizações:
Transcrição
1 Gabarito de Respostas Nome Processo GRUÇÃO M MINISTRÇÃO - RIO JNIRO Ingresso /9 Fase FS ÚNI Tipo Prova - VR MTMÁTI LINGU PORTUGUS INGLÊS HUMNS IÊNIS Questão lternativa Questão lternativa Questão lternativa Questão lternativa Questão lternativa 6 7 8*) *) Questão anulada
2 Matemática - Resolução Três empreiteiras, e foram contratadas para pavimentar uma estrada, cada uma encarregada de certo trecho. empreiteira pavimentou / da etensão total, a empreiteira pavimentou /7 do total e a empreiteira pavimentou km, completando todo o serviço. ntão, a etensão total da estrada é : km km km km km 7 7 km
3 Na figura abaio, os ângulos e são retos, e os segmentos medem, respectivamente, 9 cm, cm e cm., e área do quadrilátero, em cm, é: 6 8 área área área área ~ ) ) ) área ) ) 96
4 equação... apresenta como resultado um valor, tal que : 8 6 < 7 < 8 < 8 < 9 9 < Sabe-se que o valor da soma infinita é igual a. 8 6 Podemos afirmar que: 8 6 onsidere o sistema linear real. ntão : k k k, de incógnitas e, onde k é um parâmetro se k, o sistema é impossível. se k, o sistema é possível e determinado. se k, o sistema é possível e indeterminado. se k, o sistema é impossível. se k ±, o sistema é impossível. det k k k k k ± k ± sistema possível e determinado k ~ sistema impossível k ~ sistema impossível
5 O número de anagramas diferentes que podem ser construídos com as letras da palavra VRGS, e que comecem e terminem com consoantes é: 6 88 Total...!..! 6 Sabe-se que o produto de duas das raízes do polinômio P ) k é igual a. O valor do coeficiente k é: 8 P ) a a ) a P ) ) 6 k 6 k k 6 k 8 b c d ) d ) ) d a k )
6 7 Uma indústria química pode estocar determinado líquido em recipientes cúbicos de aresta a ou em esferas de volume igual ao do recipiente cúbico. epressão da área da superfície de um recipiente esférico de volume igual ao do cubo de aresta a será: 6π a π a π a π a 6π a
7 6 8 O sistema log log tem como soluções os pares ) ; ) ; e. ntão, a soma será : - - ) ) ) 6 ) ) ).,.. log log log ± > se Obs: ), seria a solução do sistema. log e não do sistema log log, portanto a anca valiadora houve por bem anular esta questão.
8 9 adas as funções reais f ) e g ), o conjunto-solução da inequação f ) g ) é : { R ou > } { R ou < } { R > ou < } { R < ou } { R< } 7
9 8 Sejam as matrizes ) a ij em que j ij i a e 6 8. Se a matriz é tal que., então:.. det
10 figura a seguir mostra um retângulo F inscrito no triângulo retângulo, cujos catetos têm medidas e. ntão, a área máima desse retângulo é:,,, 8 área. ) ou é máima quando. neste caso, área., 9
11 soma S n dos n primeiros termos de uma seqüência a a, a, a,..., a,... é obtida pela fórmula n n S n n, n ntão, o valor do o termo a ) dessa seqüência é: 6 a S S Fim da Prova de Matemática
12 Resolução No º século a.., o diretor da iblioteca de leandria, ratóstenes de irene, calculou da seguinte forma o meridiano terrestre: conhecia-se a distância L entre leandria e Siena, igual aos atuais 787, km; sabia-se que, ao meio-dia do solstício de verão, o sol estava a pino em Siena e projetava sombra em leandria, em edificações verticais. s duas cidades estavam localizadas aproimadamente sobre o mesmo meridiano. ratóstenes mediu a inclinação θ dos raios do sol em relação à perpendicular em leandria e obteve aproimadamente θ 7º. onseguiu, então, calcular com boa precisão a medida do meridiano terrestre M. Reproduza seu raciocínio e calcule M. L 787,km L M o θ 6 L M o M 787,. o 7 o km
13 Para transportar certa carga, uma empresa tem as seguintes opções: Por ferrovia usto fio de R$., mais R$, para cada quilômetro rodado. Por rodovia usto fio de R$, mais R$ 7, para cada quilômetro rodado. alcule, em quilômetros, a distância d a ser percorrida para que os custos totais sejam iguais e calcule o valor desse custo. Para uma distância percorrida maior que d, qual a opção mais barata? Justifique. distância percorrida em km F ) R ) 7 a) F ) R ) 7 km F ) R) R$ b) para > temos F) < R)
14 onsidere o polinômio dado por ) P. Sabendo que uma das raízes de P) é -, obtenha as outras raízes. ) ) P 8 ) P é divisível por ) Logo ) 9 ) ) P s outras raízes se obtém fazendo 9 i i ± ± ± Outras raízes: i ± e i
15 Resolver a equação ) -) R chamando ± 67.
16 s medidas dos lados de um triângulo retângulo formam uma progressão aritmética de razão igual a. alcule a medida de cada um dos lados desse triângulo. alcule a área do círculo inscrito nesse triângulo.
17 6 6 Seja o sistema linear kz z z de incógnitas z e,, onde k é um parâmetro real. etermine o valor de k para que o sistema seja possível e indeterminado.
18 7 No plano cartesiano, são dados o ponto P,) e a reta r de equação. Obtenha a equação do conjunto dos pontos,) eqüidistantes do ponto P e da reta r. alcule a área do triângulo cujos vértices são os pontos de intersecção desse conjunto com os eios coordenados. 7
19 8 Uma esfera de raio está inscrita em um cone circular reto cuja base tem raio. etermine a altura desse cone. 8
20 9 Um fumante define a seguinte estratégia para deiar de fumar: do total que atualmente fuma diariamente, reduzir cigarros no primeiro dia, aumentar um cigarro no segundo dia, diminuir no terceiro dia, aumentar no quarto dia, repetindo essa rotina até que a quantidade de cigarros fumados diariamente seja reduzida a zero. onsiderando que hoje ele fume cigarros: contando com o dia de hoje, por quantos dias ele ainda fumará até o primeiro dia em que zere seu consumo? quantos cigarros, incluindo os consumidos no dia de hoje, ele ainda irá fumar até o primeiro dia em que zere o seu consumo? a). n ) n 8 m ) m Por tanto nm dias n m b) ). Sa 8 ). Sb 8 Por tanto S S 8 a b cigarros 9
21 Uma bandeira com três listras horizontais e uma vertical, como é mostrado na figura abaio, deve ser colorida de modo que regiões adjacentes tenham cores diferentes. Sabendo que há seis cores disponíveis, de quantos modos a bandeira pode ser pintada?
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:
1ª Avaliação. 2) Determine o conjunto solução do sistema de inequações: = + corte o eixo Oy
1ª Avaliação 1) Se = 3,666 e y = 0,777, calcule y ) Determine o conjunto solução do sistema de inequações: 7 0 1 3 0 3) Calcule m para que o gráfico de f( ) ( m 7m) no ponto de ordenada 10 = + corte o
a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3
Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados
3 de um dia correspondem a é
. (UFRGS/) Na promoção de venda de um produto cujo custo unitário é de R$ 5,75 se lê: Leve, pague. Usando as condições da promoção, a economia máima que poderá ser feita na compra de 88 itens deste produto
Questão 1 Questão 2. Resposta. Resposta
Questão 1 Questão Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em 10 setores iguais numerados, como mostra a figura. A figura mostra um sistema rotativo de irrigação sobre
6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0
QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada
Matemática Cada quadrado pequeno ilustrado na figura tem lado 2. Qual é a área do polígono ABCDE?
Matemática 01. ada quadrado pequeno ilustrado na figura tem lado. Qual é a área do polígono E? E Resposta: 64 O polígono pode ser decomposto no triângulo E e no quadrado E que tem lado 4 + 6. Logo, a área
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3
Prova Matemática QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado MATEMÁTICA 01 Em um plano α, a
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2
Prova Matemática QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado MATEMÁTICA 01 Considerando o círculo
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1
Prova Matemática QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado MATEMÁTICA 01 Sabe-se que o resto
NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados
ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...
VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2
VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2
a 22, nesta ordem, apresentam a seguinte propriedade: Os três primeiros
PROCESSO SELETIVO/2004 CGE GAB. 1 1 o DIA 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. A soma das raízes das equações + 1 log 5 ( 4 ) + log 5 ( 4 7) = 1 e 7 7 = 294 vale: a) 4 b) c) 2 d) 5 e) 6 02. Na matriz quadrada
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
Prova 3 Matemática. N ọ DE INSCRIÇÃO:
Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta
NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B
NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento
VESTIBULAR UFPE UFRPE / ª ETAPA
VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.
as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2
MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de
Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em 10 setores iguais numerados, como mostra a figura.
MATEMÁTICA Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em setores iguais numerados, como mostra a figura. Em cada jogada, um único setor do círculo se ilumina. Todos os
BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Para medir a largura de um lago,
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998
PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log
Avaliação 01. Onde P é o peso em quilogramas, A é a altura em cm e S é medido em m². Sendo assim calcule a superfície corporal de uma pessoa com:
Avaliação 0 ) Médicos ligados aos desportos de desenvolveram empiricamente a seguinte fórmula para calcular a área da superfície de uma pessoa em função do seu peso e sua Altura. 0,45 0,75 S( P, A) 0,007P
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
Proposta de teste de avaliação 4 Matemática 8 Nome da Escola Ano letivo Matemática 8.º ano Nome do Aluno Turma N.º Data Professor
Proposta de teste de avaliação Matemática Nome da Escola Ano letivo 0-0 Matemática.º ano Nome do Aluno Turma N.º Data Professor - - 0 Na resolução dos itens da parte A podes utilizar a calculadora. Na
02. Uma maneira rudimentar e eficiente para se medir o ângulo de inclinação α de uma rua R, em relação à horizontal H, é construir um triângulo
o PROCESSO SELETIVO/005 1 O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Um motorista percorre 600 km em 9 horas, dirigindo durante 4 horas numa velocidade v 1, e 5 horas numa outra velocidade v.
CPV especializado na ESPM ESPM Resolvida Prova E 16/novembro/2014
CPV especializado na ESPM ESPM Resolvida Prova E 6/novembro/04 MATEMÁTICA. O valor da epressão + + para = 400 é igual a: 3. Se = 4, y = 3 e y = z, o valor de z é igual a: a) 0,05 b) 0,50 c) 0,0 d) 0,0
EXERCÍCOS DE REVISÃO - 1º ANO ENSINO MÉDIO
EXERÍOS DE REVISÃO - 1º NO ENSINO MÉDIO 1.- Para a função definida por f(x) = - 2x 2 + x + 1, determine as coordenadas do vértice e decida se ele representa um ponto de máximo ou de mínimo, explicando
Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2.
4 4 A distância do ponto P (- 2; 6) à reta de equação 3x + 4y 1 = 0 é. 19. 0 0 Se cos x > 0, então 0 < x < 90. Se tgx =, então cosx =. 2 2. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4
UFRGS MATEMÁTICA
UFRGS 00 - MATEMÁTICA ) Alguns especialistas recomendam que, para um acesso confortável aos bebedouros por parte de crianças e usuários de cadeiras de rodas, a borda desses equipamentos esteja a uma altura
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.
1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 101.968 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-90 Fone: 101-968/Site:
Proposta de teste de avaliação
. Proposta de teste de avaliação Matemática 0. N E ESLRIE uração: 90 minutos ata: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item
3ª Ficha de Trabalho
SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado
01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.
0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,
Exercícios sobre Trigonometria
Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:
NOTAÇOES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. A ( ) 0. B ( ) 1. C ( ) 2. D ( ) 3. E ( ) 4.
NOTÇOES R : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i2 = 1 det M : determ inante da matriz M M -1 : inversa da matriz M MN : produto das matrizes M e N B : segmento
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500.
(UFRGS/), semanas corresponde a (A) dias e ora dias, oras e 4 minutos (C) dias, oras e 4 minutos (D) dias e oras (E) dias MATEMÁTICA (A) a + b c = a b c = (C) a + b + c = (D) a b + c = (E) a = b = c 5
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E
Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f
2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.
Curso: Exercícios ESAF para Receita Federal 2013 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 03 Geometria/Trigonometria Professor: Valdenilson Garcia 2013 Copyright. Curso Agora eu Passo
No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2
COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais
Questão 01 EB EA = EC ED. 6 x = 3. x =
Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento
Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo
Plano de ulas Matemática Módulo 9 Trigonometria no triângulo retângulo Resolução dos eercícios propostos Retomada dos conceitos PÍTULO 1 1 Os catetos medem 1 e 16 u.c. e o ilustrar esta situação, nota-se
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 23/04/12 PROFESSOR: MALTEZ
RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: /0/1 PROSSOR: MLTZ Um terreno será vendido através de um plano de pagamentos mensais em que o primeiro pagamento de R$ 500,00 será feito 1 mês após a compra,
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. [email protected] 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.
Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)
Questão 1. Questão 2. Questão 3. Resposta. Resposta
Questão João entrou na lanchonete OG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0. Na mesa ao lado, algumas pessoas pediram 8 hambúrgueres, sucos de laranja e cocadas, gastando R$ 7,00.
3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.
EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5
Matemática B Extensivo V. 7
GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²
Exercícios de Revisão
Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática 10. O NO DE ESOLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
Ordenar ou identificar a localização de números racionais na reta numérica.
Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando
MATEMÁTICA A - 11o Ano Geometria -Trigonometria
MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;
UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues
UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues 01) (UECE 2017.2) Seja YOZ um triângulo cuja medida da altura OH relativa ao lado YZ é igual a 6 m. Se as medidas dos segmentos YH e HZ determinados por
Álgebra. Progressão geométrica (P.G.)
Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica
A solução do sistema de equações lineares. x 2y 2z = 1 x 2z = 3. 2y = 4. { z = 1. x = 5 y = 2. y = 2 z = 1
MATEMÁTICA e A solução do sistema de equações lineares y z = z = 3 é: y z = a) = 5, y = e z =. b) = 5, y = e z =. c) = 5, y = e z =. d) = 5, y = e z =. e) = 5, y = e z =. y z = z = 3 y z = y z = y = z
NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.
R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante
VESTIBULAR UFPE UFRPE / ª ETAPA
MTMÁTI - 2 VSTIULR UP URP / 2000 2ª TP NOM O LUNO: SOL: SÉRI: TURM: 01. Uma embarcação está presa ao cais por um cabo horizontal de comprimento 2,9m. Quando a maré baixar 2,0m, qual será a distância (em
a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G
MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98.
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98. ÍNDICE: Estatística e conteúdos abordados na prova de 2018 1... 5 Prova
Prova de UFRGS
Prova de UFRGS - 212 1 Considere que o corpo de uma determinada pessoa contém 5,5 litros de sangue e 5 milhões de glóbulos vermelhos por milímetro cúbico de sangue Com base nesses dados, é correto afirmar
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
1 = 0,20, teremos um aumento percentual de 20% no gasto com
6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado
Prova da UFRGS
Prova da UFRGS - 01 01. O algarismo das unidades de 9 10 é a) 0. b) 1.. d). e) 9. 0. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a a) 1,9.10 9. b)
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
Prezado( candidato(: Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}
1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
Equação da circunferência e Geometria Espacial
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Equação da circunferência e Geometria Espacial Questão 01 No plano cartesiano,
Capítulo 3 - Geometria Analítica
1. Gráficos de Equações Capítulo 3 - Geometria Analítica Conceito:O gráfico de uma equação é o conjunto de todos os pontos e somente estes pontos, cujas coordenadas satisfazem a equação. Assim, o gráfico
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.
Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância
Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros.
Questão 0 Dada a proposição: Se um quadrilátero é um retângulo então suas diagonais cortam-se ao meio, podemos afirmar que: A) Se um quadrilátero tem as diagonais cortando-se ao meio então ele é um retângulo.
MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES
MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção
FICHA DE AVALIAÇÃO Nº 3
SL SUÁRI M 3º IL. IIS IMR 10º SLRI MTMÁTI IH VLIÇÃ º 3 rupo I s cinco questões deste grupo são de escolha múltipla. ara cada uma delas são indicadas quatro alternativas, das quais só uma está correcta.
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial
MATEMÁTICA. Questões de 05 a 08. desses números pela função f ( x) = 3x. sejam, nessa ordem, três termos consecutivos de uma progressão geométrica.
MAT 6 GRUPO 1 TIPO A MATEMÁTICA Questões de 05 a 08 05 Suponha que os números reais 1 r, 1 e 1+ r sejam, nessa ordem, três termos consecutivos de uma progressão aritmética de razão r 0 Determine r de modo
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
RESPOSTAS ESPERADAS MATEMÁTICA
RESPOSTS ESPERDS MTEMÁTI Questão 1 a) omo o ângulo de giro do ponteiro é diretamente proporcional à velocidade, podemos escrever 10 40km x 104 km Desse modo, x 104 10 / 40 91 Resposta: O ângulo mede 91º
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,
02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a
01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância
Colégio Militar de Porto Alegre 2/11
DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO 013 Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda QUESTÃO 1 O valor de 74 + 43 + 31+ 1+ 13 + 7 + 3 + 1 é igual a (A) 13 (B) 13
Trigonometria no triângulo retângulo
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Trigonometria no triângulo retângulo Questão 01 A figura a seguir é um prisma
UFRJ - Instituto de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras
ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA Um capital aplicado a juros
DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA GOUVEIA.
RESOLUÇÃO DA AVALIAÇÃO FINAL DE MATEMÁTICA APLICADA EM 008 NO COLÉGIO ANCHIETA-BA, AOS ALUNOS DA a SÉRIE DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. 0. D C
Unidade 6 Geometria: quadriláteros
Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere
